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Correction for “Cluster failure: Why fMRI inferences for spatial
extent have inflated false-positive rates,” by Anders Eklund,
Thomas E. Nichols, and Hans Knutsson, which appeared in issue
28, July 12, 2016, of Proc Natl Acad Sci USA (113:7900–7905;
first published June 28, 2016; 10.1073/pnas.1602413113).
The authors note that on page 7900, in the Significance

Statement, lines 9–11, “These results question the validity of
some 40,000 fMRI studies and may have a large impact on the
interpretation of neuroimaging results” should instead appear as
“These results question the validity of a number of fMRI studies
and may have a large impact on the interpretation of weakly
significant neuroimaging results.”
Additionally, the authors note that on page 7904, left column,

fifth full paragraph, lines 1–3, “It is not feasible to redo 40,000
fMRI studies, and lamentable archiving and data-sharing prac-
tices mean most could not be reanalyzed either” should instead
appear as “Due to lamentable archiving and data-sharing prac-
tices, it is unlikely that problematic analyses can be redone.”
These errors do not affect the conclusions of the article. The

online version has been corrected.
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The most widely used task functional magnetic resonance imaging
(fMRI) analyses use parametric statistical methods that depend on a
variety of assumptions. In this work, we use real resting-state data
and a total of 3 million random task group analyses to compute
empirical familywise error rates for the fMRI software packages SPM,
FSL, and AFNI, as well as a nonparametric permutation method. For a
nominal familywise error rate of 5%, the parametric statistical
methods are shown to be conservative for voxelwise inference
and invalid for clusterwise inference. Our results suggest that the
principal cause of the invalid cluster inferences is spatial autocorre-
lation functions that do not follow the assumed Gaussian shape. By
comparison, the nonparametric permutation test is found to produce
nominal results for voxelwise as well as clusterwise inference. These
findings speak to the need of validating the statistical methods being
used in the field of neuroimaging.

fMRI | statistics | false positives | cluster inference | permutation test

Since its beginning more than 20 years ago, functional magnetic
resonance imaging (fMRI) (1, 2) has become a popular tool

for understanding the human brain, with some 40,000 published
papers according to PubMed. Despite the popularity of fMRI as a
tool for studying brain function, the statistical methods used have
rarely been validated using real data. Validations have instead
mainly been performed using simulated data (3), but it is obviously
very hard to simulate the complex spatiotemporal noise that arises
from a living human subject in an MR scanner.
Through the introduction of international data-sharing initia-

tives in the neuroimaging field (4–10), it has become possible to
evaluate the statistical methods using real data. Scarpazza et al.
(11), for example, used freely available anatomical images from
396 healthy controls (4) to investigate the validity of parametric
statistical methods for voxel-based morphometry (VBM) (12).
Silver et al. (13) instead used image and genotype data from 181
subjects in the Alzheimer’s Disease Neuroimaging Initiative
(8, 9), to evaluate statistical methods common in imaging ge-
netics. Another example of the use of open data is our previous
work (14), where a total of 1,484 resting-state fMRI datasets from
the 1,000 Functional Connectomes Project (4) were used as null
data for task-based, single-subject fMRI analyses with the SPM
software. That work found a high degree of false positives, up to
70% compared with the expected 5%, likely due to a simplistic
temporal autocorrelation model in SPM. It was, however, not
clear whether these problems would propagate to group studies.
Another unanswered question was the statistical validity of other
fMRI software packages. We address these limitations in the
current work with an evaluation of group inference with the three
most common fMRI software packages [SPM (15, 16), FSL (17),
and AFNI (18)]. Specifically, we evaluate the packages in their
entirety, submitting the null data to the recommended suite of
preprocessing steps integrated into each package.
The main idea of this study is the same as in our previous one

(14). We analyze resting-state fMRI data with a putative task
design, generating results that should control the familywise error

(FWE), the chance of one or more false positives, and empirically
measure the FWE as the proportion of analyses that give rise to
any significant results. Here, we consider both two-sample and
one-sample designs. Because two groups of subjects are randomly
drawn from a large group of healthy controls, the null hypothesis
of no group difference in brain activation should be true. More-
over, because the resting-state fMRI data should contain no
consistent shifts in blood oxygen level-dependent (BOLD) activity,
for a single group of subjects the null hypothesis of mean zero
activation should also be true. We evaluate FWE control for both
voxelwise inference, where significance is individually assessed at
each voxel, and clusterwise inference (19–21), where significance
is assessed on clusters formed with an arbitrary threshold.
In brief, we find that all three packages have conservative

voxelwise inference and invalid clusterwise inference, for both
one- and two-sample t tests. Alarmingly, the parametric methods
can give a very high degree of false positives (up to 70%, com-
pared with the nominal 5%) for clusterwise inference. By com-
parison, the nonparametric permutation test (22–25) is found to
produce nominal results for both voxelwise and clusterwise in-
ference for two-sample t tests, and nearly nominal results for one-
sample t tests. We explore why the methods fail to appropriately
control the false-positive risk.

Results
A total of 2,880,000 random group analyses were performed to
compute the empirical false-positive rates of SPM, FSL, and
AFNI; these comprise 1,000 one-sided random analyses repeated
for 192 parameter combinations, three thresholding approaches,
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and five tools in the three software packages. The tested parameter
combinations, given in Table 1, are common in the fMRI field
according to a recent review (26). The following five analysis tools
were tested: SPM OLS, FSL OLS, FSL FLAME1, AFNI OLS
(3dttest++), and AFNI 3dMEMA. The ordinary least-squares (OLS)
functions only use the parameter estimates of BOLD response mag-
nitude from each subject in the group analysis, whereas FLAME1 in
FSL and 3dMEMA in AFNI also consider the variance of the subject-
specific parameter estimates. To compare the parametric statistical
methods used by SPM, FSL, and AFNI to a nonparametric method,
all analyses were also performed using a permutation test (22, 23, 27).
All tools were used to generate inferences corrected for the FWE rate
over the whole brain.
Resting-state fMRI data from 499 healthy controls, down-

loaded from the 1,000 Functional Connectomes Project (4), were
used for all analyses. Resting-state data should not contain sys-
tematic changes in brain activity, but our previous work (14)
showed that the assumed activity paradigm can have a large

impact on the degree of false positives. Several different
activity paradigms were therefore used, two block based (B1
and B2) and two event related (E1 and E2); see Table 1
for details.
Fig. 1 presents the main findings of our study, summarized by

a common analysis setting of a one-sample t test with 20 subjects
and 6-mm smoothing [see SI Appendix, Figs. S1–S6 (20 subjects)
and SI Appendix, Figs. S7–S12 (40 subjects) for the full results].
In broad summary, parametric software’s FWE rates for clus-
terwise inference far exceed their nominal 5% level, whereas
parametric voxelwise inferences are valid but conservative, often
falling below 5%. Permutation false positives are controlled at a
nominal 5% for the two-sample t test, and close to nominal for
the one-sample t test. The impact of smoothing and cluster-
defining threshold (CDT) was appreciable for the parametric
methods, with CDT P = 0.001 (SPM default) having much better
FWE control than CDT P = 0.01 [FSL default; AFNI does not
have a default setting, but P = 0.005 is most prevalent (21)].

Table 1. Parameters tested for the different fMRI software packages, giving a total of 192 (3 × 2 × 2 × 4 × 2 × 2)
parameter combinations and three thresholding approaches

Parameter Values used

fMRI data Beijing (198 subjects), Cambridge (198 subjects), Oulu (103 subjects)
Block activity paradigms B1 (10-s on off), B2 (30-s on off)
Event activity paradigms E1 (2-s activation, 6-s rest), E2 (1- to 4-s activation, 3- to 6-s rest, randomized)
Smoothing 4-, 6-, 8-, 10-mm FWHM
Analysis type One-sample t test (group activation), two-sample t test (group difference)
No. of subjects 20, 40
Inference level Voxel, cluster
CDT P = 0.01 (z = 2.3), P = 0.001 (z = 3.1)

One thousand group analyses were performed for each parameter combination.
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Fig. 1. Results for one-sample t test, showing estimated FWE rates for (A) Beijing and (B) Cambridge data analyzed with 6 mm of smoothing and four different
activity paradigms (B1, B2, E1, and E2), for SPM, FSL, AFNI, and a permutation test. These results are for a group size of 20. The estimated FWE rates are simply the
number of analyses with any significant group activation divided by the number of analyses (1,000). From Left to Right: Cluster inference using a cluster-defining
threshold (CDT) of P = 0.01 and a FWE-corrected threshold of P = 0.05, cluster inference using a CDT of P = 0.001 and a FWE-corrected threshold of P = 0.05, and voxel
inference using a FWE-corrected threshold of P = 0.05. Note that the default CDT is P = 0.001 in SPM and P = 0.01 in FSL (AFNI does not have a default setting).
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Among the parametric software packages, FSL’s FLAME1
clusterwise inference stood out as having much lower FWE, of-
ten being valid (under 5%), but this comes at the expense of
highly conservative voxelwise inference.
We also examined an ad hoc but commonly used thresholding

approach, where a CDT of P = 0.001 (uncorrected for multiple
comparisons) is used together with an arbitrary cluster extent
threshold of 10 8-mm3 voxels (26, 28). We conducted an addi-
tional 1,000 analyses repeated for four assumed activity paradigms
and the five different analysis tools (Fig. 2). Although no precise
control of false positives is assured, we found this makeshift in-
ference method had FWE ranging 60–90% for all functions except
FLAME1 in FSL. Put another way, this “P = 0.001 + 10 voxels”
method has a FWE-corrected P value of 0.6–0.9. We now seek to
understand the sources of these inaccuracies.

Comparison of Empirical and Theoretical Test Statistic Distributions.
As a first step to understand the inaccuracies in the parametric
methods, the test statistic values (t or z scores, as generated by
each package) were compared with their theoretical null distri-
butions. SI Appendix, Fig. S13, shows the histogram of all brain
voxels for 1,000 group analyses. The empirical and theoretical
nulls are well matched, except for FSL FLAME1, which has
lower variance (σ̂2 = 0.67) than the theoretical null (σ2 = 1). This is
the proximal cause of the highly conservative results from FSL
FLAME1. The mixed-effects variance is composed of intrasubject
and intersubject variance (σ2WTN , σ

2
BTW , respectively), and although

other software packages do not separately estimate each, FLAME1
estimates each and constrains σ2BTW to be positive. In these null
data, the true effect in each subject is zero, and thus the true
σ2BTW = 0. Thus, unless FLAME1’s σ̂2BWT is correctly estimated to
be 0, it can only be positively biased, and in fact this point was
raised by the original authors (29).
In an follow-up analysis on FSL FLAME1 (SI Appendix), we

conducted two-sample t tests on task fMRI data, randomly
splitting subjects into two groups. In this setting, the two-sample

null hypothesis was still true, but σ2BTW > 0. Here, we found cluster
false-positive rates comparable to FSL OLS (44.8% for CDT
P = 0.01 and 13.8% for CDT P = 0.001), supporting our con-
jecture of zero between-subject variance as the cause of
FLAME1’s conservativeness on completely null resting data.

Spatial Autocorrelation Function of the Noise. SPM and FSL depend
on Gaussian random-field theory (RFT) for FWE-corrected vox-
elwise and clusterwise inference. However, RFT clusterwise in-
ference depends on two additional assumptions. The first
assumption is that the spatial smoothness of the fMRI signal is
constant over the brain, and the second assumption is that the
spatial autocorrelation function has a specific shape (a squared
exponential) (30). To investigate the second assumption, the spatial
autocorrelation function was estimated and averaged using 1,000
group difference maps. For each group difference map and each
distance (1–20 mm), the spatial autocorrelation was estimated and
averaged along x, y, and z. The empirical spatial autocorrelation
functions are given in SI Appendix, Fig. S14. A reference squared
exponential is also included for each software, based on an intrinsic
smoothness of 9.5 mm (FWHM) for SPM, 9 mm for FSL, and
8 mm for AFNI (according to the mean smoothness of 1,000 group
analyses, presented in SI Appendix, Fig. S15). The empirical spatial
autocorrelation functions are clearly far from a squared exponen-
tial, having heavier tails. This may explain why the parametric
methods work rather well for a high CDT (resulting in small
clusters, more reflective of local autocorrelation) and not as well
for a low CDT (resulting in large clusters, reflecting distant auto-
correlation). SI Appendix, Fig. S16, shows how the cluster extent
thresholds differ between the parametric and the nonparametric
methods, for a CDT of P = 0.01. The nonparametric permutation
test is valid for any spatial autocorrelation function and finds much
more stringent cluster extent thresholds (three to six times higher
compared with SPM, FSL, and AFNI).
To better understand the origin of the heavy tails, the spatial

autocorrelation was estimated at different preprocessing stages
(no preprocessing, after motion correction, after motion correc-
tion, and 6-mm smoothing) using the 198 subjects in the Beijing
dataset. The resulting spatial autocorrelation functions are given
in SI Appendix, Fig. S17. It is clear that the long tails exist in the
raw data and become even more pronounced after the spatial
smoothing. These long-tail spatial correlations also exist for MR
phantoms (31) and can therefore be seen as scanner artifacts.

Spatial Distribution of False-Positive Clusters. To investigate whether
the false clusters appear randomly in the brain, all significant
clusters (P < 0.05, FWE-corrected) were saved as binary maps
and summed together (SI Appendix, Fig. S18). These maps of
voxelwise cluster frequency show the areas more and less likely
to be marked as significant in a clusterwise analysis. Posterior
cingulate was the most likely area to be covered by a cluster,
whereas white matter was least likely. As this distribution could
reflect variation in the local smoothness in the data, we used
group residuals from 1,000 two-sample t tests to estimate vox-
elwise spatial smoothness (32) (SI Appendix, Fig. S19). The
local smoothness maps show evidence of a posterior cingulate
“hot spot” and reduced intensity in white matter, just as in the
false-positive cluster maps. Notably, having local smoothness
varying systematically with tissue type has also been observed
for VBM data (13). In short, this suggests that violation of the
stationary smoothness assumption may also be contributing to
the excess of false positives.
In a follow-up analysis using the nonstationary toolbox for

SPM (fmri.wfubmc.edu/cms/software#NS), which provides
parametric cluster inference allowing for spatially varying
smoothness, we calculated FWE rates for stationary as well as
nonstationary smoothness. Use of nonstationary cluster size in-
ference did not produce nominal FWE: relative to the stationary
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Fig. 2. Results for two-sample t test and ad hoc clusterwise inference,
showing estimated FWE rates for 6 mm of smoothing and four different ac-
tivity paradigms (B1, B2, E1, and E2), for SPM, FSL, and AFNI. These results were
generated using the Beijing data and 20 subjects in each group analysis. Each
statistic map was first thresholded using a CDT of P = 0.001 (uncorrected for
multiple comparisons), and the surviving clusters were then compared with a
cluster extent threshold of 80mm3 (10 voxels for SPM and FSL which used 2 × 2 ×
2 mm3 voxels, three voxels for AFNI, which used 3 × 3 × 3 mm3 voxels). The
estimated FWE rates are simply the number of analyses with a significant result
divided by the number of analyses (1,000).
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cluster size test, it produced lower but still invalid FWE for a
CDT of P = 0.01, and higher FWE for a CDT of P = 0.001 (SI
Appendix, Table S2). This inconclusive performance can be at-
tributed to additional assumptions and approximations introduced
by the nonstationary cluster size test that can degrade its perfor-
mance (33, 34). In short, we still cannot rule out heterogeneous
smoothness as contributor to the standard cluster size methods’
invalid performance.

Impact on a Non-Null, Task Group Analysis. All of the analyses to this
point have been based on resting-state fMRI data, where the null
hypothesis should be true. We now use task data to address the
practical question of “How will my FWE-corrected cluster P
values change?” if a user were to switch from a parametric to a
nonparametric method. We use four task datasets [rhyme judg-
ment, mixed gambles (35), living–nonliving decision with plain or
mirror-reversed text, word and object processing (36)] down-
loaded from OpenfMRI (7). The datasets were analyzed using a
parametric (the OLS option in FSL’s FEAT) and a non-
parametric method (the randomise function in FSL) using a
smoothing of 5-mm FWHM (default option in FSL). The only
difference between these two methods is that FSL FEAT-OLS
relies on Gaussian RFT to calculate the corrected cluster
P values, whereas randomise instead uses the data itself. The
resulting cluster P values are given in SI Appendix, Table S3 (CDT
of P = 0.01) and SI Appendix, Tables S4 and S5 (CDT of P = 0.001).
SI Appendix, Fig. S20, summarizes these results, plotting the ratio
of FWE-corrected P values, nonparametric to parametric, against
cluster size. All nonparametric P values were larger than para-
metric (ratio > 1). Although this could be taken as evidence of a
conservative nonparametric procedure, the extensive simulations
showing valid nonparametric and invalid parametric cluster size
inference instead suggest inflated (biased) significance in the
parametric inferences. For CDT P = 0.01, there were 23 clusters
(in 11 contrasts) with FWE parametric P values significant at P =
0.05 that were not significant by permutation. For CDT P = 0.001,
there were 11 such clusters (in eight contrasts). If we assume that
these mismatches represent false positives, then the empirical
FWE for these 18 contrasts considered is 11/18 = 61% for CDT
P = 0.01 and 8/18 = 44% for CDT P = 0.001. These findings in-
dicate that the problems exist also for task-based fMRI data, and
not only for resting-state data.

Permutation Test for One-Sample t Test. Although permutation
tests have FWE within the expected bounds for all two-sample
test results, for one-sample tests they can exhibit conservative or
invalid behavior. As shown in SI Appendix, Figs. S3, S4, S9, and
S10, the FWE can be as low as 0.8% or as high as 40%. The one-
sample permutation FWE varies between site (Beijing, Cam-
bridge, Oulu), but within each site shows a consistent pattern
between the two CDTs and even for voxelwise inference. The
one-sample permutation test comprises a sign flipping pro-
cedure, justified by symmetrically distributed errors (22). Al-
though the voxel-level test statistics appear symmetric and do
follow the expected parametric t distribution (SI Appendix, Fig.
S13), the statistic values benefit from the central limit theorem
and their symmetry does not imply symmetry of the data. We
conducted tests of the symmetry assumption on the data for
block design B1, a case suffering both spuriously low (Cam-
bridge) and high (Beijing, Oulu) FWE (SI Appendix). We found
very strong evidence of asymmetric errors, but with no consistent
pattern of asymmetry; that is, some brain regions showed positive
skew and others showed negative skew.

Discussion
Using mass empirical analyses with task-free fMRI data, we have
found that the parametric statistical methods used for group
fMRI analysis with the packages SPM, FSL, and AFNI can

produce FWE-corrected cluster P values that are erroneous, being
spuriously low and inflating statistical significance. This calls into
question the validity of countless published fMRI studies based on
parametric clusterwise inference. It is important to stress that we
have focused on inferences corrected for multiple comparisons in
each group analysis, yet some 40% of a sample of 241 recent fMRI
papers did not report correcting for multiple comparisons (26),
meaning that many group results in the fMRI literature suffer
even worse false-positive rates than found here (37). According to
the same overview (26), the most common cluster extent threshold
used is 80 mm3 (10 voxels of size 2 × 2 × 2 mm), for which the
FWE was estimated to be 60–90% (Fig. 2).
Compared with our previous work (14), the results presented

here are more important for three reasons. First, the current
study considers group analyses, whereas our previous study
looked at single-subject analyses. Second, we here investigate the
validity of the three most common fMRI software packages (26),
whereas we only considered SPM in our previous study. Third,
although we confirmed the expected finding of permutation’s
validity for two-sample t tests, we found that some settings we
considered gave invalid FWE control for one-sample permuta-
tion tests. We identified skewed data as a likely cause of this and
identified a simple test for detecting skew in the data. Users
should consider testing for skew before applying a one-sample t
test, but it remains an important area for developing new
methods for one-sample analyses (see, e.g., ref. 38).

Why Is Clusterwise Inference More Problematic than Voxelwise? Our
principal finding is that the parametric statistical methods work
well, if conservatively, for voxelwise inference, but not for clus-
terwise inference. We note that other authors have found RFT
clusterwise inference to be invalid in certain settings under sta-
tionarity (21, 30) and nonstationarity (13, 33). This present work,
however, is the most comprehensive to explore the typical pa-
rameters used in task fMRI for a variety of software tools. Our
results are also corroborated by similar experiments for struc-
tural brain analysis (VBM) (11–13, 39, 40), showing that cluster-
based P values are more sensitive to the statistical assumptions.
For voxelwise inference, our results are consistent with a pre-
vious comparison between parametric and nonparametric methods
for fMRI, showing that a nonparametric permutation test can
result in more lenient statistical thresholds while offering precise
control of false positives (13, 41).
Both SPM and FSL rely on RFT to correct for multiple com-

parisons. For voxelwise inference, RFT is based on the assumption
that the activity map is sufficiently smooth, and that the spatial
autocorrelation function (SACF) is twice-differentiable at the
origin. For clusterwise inference, RFT additionally assumes a
Gaussian shape of the SACF (i.e., a squared exponential co-
variance function), that the spatial smoothness is constant over the
brain, and that the CDT is sufficiently high. The 3dClustSim
function in AFNI also assumes a constant spatial smoothness and
a Gaussian form of the SACF (because a Gaussian smoothing is
applied to each generated noise volume). It makes no assumption
on the CDT and should be accurate for any chosen value. As the
FWE rates are far above the expected 5% for clusterwise in-
ference, but not for voxelwise inference, one or more of the
Gaussian SACF, the stationary SACF, or the sufficiently high
CDT assumptions (for SPM and FSL) must be untenable.

Why Does AFNIs Monte Carlo Approach, Unreliant on RFT, Not
Perform Better? As can be observed in SI Appendix, Figs. S2, S4,
S8, and S10, AFNI’s FWE rates are excessive even for a CDT of
P = 0.001. There are two main factors that explain these results.
First, AFNI estimates the spatial group smoothness differently

compared with SPM and FSL. AFNI averages smoothness estimates
from the first-level analysis, whereas SPM and FSL estimate the
group smoothness using the group residuals from the general
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linear model (32). The group smoothness used by 3dClustSim may
for this reason be too low (compared with SPM and FSL; SI
Appendix, Fig. S15).
Second, a 15-year-old bug was found in 3dClustSim while

testing the three software packages (the bug was fixed by the AFNI
group as of May 2015, during preparation of this manuscript).
The bug essentially reduced the size of the image searched for
clusters, underestimating the severity of the multiplicity correc-
tion and overestimating significance (i.e., 3dClustSim FWE P
values were too low).
Together, the lower group smoothness and the bug in 3dClustSim

resulted in cluster extent thresholds that are much lower compared
with SPM and FSL (SI Appendix, Fig. S16), which resulted in par-
ticularly high FWE rates. We find this to be alarming, as 3dClust-
Sim is one of the most popular choices for multiple-comparisons
correction (26).
We note that FWE rates are lower with the bug-fixed 3dClustSim

function. As an example, the updated function reduces the de-
gree of false positives from 31.0% to 27.1% for a CDT of P =
0.01, and from 11.5% to 8.6% for a CDT of P = 0.001 (these
results are for two-sample t tests using the Beijing data, analyzed
with the E2 paradigm and 6-mm smoothing).

Suitability of Resting-State fMRI as Null Data for Task fMRI. One
possible criticism of our work is that resting-state fMRI data do
not truly compromise null data, as they may be affected by con-
sistent trends or transients, for example, at the start of the session.
However, if this were the case, the excess false positives would
appear only in certain paradigms and, in particular, least likely in
the randomized event-related (E2) design. Rather, the inflated
false positives were observed across all experiment types with
parametric cluster size inference, limiting the role of any such
systematic effects. Additionally, one could argue that the spatial
structure of resting fMRI, the very covariance that gives rise to
“resting-state networks,” is unrepresentative of task data and inflates
the spatial autocorrelation functions and induces nonstationarity.
We do not believe this is the case because it has been shown that
resting-state networks can be estimated from the residuals of task
data (42), suggesting that resting data and task noise share similar
properties. We assessed this in our four task datasets, estimating the
spatial autocorrelation of the group residuals (SI Appendix, Fig. S21)
and found the same type of heavy-tailed behavior as in the resting
data. Furthermore, the same type of heavy-tail spatial autocorrela-
tion has been observed for data collected with anMR phantom (31).
Finally, another follow-up analysis on task data (see Comparison of
Empirical and Theoretical Test Statistic Distributions and SI Appendix,
Task-Based fMRI Data, Human Connectome Project, a two-sample t
test on a random split of a homogeneous group of subjects) found
inflated false-positive rates similar to the null data. Altogether, we
find that these findings support the appropriateness of resting data
as a suitable null for task fMRI.

The Future of fMRI. Due to lamentable archiving and data-sharing
practices, it is unlikely that problematic analyses can be redone.
Considering that it is now possible to evaluate common statistical
methods using real fMRI data, the fMRI community should, in
our opinion, focus on validation of existing methods. The main
drawback of a permutation test is the increase in computational
complexity, as the group analysis needs to be repeated 1,000–
10,000 times. However, this increased processing time is not a
problem in practice, as for typical sample sizes a desktop

computer can run a permutation test for neuroimaging data in
less than a minute (27, 43). Although we note that metaanalysis
can play an important role in teasing apart false-positive findings
from consistent results, that does not mitigate the need for ac-
curate inferential tools that give valid results for each and
every study.
Finally, we point out the key role that data sharing played in this

work and its impact in the future. Although our massive empirical
study depended on shared data, it is disappointing that almost
none of the published studies have shared their data, neither the
original data nor even the 3D statistical maps. As no analysis
method is perfect, and new problems and limitations will be cer-
tainly found in the future, we commend all authors to at least
share their statistical results [e.g., via NeuroVault.org (44)] and
ideally the full data [e.g., via OpenfMRI.org (7)]. Such shared data
provide enormous opportunities for methodologists, but also the
ability to revisit results when methods improve years later.

Materials and Methods
Only publicly shared anonymized fMRI data were used in this study. Data
collection at the respective sites was subject to their local ethics review boards,
who approved the experiments and the dissemination of the anonymized data.
For the 1,000 Functional Connectomes Project, collectionof the Cambridgedata
was approved by the Massachusetts General Hospital partners’ institutional
review board (IRB); collection of the Beijing data was approved by the IRB of
State Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal
University; and collection of the Oulu data was approved by the ethics com-
mittee of the Northern Ostrobothnian Hospital District. Dissemination of the
data was approved by the IRBs of New York University Langone Medical
Center and New Jersey Medical School (4). The word and object processing
experiment (36) was approved by the Berkshire National Health Service Re-
search Ethics Committee. The mixed-gambles experiment (35), the rhyme
judgment experiment, and the living–nonliving experiments were approved
by the University of California, Los Angeles, IRB. All subjects gave informed
written consent after the experimental procedures were explained.

The resting-state fMRI data from the 499 healthy controls were analyzed in
SPM, FSL, and AFNI according to standard processing pipelines, and the
analyses were repeated for four levels of smoothing (4-, 6-, 8-, and 10-mm
FWHM) and four task paradigms (B1, B2, E1, and E2). Random group analyses
were then performed using the parametric functions in the three softwares
(SPM OLS, FLAME1, FSL OLS, 3dttest, 3dMEMA) as well as the nonparametric
permutation test. The degree of false positives was finally estimated as the
number of group analyses with any significant result, divided by the number
of group analyses (1,000). All of the processing scripts are available at https://
github.com/wanderine/ParametricMultisubjectfMRI.
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Supporting Information Appendix

Cluster failure: Why fMRI inferences for spatial extent have inflated false positive rates

Anders Eklund, Thomas Nichols, Hans Knutsson

Methods

Resting state fMRI data

Resting state fMRI data from 499 healthy controls were downloaded from the 1000 functional connectomes project [1]

(http://fcon 1000.projects.nitrc.org/fcpClassic/FcpTable.html). The Beijing, Cambridge, and Oulu datasets were selected for

their large sample sizes (198, 198 and 103 subjects respectively) and their narrow age ranges (Beijing: 18 - 26 years, mean

21.16, SD 1.83, Cambridge: 18 - 30 years, mean 21.03, SD 2.31, Oulu: 20 - 23 years, mean 21.52, SD 0.57). For the Beijing

data, there are 76 male and 122 female subjects. For the Cambridge data, there are 75 male and 123 female subjects. For the

Oulu data, there are 37 male and 66 female subjects. Three Tesla (T) MR scanners were used for the Beijing as well as for the

Cambridge data, while a 1.5 T scanner was used for the Oulu data.

The Beijing data were collected with a repetition time (TR) of 2 seconds and consist of 225 time points per subject, 64 x 64

x 33 voxels of size 3.125 x 3.125 x 3.6 mm3. The Cambridge data were collected with a TR of 3 seconds and consist of 119

time points per subject, 72 x 72 x 47 voxels of size 3 x 3 x 3 mm3. The Oulu data were collected for with a TR of 1.8 seconds

and consist of 245 time points per subject, 64 x 64 x 28 voxels of size 4 x 4 x 4.4 mm. For each subject there is one T1-weighted

anatomical volume which can be used for normalization to a brain template. According to the motion plots from FSL, four Oulu

subjects moved slightly more than 1 mm in any direction. According to motion plots from AFNI, one Cambridge subject, three

Beijing subjects and eight Oulu subjects moved slightly more than 1 mm. The fMRI data have not been corrected for geometric

distortions, and no field maps are available for this purpose.

We randomly selected subsets of subjects for one sample t-tests (group activation) and two-sample t-tests (group difference).

Since the subjects were not performing any task and all are healthy and of similar age, the number of analyses with one or more

significant effects should follow the nominal rate (analyses were performed separately for Beijing, Cambridge and Oulu). The

same approach has previously been used to test the validity of parametric statistics for voxel based morphometry [2, 3].

Random group generation

Each random group was created by first applying a random permutation to a list containing all the 198, or 103, subject numbers.

To create two random groups of 20 subjects each, the first 20 permuted subject numbers were put into group 1, and the

following 20 permuted subject numbers were put into group 2. According to the n choose k formula n!
k!(n−k)! it is possible to

create approximately 1.31 · 1042 such random group divisions (for n = 198 and k = 40). This collection of random analyses is



not independent, but the estimate of the familywise false positive rate is unbiased (as the expectation operator is additive under

dependence). A total of 1,000 random analyses were used to estimate the FWE (the same 1,000 analyses for all softwares and

all parameter combinations), for which the normal approximation of the Binomial 95% confidence interval is 3.65% - 6.35% for

a nominal FWE of 5%. Since the independence assumption of this normal approximation does not hold, we conducted Monte

Carlo simulations to assess its accuracy (see Supplementary Table 1).

Supplementary Table 1: Monte Carlo simulations on the accuracy of normal approximation for Binomial 95% confidence
intervals, to address the dependence in the 1,000 subgroups drawn from 103 or 198 subjects. Normally distributed noise
volumes (103 or 198 volumes, 60 x 60 x 60 voxels of size 2 x 2 x 2 mm, no mask) were generated and smoothed with 10
mm FWHM, and random subsets of n = 20 or 40 volumes were drawn, 1,000 times, and used to construct one-sample t-tests.
Inference was performed using cluster inference, with a CDT of p = 0.01 or 0.001, as well as voxel inference. This entire
process was repeated 1,000 times. The voxel and cluster size FWE thresholds were determined from a separate Monte Carlo
simulation (10,000 realizations). We found that results with more smoothing resulted in more inflated confidence intervals, and
hence only show the worst case 10 mm FWHM results here.

Number of subjects Sample size Inference 95% CI
103 20 Voxel 3.40% - 7.00%
103 20 Cluster, CDT p = 0.001 3.00% - 7.80%
103 20 Cluster, CDT p = 0.01 2.50% - 8.70%
103 40 Voxel 2.40% - 9.30%
103 40 Cluster, CDT p = 0.001 1.90% - 11.30%
103 40 Cluster, CDT p = 0.01 1.50% - 13.50%
198 20 Voxel 3.40% - 6.60%
198 20 Cluster, CDT p = 0.001 3.20% - 6.80%
198 20 Cluster, CDT p = 0.01 2.80% - 7.20%
198 40 Voxel 3.10% - 6.90%
198 40 Cluster, CDT p = 0.001 2.50% - 7.50%
198 40 Cluster, CDT p = 0.01 2.00% - 8.00%

Code availability

Parametric group analyses were performed using SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/),

FSL 5.0.7 (http://fsl.fmrib.ox.ac.uk/fsldownloads/) and AFNI (http://afni.nimh.nih.gov/afni/download/afni/releases, compiled

August 13 2014, version 2011 12 21 1014). FSL can perform non-parametric group analyses using the function randomise,

but we here used our BROCCOLI software [4] (https://github.com/wanderine/BROCCOLI) to lower the processing time. All the

processing scripts are freely available (https://github.com/wanderine/ParametricMultisubjectfMRI) to show all the processing

settings and to facilitate replication of the results. Since all the software packages and all the fMRI data are also freely available,

anyone can replicate the results in this paper.

First level analyses

A processing script was used for each software package to perform first level analyses for each subject, resulting in brain

activation maps in a standard brain space (Montreal Neurological Institute (MNI) for SPM and FSL, and Talairach for AFNI).



All first level analyses involved normalization to a brain template, motion correction and different amounts of smoothing (4, 6,

8 and 10 mm full width at half maximum). Slice timing correction was not performed, as the slice timing information is not

available for these fMRI datasets. A general linear model (GLM) was applied to the preprocessed fMRI data, using different

regressors for activity (B1, B2, E1, E2). The estimated head motion parameters were used as additional regressors in the design

matrix, for all packages, to further reduce effects of head motion.

First level analyses for SPM were performed using a Matlab batch script, closely following the SPM manual. The spatial

normalization was done as a two step procedure, where the mean fMRI volume was first aligned to the anatomical volume

(using the function ’Coregister’ with default settings). The anatomical volume was aligned to MNI space using the function

’Segment’ (with default settings), and the two transforms were finally combined to transform the fMRI data to MNI space

at 2 mm isotropic resolution (using the function ’Normalise: Write’). Spatial smoothing was finally applied to the spatially

normalized fMRI data. The first level models were then fit in the atlas space, i.e. not in the subject space.

For FSL, first level analyses were setup through the FEAT GUI. The spatial normalization to the brain template

(MNI152 T1 2mm brain.nii.gz) was performed as a two step linear registration using the function FLIRT (which is the default

option). One fMRI volume was aligned to the anatomical volume using the BBR (boundary based registration) option in FLIRT

(default). The anatomical volume was aligned to MNI space using a linear registration with 12 degrees of freedom (default),

and the two transforms were finally combined. The first level models were fit in the subject space (after spatial smoothing), and

the contrasts and their variances were then transformed to the atlas space.

First level analyses in AFNI were performed using the standardized processing script afni proc.py, which creates a tcsh

script which contains all the calls to different AFNI functions. The spatial normalization to Talairach space was performed as

a two step procedure. One fMRI volume was first linearly aligned to the anatomical volume, using the script align epi anat.py.

The anatomical volume was then linearly aligned to the brain template (TT N27+tlrc) using the script @auto tlrc. The trans-

formations from the spatial normalization and the motion correction were finally applied using a single interpolation, resulting

in normalized fMRI data in an isotropic resolution of 3 mm. Spatial smoothing was applied to the spatially normalized fMRI

data, and the first level models were then fit in the atlas space (i.e. not in the subject space).

Default drift modeling or highpass filtering options were used in each of SPM, FSL and AFNI. A discrete cosine transform

with cutoff of 128 seconds was used for SPM, while highpass filters with different cutoffs where used for FSL (20 seconds for

activity paradigm B1, 60 seconds for B2 and 100 seconds for E1 and E2), matching the defaults used by the FEAT GUI, and

AFNI’s Legende polynomial order is 4 and 3 for the Beijing and the Cambridge data, respectively (based on total scan duration).

Temporal correlations were further corrected for with a global AR(1) model in SPM, an arbitrary temporal autocorrelation

function regularized with a Tukey taper and adaptive spatial smoothing in FSL and a voxel-wise ARMA(1,1) model in AFNI.



Group analyses

A second processing script was used for each software package to perform random effect group analyses, using the results

from the first level analyses. For SPM, group analyses were only performed with the resulting beta weights from the first level

analyses, using ordinary least squares (OLS) regression over subjects. For FSL, group analyses were performed both using

FLAME1 (which is the default option) and OLS. The FLAME1 function uses both the beta weight and the corresponding

variance of each subject, subsequently estimating a between subject variance. For AFNI, group analyses were performed using

the functions 3dttest++ (OLS, using beta estimates from the function 3dDeconvolve which assumes independent errors) and

3dMEMA (which is similar to FLAME1 in FSL, using beta and variance estimates from the function 3dREMLfit which uses a

voxel-wise ARMA(1,1) model of the errors).

For the non-parametric analyses in BROCCOLI, first level results from FSL were used with OLS regression. A one-sample

permutation test on measures of change (i.e. BOLD contrast images) is conducted by randomly flipping the sign of each subject’s

data. Also known as the wild bootstrap, this is an exact test when the errors at each voxel are symmetrically distributed [5]. A

two-sample permutation test proceeds by randomly re-assigning group labels to subjects. Each non-parametric group analysis

was performed using 1,000 permutations or sign flips, a random sample of the millions of possible sign-flips and permutations.

For each permutation the maximal test statistic (voxel statistic or cluster size) over the brain is retained, creating the null

maximum distribution used for FWE inference.

Voxel-wise FWE-corrected p-values from SPM and FSL were obtained based on their respective implementations of random

field theory [6], while AFNI FWE p-values were obtained with a Bonferroni correction for the number of voxels (AFNI does

not provide any specific program for voxel-wise FWE p-values). For the non-parametric analyses, FWE-corrected p-values

were calculated as the proportion of the maximum statistic null distribution being as large or larger than a given statistic value.

Cluster-wise FWE-corrected p-values from SPM and FSL were likewise obtained based on their implementations of random

field theory [7]. AFNI estimates FWE p-values with a simulation based procedure, 3dClustSim [8]. SPM and FSL estimate

smoothness from the residuals of the group level analysis (used for both voxel-wise and cluster-wise inference), while AFNI

uses the average of the first level analyses’ smoothness estimates. For the non-parametric analyses, FWE-corrected p-values

were calculated as the proportion of the maximum cluster size null distribution being as large or larger than a given cluster’s

size.

Each group analysis was considered to give a significant result if any cluster or voxel had a FWE-corrected p-value p < 0.05.



Symmetry assumption for permutation based one-sample t-test

The permutation based one-sample t-test requires that the errors are symmetrically distributed. To investigate this assumption,

voxel-wise skewness s was estimated according to

s =
1
n

∑n
i=1(xi − x̄)3(

1
n−1

∑n
i=1(xi − x̄)2

)3/2 , (1)

where n is the number of subjects in each group analysis and xi represents the first level activity estimate for subject i. For

each random group analysis a sign flipping test (with 100 sign flips) was used to calculate voxel-wise p-values of skewness.

The voxel-wise mean was removed prior to the sign flipping, and the maximum and minimum skewness values across the

entire brain were saved for each sign flip to form the maximum and minimum null distributions (required to calculate corrected

p-values).

Testing 100 random one-sample n = 20 group analyses for skew, the vast majority of analyses had evidence for both positive

and negative skew. For the Beijing datasets analyzed with paradigm B1, 82 analyses had 5% FWE-significant positive skew,

86 significant negative skew; for Cambridge B1, 91 analyses had significant negative skew, 72 significant positive skew; for

Oulu B1, 99 analyses had significant positive skew and 94 significant negative skew. A given voxel cannot be both positively

and negatively skewed, but rather these results show that both positively and negatively skewed voxels are prevalent in all three

datasets. Interestingly, the skewness varies both with the spatial location and the assumed activity paradigm.

Why is cluster-wise inference more problematic than voxelwise?

Supplementary Figure 14 shows that the SACFs are far from a squared exponential. The empirical SACFs are close to a squared

exponential for small distances, but the autocorrelation is higher than expected for large distances. This could be the reason

why the parametric methods work rather well for a high cluster defining threshold (p = 0.001), and not at all for a low threshold

(p = 0.01). A low threshold gives large clusters with a large radius, for which the tail of the SACF is quite important. For a high

threshold, resulting in rather small clusters with a small radius, the tail is not as important. Also, it could simply be that the

high-threshold assumption is not satisfied for a CDT of p = 0.01. Supplementary Figure 19 shows that the spatial smoothness

is not constant in the brain, but varies spatially. Note that the bright areas match the spatial distribution of false clusters in

Supplementary Figure 18; it is more likely to find a large cluster for a high smoothness. The permutation test does not assume

a specific shape of the SACF, nor does it assume a constant spatial smoothness, nor require a high CDT. For these reasons, the

permutation test provides valid results, for two sample t-tests, for both voxel and cluster-wise inference.



Which parameters affect the familywise error rate for cluster-wise inference?

The cluster defining threshold is the most important parameter for SPM, FSL and AFNI; using a more liberal threshold increases

the degree of false positives. This result is consistent with previous work [9, 10, 11]. However, the permutation test is completely

unaffected by changes of this parameter. According to a recent review looking at 484 fMRI studies [10], the CDT used varies

greatly between the three software packages (mainly due to different default settings). SPM and FSL have default thresholds of

p = 0.001 and p = 0.01, respectively; while AFNI has no default setting, p = 0.005 is most prevalent.

The amount of smoothing has a rather large impact on the degree of false positives, especially for FSL OLS. The results

from the permutation test, on the other hand, do not depend on this parameter. The original fMRI data has an intrinsic SACF,

which is combined with the SACF of the smoothing kernel. The final SACF will more closely resemble a squared exponential

for high levels of smoothing, simply because the smoothing operation forces the data to have a more Gaussian SACF. The

permutation test does not assume a specific form of the SACF, and therefore performs well for any degree of smoothing.

All software packages are affected by the analysis type; the familywise error rates are generally lower for a two-sample

t-test compared to a one sample t-test. This is a reflection of the greater robustness of the two-sample t-test: a difference of two

variables (following the same distribution) has a symmetric distribution, which is an important facet of a normal distribution.

Task based fMRI data

OpenfMRI

Task based fMRI data were downloaded from the OpenfMRI project [12] (http://openfmri.org), to investigate how cluster based

p-values differ between parametric and non-parametric group analyses. Each task dataset contains fMRI data, anatomical data

and timing information for each subject. The datasets were only analyzed with FSL, using 5 mm of smoothing (the default

option). Motion regressors were used in all cases, to further suppress effects of head motion. Group analyses were performed

using the parametric OLS option (i.e. not the default FLAME1 option) and the non-parametric randomise function (which

performs OLS regression in each permutation).

Rhyme judgment

The rhyme judgment dataset is available at http://openfmri.org/dataset/ds000003. The 13 subjects (8 male, age range 18 - 38

years, mean 24.08, SD 6.52) were presented with pairs of either words or pseudo words and made rhyming judgments for each

pair. The design contains four 20 second blocks per category, with eight 2 second events in each block (each block is separated

with 20 seconds of rest). The fMRI data were collected with a repetition time of 2 seconds and consist of 160 time points per

subject, the spatial resolution is 3.125 x 3.125 x 4 mm3 (resulting in volumes of 64 x 64 x 33 voxels). The data were analyzed

with two regressors; one for words and one for pseudo words. A total of four contrasts were applied; words, pseudowords,



words - pseudo words, pseudo words - words. For a cluster defining threshold of p = 0.01, a t-threshold of 2.65 was used. For a

cluster defining threshold of p = 0.001, a t-threshold of 3.95 was used.

Mixed-gambles task

The mixed-gambles task dataset is available at http://openfmri.org/dataset/ds000005. The 16 subjects (8 male, age range 19 -

28 years, mean 22.06, SD 2.86) were presented with mixed (gain/loss) gambles, in an event related design, and decided whether

they would accept each gamble. No outcomes of these gambles were presented during scanning, but after the scan three gambles

were selected at random and played for real money. The fMRI data were collected using a 3 T Siemens Allegra scanner. A

repetition time of 2 seconds was used and a total of 240 volumes were collected for each run, the spatial resolution is 3.125

x 3.125 x 4 mm3 (resulting in volumes of 64 x 64 x 34 voxels). The dataset contains three runs per subject, but only the first

run was used in our analysis. The data were analyzed using four regressors; task, parametric gain, parametric loss and distance

from indifference. A total of four contrasts were applied; parametric gain, - parametric gain, parametric loss, - parametric loss.

For a cluster defining threshold of p = 0.01, a t-threshold of 2.57 was used. For a cluster defining threshold of p = 0.001, a

t-threshold of 3.75 was used.

Living-nonliving decision with plain or mirror-reversed text

The living-nonliving decision task dataset is available at http://openfmri.org/dataset/ds000006a. The 14 subjects (5 male, age

range 19 - 35 years, mean 22.79, SD 4.00) made living-nonliving decisions, in an event related design, on items presented in

either plain or mirror-reversed text. The fMRI data were collected using a 3 T Siemens Allegra scanner. A repetition time

of 2 seconds was used and a total of 205 volumes were collected for each run, the spatial resolution is 3.125 x 3.125 x 5

mm3 (resulting in volumes of 64 x 64 x 25 voxels). The dataset contains six runs per subject, but only the first run was used

in our analysis. The data were analyzed using five regressors; mirror-switched, mirror-nonswitched, plain-switched, plain-

nonswitched and junk. A total of four contrasts were applied; mirrored versus plain (1,1,-1,-1,0), switched versus non-switched

(1,-1,1,-1,0), switched versus non-switched mirrored only (1,-1,0,0,0) and switched versus non-switched plain only (0,0,1,-1,0).

For a cluster defining threshold of p = 0.01, a t-threshold of 2.615 was used. For a cluster defining threshold of p = 0.001, a

t-threshold of = 3.87 was used.

Word and object processing

The word and object processing task dataset is available at http://openfmri.org/dataset/ds000107. The 49 subjects (age range 19

- 38 years, mean 25) performed a visual one-back task with four categories of items: written words, objects, scrambled objects

and consonant letter strings. The design contains six 15 second blocks per category, with 16 fast events in each block. The

fMRI data were collected using a 1.5 T Siemens scanner. A repetition time of 3 seconds was used and a total of 165 volumes



were collected for each run, the spatial resolution is 3 x 3 x 3 mm3 (resulting in volumes of 64 x 64 x 35 voxels). The dataset

contains two runs per subject, but only the first run was used in our analysis. The data were analyzed using four regressors;

words, objects, scrambled objects, consonant strings. A total of six contrasts were applied; words, objects, scrambled objects,

consonant strings, objects versus scrambled objects (0,1,-1,0) and words versus consonant strings (1,0,0,-1). For a cluster

defining threshold of p = 0.01, a t-threshold of 2.38 was used. For a cluster defining threshold of p = 0.001, a t-threshold of 3.28

was used.

Human connectome project

We undertook a follow-up study to understand the conservative results in FSL’s FLAME1. FLAME1 estimates the between-

subject variance as a positive quantity; while this is natural, if the true between-subject variance is zero, an imperfect (i.e.

non-zero) estimation will induce a positive bias and attenuate Z values. The resting fMRI data should have between-subject

variance of zero, while task data usually would have a non-zero between-subject variance. To assess FLAME1 under more

typical but still null settings, we created randomized two-group studies on task fMRI data; a homogeneous group of subjects

were split into two equal groups, meaning that the null of equal group activation is true, but there is activation present in the

data and likely appreciable between-subject variance.

Specifically, task based fMRI data were downloaded from the human connectome project

(HCP, http://www.humanconnectome.org/, ”Unrelated 80”), to investigate the degree of false positives using task data. fMRI

data from 80 unrelated healthy subjects (36 male, age range 22 - 36 years) were downloaded. A total of 7 task datasets

were used for all subjects (working memory, gambling, motor, language, social cognition, relational processing, emotion pro-

cessing), resulting in a total of 87 task contrasts. The fMRI data were collected using a 3 T Siemens Connectome Skyra

scanner, with a multiband gradient echo EPI sequence. A repetition time of 0.72 seconds was used, and the spatial resolu-

tion is 2 x 2 x 2 mm3 (resulting in volumes of 104 x 90 x 72 voxels). See the HCP website for information about the tasks;

http://www.humanconnectome.org/documentation/Q1/task-fMRI-protocol-details.html.

For each of the 87 contrasts, a two sample t-test was applied to a random split of the 80 subjects into two groups of 40

subjects. Each contrast resulting in a significant group difference (p < 0.05, FWE cluster corrected) was then counted as a false

positive.



(a) (b)

(c)

Supplementary Figure 1: Results for two sample t-test and cluster-wise inference using a cluster defining threshold (CDT) of
p = 0.01, showing estimated familywise error rates for 4 - 10 mm of smoothing and four different activity paradigms (B1, B2,
E1, E2), for SPM, FSL, AFNI and a permutation test. These results are for a group size of 10 (giving a total of 20 subjects).
Each statistic map was first thresholded using a CDT of p = 0.01, uncorrected for multiple comparisons, and the surviving
clusters were then compared to a FWE-corrected cluster extent threshold, pFWE = 0.05. The estimated familywise error rates
are simply the number of analyses with any significant group differences divided by the number of analyses (1,000). Note that
the default CDT is p = 0.001 in SPM and p = 0.01 in FSL (AFNI does not have a default setting). Also note that the default
amount of smoothing is 8 mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for Beijing data (b) results for Cambridge
data (c) results for Oulu data.
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Supplementary Figure 2: Results for two sample t-test and cluster-wise inference using a cluster defining threshold (CDT) of
p = 0.001, showing estimated familywise error rates for 4 - 10 mm of smoothing and four different activity paradigms (B1, B2,
E1, E2), for SPM, FSL, AFNI and a permutation test. These results are for a group size of 10 (giving a total of 20 subjects).
Each statistic map was first thresholded using a CDT of p = 0.001, uncorrected for multiple comparisons, and the surviving
clusters were then compared to a FWE-corrected cluster extent threshold, pFWE = 0.05. The estimated familywise error rates
are simply the number of analyses with any significant group differences divided by the number of analyses (1,000). Note that
the default CDT is p = 0.001 in SPM and p = 0.01 in FSL (AFNI does not have a default setting). Also note that the default
amount of smoothing is 8 mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for Beijing data (b) results for Cambridge
data (c) results for Oulu data.
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Supplementary Figure 3: Results for one sample t-test and cluster-wise inference using a cluster defining threshold (CDT) of
p = 0.01, showing estimated familywise error rates for 4 - 10 mm of smoothing and four different activity paradigms (B1, B2,
E1, E2), for SPM, FSL, AFNI and a permutation test. These results are for a group size of 20. Each statistic map was first
thresholded using a CDT of p = 0.01, uncorrected for multiple comparisons, and the surviving clusters were then compared
to a FWE-corrected cluster extent threshold, pFWE = 0.05. The estimated familywise error rates are simply the number of
analyses with any significant group activations divided by the number of analyses (1,000). Note that the default CDT is p =
0.001 in SPM and p = 0.01 in FSL (AFNI does not have a default setting). Also note that the default amount of smoothing is
8 mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for Beijing data (b) results for Cambridge data (c) results for Oulu
data.
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Supplementary Figure 4: Results for one sample t-test and cluster-wise inference using a cluster defining threshold (CDT)
of p = 0.001, showing estimated familywise error rates for 4 - 10 mm of smoothing and four different activity paradigms (B1,
B2, E1, E2), for SPM, FSL, AFNI and a permutation test. These results are for a group size of 20. Each statistic map was first
thresholded using a CDT of p = 0.001, uncorrected for multiple comparisons, and the surviving clusters were then compared
to a FWE-corrected cluster extent threshold, pFWE = 0.05. The estimated familywise error rates are simply the number of
analyses with any significant group activations divided by the number of analyses (1,000). Note that the default CDT is p =
0.001 in SPM and p = 0.01 in FSL (AFNI does not have a default setting). Also note that the default amount of smoothing is
8 mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for Beijing data (b) results for Cambridge data (c) results for Oulu
data.



(a) (b)
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Supplementary Figure 5: Results for two-sample t-test and voxel-wise inference, showing estimated familywise error rates
for 4 - 10 mm of smoothing and four different activity paradigms (B1, B2, E1, E2), for SPM, FSL, AFNI and a permutation
test. These results are for a group size of 10 (giving a total of 20 subjects). Each statistic map was thresholded using a FWE-
corrected voxel-wise threshold of pFWE = 0.05. The estimated familywise error rates are simply the number of analyses with
any significant results divided by the number of analyses (1,000). Note that the default amount of smoothing is 8 mm in SPM, 5
mm in FSL and 4 mm in AFNI. (a) results for Beijing data (b) results for Cambridge data (c) results for Oulu data.



(a) (b)

(c)

Supplementary Figure 6: Results for one-sample t-test and voxel-wise inference, showing estimated familywise error rates for
4 - 10 mm of smoothing and four different activity paradigms (B1, B2, E1, E2), for SPM, FSL, AFNI and a permutation test.
These results are for a group size of 20. Each statistic map was thresholded using a FWE-corrected voxel-wise threshold of
pFWE = 0.05. The estimated familywise error rates are simply the number of analyses with any significant results divided by
the number of analyses (1,000). Note that the default amount of smoothing is 8 mm in SPM, 5 mm in FSL and 4 mm in AFNI.
(a) results for Beijing data (b) results for Cambridge data (c) results for Oulu data.
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(c)

Supplementary Figure 7: Results for two sample t-test and cluster-wise inference using a cluster defining threshold (CDT) of
p = 0.01, showing estimated familywise error rates for 4 - 10 mm of smoothing and four different activity paradigms (B1, B2,
E1, E2), for SPM, FSL, AFNI and a permutation test. These results are for a group size of 20 (giving a total of 40 subjects).
Each statistic map was first thresholded using a CDT of p = 0.01, uncorrected for multiple comparisons, and the surviving
clusters were then compared to a FWE-corrected cluster extent threshold, pFWE = 0.05. The estimated familywise error rates
are simply the number of analyses with any significant group differences divided by the number of analyses (1,000). Note that
the default CDT is p = 0.001 in SPM and p = 0.01 in FSL (AFNI does not have a default setting). Also note that the default
amount of smoothing is 8 mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for Beijing data (b) results for Cambridge
data (c) results for Oulu data.



(a) (b)
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Supplementary Figure 8: Results for two sample t-test and cluster-wise inference using a cluster defining threshold (CDT) of
p = 0.001, showing estimated familywise error rates for 4 - 10 mm of smoothing and four different activity paradigms (B1, B2,
E1, E2), for SPM, FSL, AFNI and a permutation test. These results are for a group size of 20 (giving a total of 40 subjects).
Each statistic map was first thresholded using a CDT of p = 0.001, uncorrected for multiple comparisons, and the surviving
clusters were then compared to a FWE-corrected cluster extent threshold, pFWE = 0.05. The estimated familywise error rates
are simply the number of analyses with any significant group differences divided by the number of analyses (1,000). Note that
the default CDT is p = 0.001 in SPM and p = 0.01 in FSL (AFNI does not have a default setting). Also note that the default
amount of smoothing is 8 mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for Beijing data (b) results for Cambridge
data (c) results for Oulu data.
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Supplementary Figure 9: Results for one sample t-test and cluster-wise inference using a cluster defining threshold (CDT) of
p = 0.01, showing estimated familywise error rates for 4 - 10 mm of smoothing and four different activity paradigms (B1, B2,
E1, E2), for SPM, FSL, AFNI and a permutation test. These results are for a group size of 40. Each statistic map was first
thresholded using a CDT of p = 0.01, uncorrected for multiple comparisons, and the surviving clusters were then compared
to a FWE-corrected cluster extent threshold, pFWE = 0.05. The estimated familywise error rates are simply the number of
analyses with any significant group activations divided by the number of analyses (1,000). Note that the default CDT is p =
0.001 in SPM and p = 0.01 in FSL (AFNI does not have a default setting). Also note that the default amount of smoothing is
8 mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for Beijing data (b) results for Cambridge data (c) results for Oulu
data.



(a) (b)
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Supplementary Figure 10: Results for one sample t-test and cluster-wise inference using a cluster defining threshold (CDT)
of p = 0.001, showing estimated familywise error rates for 4 - 10 mm of smoothing and four different activity paradigms (B1,
B2, E1, E2), for SPM, FSL, AFNI and a permutation test. These results are for a group size of 40. Each statistic map was first
thresholded using a CDT of p = 0.001, uncorrected for multiple comparisons, and the surviving clusters were then compared
to a FWE-corrected cluster extent threshold, pFWE = 0.05. The estimated familywise error rates are simply the number of
analyses with any significant group activations divided by the number of analyses (1,000). Note that the default CDT is p =
0.001 in SPM and p = 0.01 in FSL (AFNI does not have a default setting). Also note that the default amount of smoothing is
8 mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for Beijing data (b) results for Cambridge data (c) results for Oulu
data.
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Supplementary Figure 11: Results for two-sample t-test and voxel-wise inference, showing estimated familywise error rates
for 4 - 10 mm of smoothing and four different activity paradigms (B1, B2, E1, E2), for SPM, FSL, AFNI and a permutation
test. These results are for a group size of 20 (giving a total of 40 subjects). Each statistic map was thresholded using a FWE-
corrected voxel-wise threshold of pFWE = 0.05. The estimated familywise error rates are simply the number of analyses with
any significant results divided by the number of analyses (1,000). Note that the default amount of smoothing is 8 mm in SPM, 5
mm in FSL and 4 mm in AFNI. (a) results for Beijing data (b) results for Cambridge data (c) results for Oulu data.
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Supplementary Figure 12: Results for one-sample t-test and voxel-wise inference, showing estimated familywise error rates
for 4 - 10 mm of smoothing and four different activity paradigms (B1, B2, E1, E2), for SPM, FSL, AFNI and a permutation test.
These results are for a group size of 40. Each statistic map was thresholded using a FWE-corrected voxel-wise threshold of
pFWE = 0.05. The estimated familywise error rates are simply the number of analyses with any significant results divided by
the number of analyses (1,000). Note that the default amount of smoothing is 8 mm in SPM, 5 mm in FSL and 4 mm in AFNI.
(a) results for Beijing data (b) results for Cambridge data (c) results for Oulu data.
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Supplementary Figure 13: Empirical versus theoretical null distributions for a) SPM, b) FSL and c) AFNI. The empirical
null distributions were estimated by pooling test values over all brain voxels for 1,000 random group comparisons. The test
values were drawn from two sample t-tests (10 subjects per group) using the Beijing data (analyzed with the E2 paradigm and
6 mm smoothing). Note that the empirical null distribution for FLAME1 in FSL has a much lower variance (0.67) compared
to a normal distribution with unit variance. For this reason, the familywise error rates are much lower for FLAME in FSL,
compared to the other functions.
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Supplementary Figure 14: Empirical versus theoretical spatial autocorrelation functions (SACFs) for a) SPM, b) FSL and
c) AFNI. The SACFs were estimated and averaged using 1,000 group difference maps, generated from two sample t-tests (10
subjects per group) using the Beijing data (analyzed with the E2 paradigm and 6 mm smoothing). Note that the empirical
SACFs have a much longer tail compared to the theoretical squared exponential SACF, thereby violating one of the required
assumptions for parametric cluster-wise inference using Gaussian random field theory. Both SPM and FSL resample the fMRI
data to a resolution of 2 mm, while AFNI instead uses a resolution of 3 mm for the specific datasets. For this reason, the SACFs
are sampled differently for AFNI.



Supplementary Figure 15: Group smoothness estimates (mm full width at half maximum) for SPM, FSL FLAME and AFNI.
The smoothness estimates originate from 1,000 two sample t-tests (10 subjects per group) using the Beijing data (analyzed with
the E2 paradigm and 6 mm smoothing). Note that AFNI estimates the group smoothness differently compared to SPM and FSL.
Also note that AFNI uses higher order interpolation for motion correction and spatial normalization, which leads to a lower
smoothness compared to more common linear interpolation. The error bars represent the standard deviation.

Supplementary Figure 16: Cluster extent thresholds (in cubic millimeters) for SPM, FSL FLAME, AFNI and a permutation
test, for a cluster defining threshold of p = 0.01 and a familywise cluster error rate of p = 0.05. The thresholds originate from
1,000 two sample t-tests (10 subjects per group) using the Beijing data (analyzed with the E2 paradigm and 6 mm smoothing).
Note that the permutation threshold can only be directly compared with the threshold from the FSL software, as first level results
from FSL were used for the non-parametric analyses. The error bars represent the standard deviation.



Supplementary Figure 17: Spatial autocorrelation functions (SACFs) for raw fMRI data, fMRI data after motion correction
and fMRI data after motion correction and 6 mm smoothing. A theoretical squared exponential is included as reference. The
SACFs were estimated and averaged using the 198 subjects in the Beijing dataset. Note that the long tail exists for the SACF
of the raw data. These long tails have also been observed in data collected with an MR phantom [13], indicating that it is a
scanner artifact.
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Supplementary Figure 18: The maps show voxel-wise incidence of false clusters. Image intensity is the number of times, out
of 10,000 random analyses (200,000 for FSL FLAME, to account for fewer clusters per analysis), a significant cluster occurred
at a given voxel (CDT p = 0.01), for a) SPM, b) FSL and c) AFNI. Each analysis is a two sample t-test (10 subjects per
group) using the Beijing data, analyzed with the E2 paradigm and 6 mm smoothing. The bright spot in the posterior cingulate
corresponds to a region of high smoothness, and suggests non-stationarity as a possible contributing factor.
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Supplementary Figure 19: Maps of voxel-wise smoothness for a) SPM, b) FSL and c) AFNI. The smoothness was estimated
and averaged using 1,000 group residuals, generated from two sample t-tests (10 subjects per group) using the Beijing data
(analyzed with the E2 paradigm and 6 mm smoothing). It is clear that the smoothness varies spatially; one of the required
assumptions for parametric cluster-wise inference using Gaussian random field theory is thereby violated. Note that the bright
areas (high smoothness) match the spatial maps of the false clusters; it is more likely to find a large cluster for areas with a high
smoothness. Note the reduced smoothness for the iterative method AFNI 3dMEMA compared to the corresponding non-iterative
method AFNI OLS; the voxel-by-voxel estimation of between subject variance in the iterative methods reduces the smoothness
slightly.



Supplementary Figure 20: Ratio of non-parametric to parametric FWE corrected p-values for cluster size inference on 4 task
(non-null) fMRI datasets, for parametric FWE p-values 0.05 ≥ p ≥ 10−4. Results for two CDT are shown, p = 0.01 and p =
0.001, and larger ratios indicate parametric p-values being smaller (more significant) than non-parametric p-values (note the
logarithmic scale on the y-axis). Clusters with a parametric FWE p-value more significant than 10−4 are excluded because a
permutation test with 5000 permutations can only resolve p-values down to 0.0002, and such p-values would generate large
ratios inherently. These results suggest cluster size inference with a CDT of p = 0.01 has FWE inflated by 2 to almost 3 orders
of magnitude, and a CDT of p = 0.001 has FWE significance inflated by up to 2 orders of magnitude.
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Supplementary Figure 21: Empirical versus theoretical spatial autocorrelation functions (SACFs) for the four task datasets; a)
mixed-gambles b) rhyme judgment c) living-nonliving decision with plain or mirror-reversed text d) word and object processing.
The SACFs were estimated using the group residuals from each group analysis. The fMRI data for each subject were analyzed
in FSL, using 5 mm of smoothing (FSL default). Note that the empirical SACFs have a much longer tail compared to the
theoretical squared exponential SACF, thereby violating one of the required assumptions for parametric cluster-wise inference
using Gaussian random field theory.



Supplementary Table 2: Estimated familywise error rates (FWE) for parametric stationary and non-stationary cluster infer-
ence. The results are for a two-sample t-test, 10 subjects per group, for data analayzed with the B2 paradigm and 4 mm
smoothing.

Dataset Cluster defining threshold Stationary FWE Non-stationary FWE
Beijing p = 0.01 21.8% 15.8%
Beijing p = 0.001 7.6% 10.9%

Cambridge p = 0.01 23.8% 17.6%
Cambridge p = 0.001 7.9% 10.9%

Oulu p = 0.01 15.5% 12.5%
Oulu p = 0.001 6.3% 13.4%



Supplementary Table 3: Cluster FWE p-values for FSL OLS and a permutation test, for 4 fMRI studies comprising a total of
18 contrasts. A cluster defining threshold of p = 0.01 (z = 2.3) was used, all clusters with FSL OLS FWE p < 0.05 are listed. A
star denotes that the parametric p-value is below 0.05, while the non-parametric p-value is not. Note that the resolution of the
permutation p-values is 0.0002, since 5000 permutations (or sign flips) were used.

OpenfMRI dataset Subjects Cluster size (voxels) FSL OLS p-value Perm OLS p-value
Rhyme judgment, contrast 1 13 53877 0 0.0002
Rhyme judgment, contrast 2 13 27484 0 0.0002

14682 1.37 · 10−40 0.002
3467 1.16 · 10−14 0.024

Rhyme judgment, contrast 3 13 799 4.8 · 10−5 0.097 *
408 0.0103 0.219 *

Rhyme judgment, contrast 4 13 No surviving clusters
Mixed gambles, contrast 1 16 13284 1.36 · 10−36 0.005

440 0.0152 0.202 *
Mixed gambles, contrast 2 16 No surviving clusters
Mixed gambles, contrast 3 16 No surviving clusters
Mixed gambles, contrast 4 16 655 0.00888 0.118 *

Living-nonliving decision, contrast 1 14 8612 3.46 · 10−33 0.001
7577 2.37 · 10−30 0.002
5920 1.6 · 10−25 0.003
1439 4.88 · 10−9 0.035
601 0.000213 0.116 *

Living-nonliving decision, contrast 2 14 751 2.75 · 10−5 0.08 *
669 8.71 · 10−5 0.096 *
546 0.000541 0.128 *

Living-nonliving decision, contrast 3 14 396 0.00889 0.172 *
323 0.0302 0.207 *

Living-nonliving decision, contrast 4 14 No surviving clusters
Word and object processing, contrast 1 49 7397 2.3 · 10−32 0.001

6586 7.57 · 10−30 0.001
6232 1.02 · 10−28 0.002
2834 2.11 · 10−16 0.01
486 0.00044 0.139 *
288 0.0182 0.249 *

Word and object processing, contrast 2 49 7062 9.77 · 10−30 0.001
6158 5.08 · 10−27 0.002
5529 4.73 · 10−25 0.003
1853 2.27 · 10−11 0.025
1523 8.3 · 10−10 0.035
1465 1.6 · 10−9 0.037
1382 4.18 · 10−9 0.04
437 0.00174 0.159 *
409 0.00283 0.173 *

Word and object processing, contrast 3 49 42205 0 0.0002
998 1.79 · 10−7 0.054 *

Word and object processing, contrast 4 49 32404 0 0.0002
12837 2.8 · 10−45 0.001

280 0.0287 0.248 *
278 0.0299 0.251 *

Word and object processing, contrast 5 49 2118 3.05 · 10−14 0.017
881 2.98 · 10−7 0.051 *
395 0.00115 0.146 *
340 0.00354 0.18 *
255 0.0226 0.253 *
253 0.0237 0.258 *
222 0.0486 0.297 *

Word and object processing, contrast 6 49 27767 0 0.0002
6183 9.65 · 10−29 0.005



Supplementary Table 4: Cluster FWE p-values for FSL OLS and a permutation test, for 4 fMRI studies comprising a total of
18 contrasts. A cluster defining threshold of p = 0.001 (z = 3.1) was used, all clusters with FSL OLS FWE p < 0.05 are listed.
A star denotes that the parametric p-value is below 0.05, while the non-parametric p-value is not. Note that the resolution of the
permutation p-values is 0.0002, since 5000 permutations (or sign flips) were used.

OpenfMRI dataset Subjects Cluster size (voxels) FSL OLS p-value Perm OLS p-value
Rhyme judgment, contrast 1 13 13877 0 0.0002

4859 1.18 · 10−38 0.001
2273 5.44 · 10−23 0.002
2039 2.49 · 10−21 0.002
1081 1.04 · 10−13 0.005
473 1.19 · 10−7 0.008
306 1.78 · 10−5 0.011
133 0.00806 0.038
122 0.0127 0.042
99 0.0347 0.055 *

Rhyme judgment, contrast 2 13 14470 0 0.0002
3074 5.43 · 10−27 0.001
1868 3.7 · 10−19 0.002
1558 6.83 · 10−17 0.002
874 2.95 · 10−11 0.004
422 1.19 · 10−6 0.008
255 0.000153 0.014
96 0.0498 0.06 *

Rhyme judgment, contrast 3 13 No surviving clusters
Rhyme judgment, contrast 4 13 No surviving clusters
Mixed gambles, contrast 1 16 766 7.01 · 10−10 0.001

120 0.0237 0.053 *
Mixed gambles, contrast 2 16 No surviving clusters
Mixed gambles, contrast 3 16 No surviving clusters
Mixed gambles, contrast 4 16 No surviving clusters

Living-nonliving decision, contrast 1 14 3310 1.69 · 10−33 0.0002
1901 6.95 · 10−23 0.0002
761 4.8 · 10−12 0.001
569 8.96 · 10−10 0.002
417 5.96 · 10−8 0.002
187 0.000326 0.013
109 0.0109 0.038
96 0.021 0.047
85 0.0373 0.06 *
84 0.0394 0.061 *

Living-nonliving decision, contrast 2 14 90 0.0301 0.046
Living-nonliving decision, contrast 3 14 No surviving clusters
Living-nonliving decision, contrast 4 14 No surviving clusters



Supplementary Table 5: Cluster FWE p-values for FSL OLS and a permutation test, for 4 fMRI studies comprising a total of
18 contrasts. A cluster defining threshold of p = 0.001 (z = 3.1) was used, all clusters with FSL OLS FWE p < 0.05 are listed.
A star denotes that the parametric p-value is below 0.05, while the non-parametric p-value is not. Note that the resolution of the
permutation p-values is 0.0002, since 5000 permutations (or sign flips) were used.

OpenfMRI dataset Subjects Cluster size (voxels) FSL OLS p-value Perm OLS p-value
Word and object processing, contrast 1 49 4644 1.4 · 10−45 0.0002

4017 2.35 · 10−41 0.0002
2615 7.21 · 10−31 0.0002
828 6.38 · 10−14 0.001
765 3.64 · 10−13 0.001
543 2.57 · 10−10 0.003
306 8.34 · 10−7 0.006
292 1.49 · 10−6 0.006
176 0.000187 0.017

Word and object processing, contrast 2 49 5000 1.4 · 10−45 0.0002
3902 1.61 · 10−38 0.0002
1540 2.22 · 10−20 0.0002
1199 3.92 · 10−17 0.0002
1035 1.84 · 10−15 0.0002
989 5.6 · 10−15 0.001
759 1.96 · 10−12 0.001
699 9.92 · 10−12 0.001
497 3.42 · 10−9 0.003
413 5.96 · 10−8 0.004
133 0.00222 0.029
95 0.0149 0.053 *

Word and object processing, contrast 3 49 27735 0 0.0002
1312 2.62 · 10−19 0.001
1264 8.15 · 10−19 0.001
789 1.57 · 10−13 0.002
525 3.99 · 10−10 0.004
415 1.53 · 10−8 0.005
209 4.05 · 10−5 0.013
143 0.000845 0.024

Word and object processing, contrast 4 49 24890 0 0.0002
3525 2.79 · 10−36 0.0002
1678 7.98 · 10−22 0.0002
1492 4.01 · 10−20 0.001
996 3.42 · 10−15 0.002
845 1.55 · 10−13 0.003
346 4.17 · 10−7 0.008
112 0.00582 0.042
107 0.00751 0.044
106 0.00791 0.044
75 0.0425 0.074 *

Word and object processing, contrast 5 49 373 2.03 · 10−8 0.005
282 7.75 · 10−7 0.006
109 0.00302 0.033
98 0.00574 0.04
92 0.00821 0.044
78 0.0195 0.06 *

Word and object processing, contrast 6 49 11134 0 0.0002
3466 1.21 · 10−37 0.001
1630 1.87 · 10−22 0.001
609 2.86 · 10−11 0.003
475 1.98 · 10−9 0.004
270 3.16 · 10−6 0.009
132 0.00145 0.025
111 0.00433 0.035
92 0.0123 0.048
89 0.0146 0.051 *
76 0.0313 0.067 *
75 0.0332 0.069 *



1. REFERENCES

[1] Biswal, B. et al., “Toward discovery science of human brain function,” PNAS, vol. 107, pp. 4734–4739, 2010.

[2] J. Ashburner and K. Friston, “Voxel-based morphometry - the methods,” NeuroImage, vol. 11, pp. 805–821, 2000.

[3] C. Scarpazza, S. Tognin, S. Frisciata, G. Sartori, and A. Mechelli, “False positive rates in voxel-based morphometry

studies of the human brain: Should we be worried?,” Neuroscience & Biobehavioral Reviews, vol. 52, pp. 49–55, 2015.

[4] A. Eklund, P. Dufort, M. Villani, and S. LaConte, “BROCCOLI: Software for fast fMRI analysis on many-core CPUs and

GPUs,” Frontiers in Neuroinformatics, vol. 8:24, 2014.

[5] A. Winkler, G. Ridgway, M. Webster, S. Smith, and T. Nichols, “Permutation inference for the general linear model,”

NeuroImage, vol. 92, pp. 381–397, 2014.

[6] Worsley, K. J. et al., “A unified statistical approach for determining significant signals in images of cerebral activation,”

Human Brain Mapping, vol. 4, pp. 58 – 73, 1996.

[7] K. J. Friston, K. J. Worsley, R. S. J. Frackowiak, J. C. Mazziotta, and A. C. Evans, “Assessing the significance of focal

activations using their spatial extent,” Human Brain Mapping, vol. 1, pp. 210–220, 1994.

[8] Forman, S. D. et al., “Improved assessment of significant activation in functional magnetic resonance imaging (fMRI):

Use of a cluster-size threshold,” Magnetic resonance in medicine, vol. 33, pp. 636–647, 1995.

[9] M. Silver, G. Montana, and T. Nichols, “False positives in neuroimaging genetics using voxel-based morphometry data,”

NeuroImage, vol. 54, pp. 992–1000, 2011.

[10] C. Woo, A. Krishnan, and T. Wager, “Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations,”

NeuroImage, vol. 91, pp. 412 – 419, 2014.

[11] A. Eklund, T. Nichols, M. Andersson, and H. Knutsson, “Empirically investigating the statistical validity of SPM, FSL

and AFNI for single subject fMRI analysis,” in IEEE International symposium on biomedical imaging (ISBI), 2015, pp.

1376–1380.

[12] Poldrack, R. et al., “Toward open sharing of task-based fMRI data: the OpenfMRI project,” Frontiers in Neuroinformatics,

vol. 7, no. 12, 2013.

[13] Kriegeskorte, N. et al., “Artifactual time-course correlations in echo-planar fMRI with implications for studies of brain

function,” International Journal of Imaging Systems and Technology, vol. 18, pp. 345–349, 2008.


