
NE42CH20_Kriegeskorte ARjats.cls May 29, 2019 11:11

Annual Review of Neuroscience

Peeling the Onion of Brain
Representations
Nikolaus Kriegeskorte1 and Jörn Diedrichsen2

1Zuckerman Mind Brain Behavior Institute and Departments of Psychology, Neuroscience,
and Electrical Engineering, Columbia University, New York, New York 10027, USA;
email: n.kriegeskorte@columbia.edu
2Brain and Mind Institute and Departments of Computer Science and Statistical and Actuarial
Sciences, Western University, London, Ontario N6A 3K7, Canada; email: jdiedric@uwo.ca

Annu. Rev. Neurosci. 2019. 42:407–32

The Annual Review of Neuroscience is online at
neuro.annualreviews.org

https://doi.org/10.1146/annurev-neuro-080317-
061906

Copyright © 2019 by Annual Reviews.
All rights reserved

Keywords

encoding, decoding, brain representations, neural code, pattern component
model, representational similarity analysis

Abstract

The brain’s function is to enable adaptive behavior in the world. To this
end, the brain processes information about the world. The concept of rep-
resentation links the information processed by the brain back to the world
and enables us to understand what the brain does at a functional level. The
appeal of making the connection between brain activity and what it repre-
sents has been irresistible to neuroscience, despite the fact that representa-
tional interpretations pose several challenges: We must define which aspects
of brain activity matter, how the code works, and how it supports compu-
tations that contribute to adaptive behavior. It has been suggested that we
might drop representational language altogether and seek to understand the
brain, more simply, as a dynamical system. In this review, we argue that the
concept of representation provides a useful link between dynamics and com-
putational function and askwhich aspects of brain activity should be analyzed
to achieve a representational understanding.We peel the onion of brain rep-
resentations in search of the layers (the aspects of brain activity) that mat-
ter to computation. The article provides an introduction to the motivation
and mathematics of representational models, a critical discussion of their
assumptions and limitations, and a preview of future directions in this area.
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Activity pattern:
vector of activities for
a single experimental
condition (e.g., a
perceptual stimulus)
across measurement
channels (e.g., neurons
or voxels)

Representation:
brain-activity pattern
that serves the purpose
of conveying
information that
specifies perceptions,
thoughts, actions, or
any other mental
content in the context
of the brain’s overall
function
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1. INTRODUCTION

1.1. The Representational Brain

Our brains give rise to a continuous stream ofmental activities.We perceive things, have emotions,
think thoughts,make decisions, and act.These mental activities are sustained by neurons activated
in a dynamic weave of complex patterns. As neuroscientists, we try to understand the functional
mechanism of this neural activity: how it enables us to interact with the world. We are therefore
interested in how things in the world are reflected in the activity in our brains.

We interpret neural activity patterns as serving the function of conveying information about
the world (Brentano 1874, Dennett 1987, Shea 2018). The content could be information about
our environment, acquired through the senses, or any other mental content, such as thoughts,
goals, plans, or actions. Beyond the mere presence of the information in the neural activity, a
representational interpretation implies that the information is used by downstream neurons in a
way that contributes to behavior (Millikan 1989, Kriegeskorte & Bandettini 2007, Shea 2018).We
can test this hypothesis experimentally by manipulating the activity and studying the effects on
behavior (Salzman et al. 1990, Afraz et al. 2006, Parvizi et al. 2012).

We could avoid representational interpretations altogether and approach the brain as a dy-
namical system (Bechtel 1998, Van Gelder 1998, Churchland et al. 2012, Shenoy et al. 2013). The
dynamical systems perspective is fundamental (in that it captures what the brain does at the level
of physical mechanism) and complete (in that it should be able to account for all aspects of brain
function). However, the concepts of information and representation can help us understand the
function of neuronal dynamics at a higher level of description (Dennett 1987, Shea 2018).
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Encoding model:
a model that predicts a
brain-activity pattern
from a description of
the experimental
condition in terms of a
set of features

Decoding model:
a model that predicts a
feature from a
brain-activity pattern

Representational
model: a mathematical
model that specifies a
probability
distribution over the
space of activity
profiles

Pattern component
model (PCM): an
approach to statistical
inference on
representational
models that compares
models to data in
terms of the second
moment of the activity
profiles

Representational
similarity analysis
(RSA): an approach to
statistical inference on
representational
models that compares
models to data in
terms of
representational
dissimilarity matrices

Consider the case of computers: They too can be understood as dynamical systems. However,
interpreting the patterns of charges and currents as representations of data and instructions en-
ables us to capture a computer’s behavior more concisely in a high-level algorithmic description
that reveals the dynamics in terms of the implemented functions. Like a computer, the brain is a
dynamical system, and representational accounts can help us cope with its complexity.

1.2. Encoding and Decoding Models

Encoding models and decoding models (Paninski et al. 2007) attempt to capture, respectively, the
causal process that gives rise to a representation and the causal process by which it might be read.
Ideally, then, an encoding model should take stimuli as input and predict brain responses (Wu
et al. 2006), and a decoding model should take brain responses as input and predict downstream
brain or behavioral responses. Note, however, that a decoder, in this conceptualization, is not the
inverse of an encoder.

In practice, decoders are often conceptualized as inverse encoders (Rieke et al. 1999, Cox &
Savoy 2003, Hung et al. 2005, Kriegeskorte 2011, Tong & Pratte 2012, Carlson et al. 2013, Cichy
et al. 2014, King &Dehaene 2014), mapping from brain responses back to the stimuli, rather than
on to downstream brain or behavioral responses.The decodingmodel, then, serves not as a process
model of brain computation, but rather as a tool of analysis that can help reveal what information
is present in the code and in what format (Kriegeskorte & Douglas 2018b). To understand how
the brain computes, we need to build process models of brain computation and test how well they
can account for behavioral performance and brain activity (Kriegeskorte & Diedrichsen 2016,
Kriegeskorte & Douglas 2018a).

Let us say that we have built a neural network model that can perform some cognitive task
of interest. How do we assess whether it is a good model of how a brain performs the task? We
need a way of comparing not just the architecture (the anatomy), but also the activity patterns (the
physiology) between brain and model (Kriegeskorte 2015, Yamins & DiCarlo 2016, Kriegeskorte
& Douglas 2018a). A detailed comparison of the internal representational spaces can be achieved
using representational models (Diedrichsen & Kriegeskorte 2017).

We assume that the activity elicited by each stimulus (or, more generally, each experimen-
tal condition) in each measured response channel is estimated as a scalar. The scalar activity level
could be defined as the firing rate (for neuronal recordings) or as the voxel response [for functional
magnetic resonance imaging (fMRI)], averaged across repetitions of the same stimulus.We inter-
pret each activity pattern across the neurons or voxels as representing the stimulus that elicited it.
To test our neural network model, then, we must compare the representation in each of its layers
to that in the corresponding cortical area while model and brain are processing the same stimuli.
A good neural network model of brain information processing should recapitulate the represen-
tational transformations across stages of processing (Güçlü & van Gerven 2015). A model of the
ventral visual stream, for example, should disentangle across successive stages the representational
manifolds corresponding to different categories of object (DiCarlo & Cox 2007).

We consider in detail three types of representational model that can be used to test brain-
computational models: (a) encodingmodels (Dumoulin &Wandell 2008,Kay et al. 2008,Mitchell
et al. 2008, Naselaris et al. 2011, Naselaris & Kay 2015), (b) pattern component models (PCMs)
(Diedrichsen et al. 2011, 2018), and (c) representational similarity analysis (RSA) (Kriegeskorte
et al. 2008a, Kriegeskorte & Kievit 2013, Nili et al. 2014). An encoding model predicts each mea-
sured response channel as a linear combination of units of the brain-computational model. The
other two types of representational model predict summary statistics of the representation, so
as to simplify the inference. Each of them can enable us to adjudicate among task-performing
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computational models (Kriegeskorte & Diedrichsen 2016, Diedrichsen & Kriegeskorte 2017) by
comparing model representations to representations in cortical areas.

Researchers have developed many other methods for analyzing neural data, including dimen-
sionality reductionmethods (Cunningham&Yu 2014) and hybridmethods that attempt to explain
activity data using a small number of components that relate to the stimuli (Kobak et al. 2016).
Although the three types of representational model form the core of this article, we consider a
broad range of representational analyses, from data driven (e.g., mapping selectivities across the
cortical sheet) to hypothesis driven (e.g., testing for the presence of particular information with a
decoder). Our goal is to clarify the relationships among all of these analyses by considering what
information each discards.

1.3. The Onion of Brain Representations

We can think of the different aspects of brain representations as the layers of an onion (Figure 1).
On the surface of the onion are the characteristics that first meet the eye when we look at the data.
Functional imaging gives us spatial activity patterns across the cortex, with different techniques,

L and U

Particular linear decoders
e.g., for a pair of stimuli (i, j), yielding

representational distance D i, j

Representational geometry
2nd moment G of activity profiles or
representational distance matrix D

Activity-profile distribution
Activity profiles U or all moments

of activity-profile distribution

Spatial activity patterns
Neuronal locations L and

activity profiles U

D
i,
j

U
  G

 o
r D

Figure 1

Peeling the onion.What information should researchers use to characterize brain representations? When we
consider cortical maps of neuronal selectivity, we care about the activity profiles (tuning functions) U as well
as the locations L of the neurons (entire onion). We can remove from our data the spatial coordinates
specifying where in the map each neuron resides, thus peeling away the outer layer of the onion. This leaves
us with the set of activity profiles. The distribution of the activity profiles specifies the prevalence in the
neuronal population of each tuning function and, together with a noise model, determines both the content
and format of the neuronal code, defining, for example, to what extent particular information is concentrated
in a small number of neurons or distributed across the region. We can abstract from the activity profiles and
consider only the representational geometry, which defines how separated the stimuli are in the multivariate
response space. The representational geometry is fully and equivalently characterized by either the
representational distance matrix D or the second moment of the activity profiles G. Different distributions
of profiles can give rise to the same representational geometry (corresponding to rigid rotations and
translations of the ensemble of response patterns in the space spanned by the response-channel activities).
We can remove the information about the particular distribution of profiles and keep only D or G, the
sufficient statistics of the geometry, thus peeling away the second layer. If the noise is isotropic and
homoscedastic, and the noise distribution is known to us, then the representational geometry defines all
encoded information, i.e., the mutual information between any stimulus feature (graded or categorical
property of each stimulus) and the response pattern. In particular, the geometry defines how well a given
feature or pairwise distinction between stimuli can be decoded. The geometry can be conceptualized as
being composed of the linear dimensions of the multivariate response space (kernels of the onion), which are
selectively explored in linear decoding analyses. By focusing on particular linear decoders, we peel the onion
further, removing the other dimensions of the representational geometry.
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Distance: a function
mapping each pair of
vectors in a space onto
a nonnegative real
number (includes
metrics, and also the
correlation distance,
squared Euclidean
distance, and
Minkowski distances
with p < 1)

Explicit
representation:
a representation of
content in a format
that enables it to be
decoded in a single
step by biological
neurons

Representational
geometry:
the geometry of the
ensemble of
condition-related
activity patterns in the
multivariate response
space, as defined by all
pairwise
representational
dissimilarities

Activity profile:
vector of activities for
a single measurement
channel (e.g., a neuron
or voxel) across
different experimental
conditions (e.g.,
perceptual stimuli)

such as fMRI and calcium imaging, enabling measurements at different spatial and temporal scales
in humans and animals. Functional imaging reveals retinotopic maps in the visual cortex (Tootell
et al. 1998), tonotopic maps in the auditory cortex (Formisano et al. 2003), and somatotopic maps
in the sensory-motor cortices. The presence of an orderly spatial map for an encoded variable is
sometimes taken as essential evidence that an area represents that variable.

Spatial organization matters to brain function. Although it is network topology, the connectiv-
ity graph, that defines the information flow (Felleman & Van Essen 1991), the costs of connection
(in terms of axons, energy, and time lags) scale with the physical distance between two neurons.
Network geometry, therefore, must constrain network topology to some extent (Chklovskii &
Koulakov 2004). This motivates us to care about the spatial layout of functionally specialized
components, both at the scale of the entire brain and at the scale of maps within cortical areas.

However, the precise layout of the maps at the columnar scale likely also reflects random de-
velopmental variation (Ejaz et al. 2015, Wilson & Bednar 2015, Diedrichsen 2019). Moreover, as
illustrated by the example of Caenorhabditis elegans (Bargmann &Marder 2013), even knowing the
locations of all the neurons and their connectome leaves mysterious the computational mechanism
(Poeppel 2012). Might we be losing sight of the forest of computational function for the trees of
individual neurons and their precise locations and tuning?

We can peel away the superficial layers of the onion, abstracting from the locations and tuning
of individual neurons, to reveal the information that a population of neurons renders explicit for
readout by downstream neurons. Deep inside the onion is the information accessible to linear de-
coders (Rieke et al. 1999, DiCarlo & Cox 2007). A linear decoder computes a weighted sum of the
activities that it takes as its input. Because this is a biologically plausible computation for a single
neuron, linear decoders let us probe what information a downstream neuron might extract from
a neural population. A neural population that supports linear decoding of particular information
is sometimes interpreted as an “explicit representation” of that information (deCharms & Zador
2000, Kriegeskorte 2011, DiCarlo et al. 2012, Hong et al. 2016)—with the tacit assumption that
downstream neurons actually do use the information.

Linear decoders are widely used to analyze data from cell recording and functional imaging
(Rieke et al. 1999; Haxby et al. 2001, 2014; Carlson et al. 2003; Cox & Savoy 2003; Hung et al.
2005; Kamitani & Tong 2005; Haynes & Rees 2006; Kriegeskorte et al. 2006; Norman et al. 2006;
Mur et al. 2009; Pereira et al. 2009; Tong & Pratte 2012; Haynes 2015; Hebart & Baker 2017;
Varoquaux et al. 2017; Kriegeskorte &Douglas 2018b). This multivariate approach contrasts with
the univariate analyses of single sites of brain-activity measurement employed in both single-cell
selectivity studies in animals and brain mapping studies in humans. Multivariate decoding lets us
focus on the forest (the population code) and summarize the information conveyed by all of its
trees (neurons) together.

Decoding strikes straight at the core of the onion, at the encoded information, stripping away
intermediate layers that may deserve consideration. For example, a linear decoder does not tell us
how the information is distributed across the population and what tuning single neurons exhibit.
Might we be abstracting too aggressively when considering only the degree to which a particular
variable can be linearly decoded?

To summarize the representational content, perhaps we should consider all possible di-
mensions of linear readout. As we discuss below, a sufficient set of linear projections of the
multivariate response space defines the representational geometry (Kriegeskorte et al. 2008a).
The representational geometry determines the total information content of the code and the
format in which it is encoded, up to a translation and rotation of the response-pattern ensemble
in the space spanned by the response channels. Enclosing this layer is the distribution of activity
profiles (tuning functions), which additionally defines the set of axes that span the multivariate
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P: number of
measurement channels
(neurons, electrodes,
voxels)

K: number of
experimental
conditions

U: K × P matrix of
activity profiles

response space (Diedrichsen et al. 2018). The distribution of activity profiles defines to what
extent a given variable is represented in a sparse or distributed way across the neurons (Simoncelli
& Olshausen 2001, Olshausen & Field 2004).

Our goal in this review is to organize the different aspects of brain-activity measurements
into a nested hierarchy: the onion. We argue that popular data-analysis methods in neuroscience
correspond to successive peeling stages of the onion: from (a) spatial mapping of selectivities across
the cortex, to (b) characterizing the distribution of neuronal tuning functions, to (c) investigating
representational geometries, and finally to (d) decoding analyses. Rather than proposing that the
onion be peeled to a particular layer, we aim to clarify the abstraction gained and the information
lost with each step. First, we peel the onion layer by layer, from the outside toward the core. Then
we proceed in the opposite direction. As we put the onion back together, we consider how adding
layers back in can help us focus on portions of the encoded information that are more likely to be
actually read out by neurons downstream.

2. PEELING THE ONION: FROM THE OUTSIDE IN

2.1. Entire Onion

Consider a wonderful data set: The activity of a large sample of P neurons within a cortical area
has been measured in a large number K of experimental conditions. A scalar activity level has been
estimated for each neuron and condition (e.g., the windowed spike count, averaged across trials
of each condition). The activity estimates have been assembled in a large matrix U (K conditions
by P neurons).

In the context of sensory systems, the experimental conditions will correspond to stimuli, and
the activitymeasurements are typically referred to as responses.We use this terminology to convey
a more concrete intuition, although the concepts that we describe are also applicable to cognitive
and motor representations. The activity matrixU, then, is the stimulus–response matrix. For each
neuron,U provides the activity profile in one of its columns (Figure 2a). A neuron’s activity profile
enables us to characterize its tuning to different stimulus properties or its selectivity for different
categories of stimuli.

In addition, we are given the locations matrix L of the neurons (P neurons by two or three
coordinates defining the location of each neuron on a two-dimensional cortical flatmap or in
three-dimensional brain space).U and L together define the entire onion (Figure 1). Using L, we
could make a cortical map of selectivity, color coding neurons, for example, by the category of the
experimental stimuli in which they are most active.

Assume, for themoment, that the neurons are affected by additive noise that is independent and
identically distributed for each neuron and stimulus.We see below that this requirement can be re-
laxed (see the sidebar titledDealing with Poisson andCorrelatedNoise).A neuron’s activity profile
then defines the accuracy with which we can discriminate any two stimuli from the neuron’s activ-
ity. In conjunction with a noise model,U defines what information about the stimuli the code con-
tains, and also how the information is encoded.L tells us how the neurons are laid out in the cortex.

2.2. Distribution of Activity Profiles

To focus on the information represented in the region, we might decide to disregard the locations
L of the neurons. Removing L amounts to peeling off the outer layer of the onion. We are left
with U, the set of activity profiles. We have lost none of the information in the code, only where
the neurons were in the cortex (Figure 3a).
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Figure 2

Three methods for specification and testing of representational models. (a) Representational models capture
the relationship between stimuli (or, more generally, experimental conditions) and response channels (e.g.,
neurons or voxels). The stimulus–response matrix U contains the activity for each stimulus and response
channel. (b) Representational models can be specified and tested using any of three methodological
approaches: encoding models (left), pattern component models (PCMs) (middle), and representational
similarity analysis (RSA) (right). An encoding model predicts each response as a linear combination of the
activity profiles of a set of model features (red arrows), typically using a 0-mean Gaussian prior on the
weights. A PCM predicts the distribution of activity profiles as a Gaussian distribution, characterized by the
second moment G of the activity profiles. RSA predicts the geometry of the activity patterns, as
characterized by the representational distance matrix D. Encoding models and PCMs, thus, target the
distribution of activity profiles (columns of the matrix U in panel a; each axis in panel b represents the
activity elicited by one stimulus), whereas RSA targets the geometry of the activity patterns (rows of the
matrix U in panel a; each axis in panel b represents the activity elicited in one response channel). PCMs and
RSA characterize a representation by a stimulus-by-stimulus matrix of summary statistics (G and D,
respectively, which can be derived from each other), whereas encoding models characterize each response
channel individually. When a 0-mean isotropic Gaussian weight prior is used for the encoding model
(equivalent to ridge regression), all three methods test hypotheses captured by the second moment of the
activity profiles G as a sufficient statistic (Diedrichsen & Kriegeskorte 2017).

The activity profiles capture the kind of information gathered by an electrophysiologist who
records from one cell at a time with a tungsten electrode: She can characterize the tuning of many
neurons, although she may not have precise information about where in the targeted cortical area
the neurons were located. She might report the proportions of neurons exhibiting different types
of tuning.
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Feature: a scalar
descriptor (e.g., a
property or a category
membership) for each
experimental
condition (e.g., each
stimulus)

DEALING WITH POISSON AND CORRELATED NOISE

The representational geometry is equivalently defined by either the distance matrix or the second moment of the
distribution of the activity profiles. These sufficient statistics define the decodability of any possible contrast of the
experimental conditions (e.g., any stimulus category or continuous feature) when the noise on the activity is addi-
tive, independent and identically distributed across neurons (or measured response channels). These assumptions,
however, are usually violated. In electrophysiological recordings, the trial-by-trial variability of neuronal responses
is roughly proportional to their firing rate. Although the Fano factor (variance over mean) can deviate from 1, the
variability of neuronal responses is often approximated as a Poisson process. Poisson variability can be handled by
using a variance-stabilizing transform of the data: a nonlinear monotonic transformation that renders the variabil-
ity of the firing independent of the firing rate. An approximate solution that is robust and efficient is using the
square root of the instantaneous firing rates (Yu et al. 2009). Noise correlations (Abbott & Dayan 1999, Averbeck
et al. 2006, Moreno-Bote et al. 2014) between recorded neurons or fMRI voxels can be dealt with following a simi-
lar logic. We assume that the noise is additive and multinormal, estimate the P × P error covariance matrix �, and
prewhiten the noise by transforming the patternsU intoU · �−1/2. This transform renders the noise approximately
independent and identically distributed across measurement channels (Walther et al. 2016). The Fisher linear dis-
criminant includes this whitening transform. When all training and test patterns have been whitened, the Fisher
linear discriminant wFisher = (r j − ri )T · �−1 reduces to the difference wwhite

Fisher = (rwhitej − rwhitei )T between the two
activity patterns. Note that wFisher �= wwhite

Fisher. The former includes the whitening transform of the test data, whereas
the latter assumes that the test data have been whitened.

We can view the set of activity profiles (the columns ofU) as a distribution. Consider the space
of all possible activity profiles. Each axis corresponds to the activity elicited by a given stimulus.
Each neuron is a point in this space, the coordinates of which specify the neuron’s activity profile.
The neurons, with their particular activity profiles, are scattered across this space (Figure 2b, left
and center).

The measured neurons are typically a sample from the neuronal population in the area that we
are investigating. Our object of study might be a particular cortical area (say, area V1,MT, or M1)
in a given species of animal.We can view the measured neurons as a sample from an idealized dis-
tribution associated with the cortical area under study.We may not need a comprehensive sample
to characterize the representational space (Ganguli & Sompolinsky 2012, Gao & Ganguli 2015).

The activity-profile distribution p(u) is a continuous probability density function over the space
of activity profiles. It defines how well we can linearly discriminate any two stimuli given all the
responses measured across neurons. Beyond pairs of stimuli, we can attempt to decode any feature
(graded property of each stimulus) from the measured set of neurons. A feature corresponds to a
direction in the space spanned by the stimuli. To the extent that the activity profiles of the mea-
sured neurons can be linearly combined to predict the feature, linear decoding will be successful.
The noise and U together determine how well any feature can be decoded.

In conjunction with a noise model, such a probability density function p(u) comprehensively
captures the code, specifying both the information content and the representational format. We
therefore define a representational model as a probability density function p(u) over the space of
activity profiles. Defining the activity profile as a random variable drawn from the activity-profile
distribution p(u) extends the classical framework of encodingmodels (Wu et al. 2006),which treats
the responses as a fixed set given by the measurements.

One way to model the distribution of activity profiles is to specify a basis set of profiles (i.e., fea-
tures) and assume that the measured activity profiles are linear combinations of this basis set. This
particular type of representational model is called an encoding model (Figure 2b, left) (Dumoulin
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&Wandell 2008, Kay et al. 2008,Mitchell et al. 2008,Naselaris et al. 2011,Naselaris & Kay 2015,
van Gerven 2017).

A basis set of profiles does not uniquely specify a distribution of profiles. However, most en-
coding models assume a Gaussian prior over the weights of the linear combination. Drawing the
weights from a Gaussian prior, a basis set of profiles induces a Gaussian distribution of profiles
p(u). In practice, the Gaussian prior over the weights is often assumed to have a diagonal co-
variance matrix, which implies that the weights are uncorrelated (Kay et al. 2008; Huth et al.
2012, 2016). Each basis profile can capture variation among neurons along some oblique dimen-
sion of the space spanned by the stimulus-elicited activities (Figure 2b), so the induced Gaussian
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Figure 3 (Figure appears on preceding page)

Understanding the layers: altering one without altering the next. (a) Changing neuronal locations does not alter the code or format. In
this example, a population of neurons that fall into groups 1 (gray) and 2 (black) selectively respond to stimulus 1 and stimulus 2,
respectively. If neurons were spatially rearranged in the brain (i, ii) but kept their activity profiles (tuning), then the code would carry
the same information in the same format. (b) Example of a change of the distribution of activity profiles that does not alter the
representational geometry. (i) Two groups of neurons, each preferring a different stimulus. (ii) Each neuron now prefers a different
combination of stimuli 1 and 2, but the population spans the same subspace of activity profiles and equally weights all directions in this
subspace. As a result, these very different distributions of activity profiles give rise to the same representational geometry. More
generally, if the stimulus–response matrix is postmultiplied by an orthogonal matrix (rotating and/or reflecting the response-pattern
ensemble rigidly in the multivariate response space), then the profiles are altered in a way that conserves the representational distances.
(c) Example of a change to the representational geometry that does not alter the encoded information. The representational geometry
determines the encoded information and aspects of the format of the code, such as linear decodability. In this case, by moving stimulus
3 (blue) in the multivariate response space, we have altered the geometry (i, ii). However, because the overlaps among the probability
density functions do not change, this does not alter the encoded information. (d) Example of a change to the encoded information that
does not alter the linearly decodable information. In both scenarios, stimulus 1 (gray) and stimulus 2 (red) elicit the same response
pattern on average. (i) The code distinguishes the two stimuli to some extent because stimulus 2 has a wider noise distribution. This
information is not amenable to linear decoding, but a radial-basis function readout could extract it. (ii) Stimuli 1 (gray) and 2 (red) have
identical distributions (shifted slightly to make both surfaces visible), so no information about the distinction between stimuli 1 and 2 is
encoded. The linearly decodable information is unaltered between subpanels i and ii. Note that, under isotropic, homoscedastic noise,
the representational geometry determines both the encoded information and the linearly decodable information, and the former cannot
be altered without altering the latter.

distribution of activity profiles can be nonisotropic and elongated along oblique directions, cap-
turing, for example, that neurons driven by stimulus A might tend to also be driven by stimulus B.

If we assume the distribution of activity profiles to be Gaussian, then we can alternatively char-
acterize it by its sufficient statistic, the second moment of the activity profiles G (K stimuli by K
stimuli; see Equation 6 in Section 6).G is a matrix that captures, for each pair of stimuli A and B, to
what extent neurons responsive to A are also responsive to B. A particular type of representational
model, called a pattern component model (PCM) (Figure 2b, middle) (Diedrichsen et al. 2011,
2018), uses G to characterize the distribution of activity profiles.

In brains, the distribution of activity profiles may seldom be Gaussian. For non-Gaussian pro-
file distributions, G is not a sufficient statistic, and higher-order moments are required to fully
define the distribution. An important area that needs to be further developed is the use of non-
Gaussian models of the activity-profile distribution (Norman-Haignere et al. 2015). However,
even if the distribution is not Gaussian, it can still be helpful to model it using linear combina-
tions of basis activity profiles or to characterize it to a first approximation by its second moment
G. We see below that, whether or not the activity-profile distribution is Gaussian, G (together
with a noise model) defines the linearly decodable information.

2.3. Representational Geometry

Above, we considered the stimulus–response matrix U in terms of its columns, the activity pro-
files, which reflect neural tuning.We can alternatively considerU in terms of its rows, the activity
patterns elicited by the stimuli (Figure 2a).We can plot the activity patterns as points in the space
spanned by the response channels (Figure 2b, right). Each axis of this space corresponds to the ac-
tivity of one of the neurons. Each point corresponds to the response pattern elicited by a stimulus.

Whether we plot the activity estimates in U in terms of the columns or the rows (Figure 2b,
left and right, respectively), we are plotting the same values and visualizing the same information,
albeit from a different perspective. Plotting the activity profiles (Figure 2b, left) reveals groups
of neurons with similar tuning. Plotting the activity patterns (Figure 2b, right) reveals groups of
stimuli that are represented similarly. The latter perspective suggests that we should think of the
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Representational
dissimilarity:
a measure of the
dissimilarity between
two brain-activity
patterns interpreted as
representations
(includes metrics,
distances, and
dissimilarity estimators
that are not either
metrics or distances)

Metric: a function
mapping each pair of
vectors in a space onto
a nonnegative real
number, where 0 is
returned if and only if
the vectors are
identical, the same
number is returned if
the vectors are
swapped, and the
numbers conform to
the triangle inequality

representation in terms of which stimuli it renders dissimilar, which it renders similar, and which
it renders indiscriminable (Edelman 1998, Edelman et al. 1998).

If we assume additive Gaussian noise that is independent and identically distributed across
neurons (isotropic) and stimuli (homoscedastic), then the Euclidean distance in the multivariate
response space precisely defines the discriminability of a pair of stimuli in the representation. For
two stimuli, the line passing through the two mean response patterns defines the best linear dis-
criminant dimension. The dimensions orthogonal to this discriminant dimension carry no infor-
mation discriminating the stimuli. Projecting the distributions onto the discriminant dimension
yields two equal-variance univariate Gaussians, which capture all the information discriminating
the stimuli. Their overlap is the error rate of the Bayes-optimal decoder and could be charac-
terized by the sensitivity index d ′. The accuracy of a linear decoder rises monotonically with the
Euclidean distance between the two stimuli being discriminated. In practice, the noise is rarely
additive, isotropic, and Gaussian. However, the conceptual points that we make in this section
generalize to correlated multinormal and Poisson noise, which we can handle by transforming
the responses. We discuss the issue of correlated noise in greater detail in the second half of the
review, when putting the onion back together (see also the sidebar titled Dealing with Poisson and
Correlated Noise).

Since representational distance reflects discriminability, we can characterize the representa-
tion by the matrix D (K stimuli by K stimuli; see Equation 7 in Section 6) of Euclidean distances
between stimuli in the multivariate response space. The distance matrix defines the metric rela-
tionships between the stimuli in the representational space: the representational geometry. With
all pairwise distances defined, none of the stimuli can move relative to the others.

The representational distance matrix is also known by its more general name, the represen-
tational dissimilarity matrix (RDM). The concept of dissimilarity includes Euclidean and Maha-
lanobis distances, along with other dissimilarity measures that do not conform to themathematical
definition of metric (which requires the triangle inequality to hold) or even to the looser definition
of distance (which requires nonnegativity).Dissimilarity measures include the correlation distance
(which can return 0 for nonidentical patterns; Equation 8 in Section 6), the squared Mahalanobis
distance (which does not conform to the triangle inequality); and unbiased estimators (which can
be negative), such as the crossnobis distance estimator, which we introduce below (Equation 3).
RDMs provide the signatures used to compare representations between brains and models in
RSA (Figure 2b, right), another method for testing representational models (Kriegeskorte et al.
2008a,b; Kriegeskorte & Kievit 2013; Nili et al. 2014; Kriegeskorte & Diedrichsen 2016).

The representational geometry is defined by its sufficient statistic: the distance matrixD. The
representational geometry determines not only how far any two stimuli are in the representation
and how well they can be discriminated in the presence of noise, but also how well any feature
(continuous or categorical stimulus property) can be linearly decoded from the representation.
A linear decoder projects the representational geometry (the ensemble of patterns) onto an axis
in multivariate response space (Figure 2b, right). Say we set out to decode feature f , where f is
a vector with a property value for each stimulus. The best linear decoder for f defines the axis
projection onto which best matches f . The vector w defining this axis contains the weights with
which we can linearly combine the activity profiles (Figure 2b, left) to best recover the feature
values.

The distance matrixD does not merely define how well any feature can be decoded linearly. It
also defines how well any feature can be decoded nonlinearly (as long as the decoder can see the
entire set of response channels and, like a linear decoder, is capable of translations and rotations
in the space spanned by the response channels). In conjunction with an isotropic noise model,
the distance matrix D defines the joint probability distribution p(s, r) = p(r|s) · p(s) of response
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patterns r and stimuli s, up to a rotation and translation of the ensemble of response patterns in
the space spanned by the response channels (Figure 2b, right). We assume in this case that p(s)
is a uniform prior over the stimuli. The total information that the representation contains about
the stimuli is

I(s; r) =
∑
s

∫
p(s, r) · l og p(s, r)

p(s)p(r)
dr. 1.

When the noise distribution around each stimulus-related response pattern is isotropic, I(s; r) is
invariant to rigid rotations and translations of the ensemble of response patterns and depends
only on the Euclidean distance matrixD and the noise. Similarly, for nonisotropic homoscedastic
multinormal noise (Abbott & Dayan 1999, Averbeck et al. 2006, Moreno-Bote et al. 2014), I(s; r)
depends only on the Mahalanobis distance matrix.

If the representational geometry captures all of the information encoded in the representation,
then have we really lost any information in going from the distribution of activity profiles to the
geometry? The answer is yes. Although we have lost none of the encoded information about the
stimuli, we have peeled away a layer of the onion that defines how the information is distributed
over the neurons (Figure 3b). For example, an equal representational distance could arise from
large response differences in few neurons (localized, sparse) or from small response differences in
many neurons (distributed). Similarly, two representational distinctions could be represented by
disjoint or overlapping sets of neurons. This is illustrated in Figure 3b.

Two representations of the same geometry could thus look very different to a single-cell elec-
trophysiologist sampling cells with an electrode. To the extent that we sample a small number of
neurons and analyze them separately, we will be more sensitive to distinctions that are strongly
reflected in single-neuron responses. Focusing instead on the multivariate representational geom-
etry makes us equally sensitive to information that is localized to a small subset of the region or
distributed across the region. In fact, it makes us oblivious to the difference between them.

The information lost in going from distributions of activity profiles to representational geom-
etry concerns rotations and translations of the ensemble of activity patterns in the space spanned
by the response channels.We can think of the geometry as a rigid construction of points (stimuli)
and edges (distances). The geometry remains unaltered as it is rigidly translated or rotated, but
the activity-profile distribution changes in the process.

Like the second moment of the activity profiles G, the distance matrix D is a stimulus-by-
stimulus matrix that summarizes a subset of the information defining the distribution of activity
profiles. It turns out that there is a close relationship between these two matrices. We can think
of G as a set of inner products among activity patterns, one for each pair of stimuli. The inner
products can be interpreted as measuring the representational similarity for each pair of stim-
uli, whereas the distances measure the representational dissimilarity. This suggests that the two
matrices might capture similar information.

The inner product of each pattern with itself reflects the squared norm of the pattern (i.e.,
the squared Euclidean distance from the origin). Each inner product for a pair of stimuli is pro-
portional to the cosine of the angle spanned by the two activity patterns about the origin (and to
the norms of the two patterns). By defining all pairwise angles and all distances from the origin,
the second moment matrix G, in fact, fully defines the representational geometry. The distance
matrix D can be computed from G (see Equation 9 in Section 6). If we add a baseline pattern
before computing D or center the pattern ensemble in response space before computing G, then
G can also be computed fromD (see Equation 10 in Section 6).G andD, thus, capture equivalent
information.
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Measurement
channel: a localized
brain response for
which scalar activity
measurements have
been performed, such
as a voxel (fMRI
hemodynamic
response) or a neuron
(extracellular electrode
recording)

The equivalence of the second moment of the activity profiles G and the distance matrix D
shows that the three methods for testing representational models—encoding models, PCMs, and
RSA—are closely related. The former two focus on the activity profiles and thus could exploit the
additional information that their distribution contains about the format of the code. In their typical
implementations, however, they in fact predict Gaussian distributions of profiles the sufficient
statistic of which is G (or, equivalently, D). All three, thus, compare representational models in
terms of the representational geometries that they predict (Diedrichsen & Kriegeskorte 2017).

2.4. Decoding Analyses

Representational models make comprehensive predictions about the representational space. A de-
coding analysis merely asks whether a particular feature is accessible to a particular decoder. By
focusing on particular features and particular decoders, we peel off more of the onion, ignoring
other features that might be encoded, as well as other decoders that might be able to access more
information. Representational models are generative models that predict representational spaces
(at the level of the measured response channels in encoding models, the second moment of the
activity profiles in PCMs, and the representational distances in RSA). Decoders are discrimina-
tive models that extract particular information. Because of their more limited focus, decoders, in
general, provide weaker constraints for computational theory.

The most prominent type of decoder is the linear decoder, in which linear combinations of
measurement channels (voxels or neurons) serve as discriminant functions. The motivation for
testing for linear decodability derives from the notion that any information that can be linearly
decoded is amenable to direct readout by downstream neurons that get input from the entire code.
Above, we have seen that the representational geometry captures the content and format (up to
a linear transform) of the representation. The distance matrix D tells us the discriminability of
each pair of stimuli. If we want to know whether a given categorical division or feature f is linearly
represented, we can inspect the quadratic form fTGf , which will reflect the accuracy of linear
decoding within our sample of stimuli. Fitting a linear decoder makes the readout explicit, in
terms of the required weighted combination, and enables us to estimate the accuracy that the
decoder achieves on a test set, which could consist of responses to different stimuli.

With a view to understanding brain computation, researchers take the perspective of readout
neurons. Linearly decodable information could be used by downstream neurons and is there-
fore sometimes described as explicit in the code (deCharms & Zador 2000, Kriegeskorte 2011,
DiCarlo et al. 2012, Hong et al. 2016). Like the representational geometry, linear decoding fo-
cuses on the content of the code, but it peels off more of the onion, omitting information about
any other features that may be present in the code, as well as information that would require a
more sophisticated (e.g., nonlinear) decoder.

3. PUTTING IT BACK TOGETHER: FROM THE INSIDE OUT

As we peeled the onion, we explained what information is discarded with each layer and what
information is kept. We emphasized the motivation for the peeling away of each layer. With our
basic framework in place,we are in a position to take the opposite perspective below.We proceed in
the reverse direction, putting the onion back together layer by layer. In the process, we emphasize
the motivation for using more and more information about brain representations. We also move
beyond the abstract definition of the layers and add more information on how analyses actually
work, how they fall short in terms of their neuroscientific motivation, and what future directions
might be desirable.
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wFisher: decoding
weights for Fisher
linear discriminant
(P weights, one for
each channel)

rk: activity pattern
(across channels) in
response to the kth
condition (kth row of
U, transposed)

3.1. Linear Decoders

Linear decoding involves fitting a set of P weights (one for each neuron, site, or voxel) such that
the weighted sum of the activities reflects the variable to be decoded. The decoded variable could
be continuous or categorical. Computing the weighted sum of the responses to a stimulus is equiv-
alent to projecting the response pattern elicited by the stimulus onto the dimension in the mul-
tivariate response space that is defined by the weight vector w. A linear readout, then, provides
a projection of the data, a perspective onto the geometry of the points corresponding to the re-
sponse patterns. As we add more linear decoders, we capture more dimensions of the representa-
tional space. This insight suggests that we might want to consider all dimensions or, equivalently,
the representational geometry. However, let us consider linear decoders in more detail first.

A linear decoder can be fitted to optimize different cost functions. For example, a linear support
vector machine will maximize the margin of separation between two categories. A Fisher linear
discriminant will maximize the ratio of between-category and within-category variance after pro-
jection onto the discriminant dimension. When the within-category distributions and noise are
multinormal with equal covariance, the resulting one-dimensional projection retains all the infor-
mation that the patterns contain about the category. The Fisher linear discriminant uses weights

wFisher = (r j − ri )T�−1, 2.

where � is an estimate of the P × P within-class covariance matrix, and ri and r j and the activ-
ity patterns for the ith and jth stimulus (rows of U, transposed), respectively. For linear decod-
ing of brain activity, the Fisher linear discriminant often performs well (Mur et al. 2009, Misaki
et al. 2010). Given the numbers of response channels and measurement time points typical in
cell recordings and fMRI, the assumed multinormal noise model is about as rich a model of the
dependencies between responses as is realistic to estimate.

When we fit a linear decoder, the P weights (one for each response channel) will be overfitted
to some extent. The discriminant will therefore tend to separate the categories better in the data
used for fitting (the training data) than in a new data set. In fact, when P > K and there is noise
in the data, some linear discriminant is sure to perfectly separate the training data as desired, even
when all patterns are drawn from the same distribution, and the responses thus contain no infor-
mation about the stimulus. To assess the actual degree of linear separability, we therefore need to
test the discriminant on new data (the test data). This enables us to obtain an unbiased estimate
of discriminability. Testing on a different data set provides a compelling empirical demonstration
of decodability. Any assumptions that we have made (such as multinormal noise), if incorrect, will
work against a significant result. The validity of frequentist inference of decodability, therefore,
does not depend on the assumption ofmultinormality.This is an advantage of linear decoding over
multivariate analysis of variance, which can also be used to test for pattern differences. In multi-
variate analysis of variance, the validity of inference depends on multinormality, and violations of
this assumption might inflate the false-positive rate (Kriegeskorte et al. 2006, Kriegeskorte 2011,
Allefeld & Haynes 2014).

When the target variable is categorical, decoding performance is often assessed in terms
of accuracy (percentage of correctly classified test patterns). This requires the definition of a
threshold on the discriminant dimension, enabling us to classify the test patterns by category. The
thresholding slightly complicates the analysis. Moreover, the quantization involved in counting
correct and incorrect classifications entails a loss of information, which can be substantial in prac-
tice when the number of test patterns is small. If we assume that the within-category distributions
are multinormal (as we do above when choosing the Fisher linear discriminant), then the pattern
distributions will be univariate normal distributions after projection onto the discriminant.
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The univariate contrast on the discriminant then provides a more sensitive test statistic than
the classification accuracy. The linear-discriminant contrast c2ri ,r j = wFisher · (rtestj − rtesti ) can be
normalized by its standard error to obtain the linear discriminant t (LD-t) value, which can be
converted into a p value, providing a frequentist test of the null hypothesis that the two patterns
are identical (Kriegeskorte et al. 2007, Allefeld & Haynes 2014, Nili et al. 2014, Walther et al.
2016). The use of a continuous discriminability measure as the test statistic obviates the need for
thresholding and prevents the loss of information associated with quantization when counting
correct classifications. It therefore provides a more statistically efficient test of discriminability.

Researchers often trainmultiple linear decoders on the same data set to determine the degree to
which different variables can be decoded. Each decoder provides the projection of the K stimulus-
related response patterns onto a different dimension.We could push this approach to the extreme
and fit a linear decoder for every dichotomy (categorical division into two subsets) of the stimulus
set, or even for every feature (continuous property vector). However, the number of dimensions
of the linear subspace containing all the patterns has the upper bound min(K − 1,P). If every
added linear decoder sampled a dimension of the linear subspace containing the stimuli that is
independent of the previously sampled dimensions, then we would need at most K − 1 linear
decoders (for the frequent case of K ≤ P) to fully define the representational geometry.We would
have to store K values (the projections of the stimuli) for each of the K − 1 decoder dimensions,
and the characterization would depend on the particular decoders chosen.

3.2. Representational Geometry

An alternative way to fully define the representational geometry is to fit a linear discriminant for
each pair of theK stimuli.There areK choose 2 = K · (K − 1)/2 pairs. For each pair of stimuli, we
store only the contrast (signed separation) of the projections of the two stimulus-related response
patterns onto their linear discriminant. The contrast serves as an estimate of the representational
distance between the two stimuli in the representation.With each pairwise discriminant,we reduce
our uncertainty about the geometry of the ensemble. With the final pair, there is no more wiggle
room for any point relative to any other point, and the geometry has been completely specified.

When we fit a separate Fisher linear discriminant for a stimulus pair, there is only one stim-
ulus in each of the two classes to be discriminated. The within-class variability, then, just reflects
the noise of the measurements. In practice, this often renders the assumption of equal-covariance
multinormal within-class distributions (which the Fisher linear discriminant is based on) appro-
priate. The linear discriminant contrast

c(2)ri ,r j = (r j − ri )T�−1(rtestj − rtesti ) 3.

turns out to be a crossvalidated variant of the squared Mahalanobis distance

d2ri ,r j = (r j − ri )T�−1(r j − ri ). 4.

We therefore refer to c(2)ri ,r j as the crossnobis estimator (Nili et al. 2014, Diedrichsen et al. 2016,
Kriegeskorte & Diedrichsen 2016, Walther et al. 2016). The crossnobis estimator provides an
unbiased estimate of the true (i.e., noise-free) squaredMahalanobis distance between two response
patterns. Note that the estimator can be negative (as is required for unbiasedness), and thus the
parenthetical superscript does not indicate squaring, but instead emphasizes the relationship to
the squared Mahalanobis distance. The signed square root of the crossnobis estimator cri ,r j =
sign(c(2)ri ,r j ) · |c(2)ri ,r j |1/2 is an unbiased estimator of the Mahalanobis distance.

To understand the bias, consider the fact that a distance, by definition, is nonnegative.When a
distance is estimated from measured data, the noise creates a positive bias. For example, when the
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true distance is 0, the two noisy point estimates will still be separated by a positive distance. Com-
puting distances from noisy data, therefore, can yield a distorted picture of the representational
geometry and misleading inferences (Cai et al. 2016). One remedy is to restrict the analysis to the
ranks of the distances (Kriegeskorte et al. 2008a,b; Nili et al. 2014). However, we might prefer to
use a richer, ratio-scale characterization of the geometry.

The positive bias of distance functions used as distance estimators is the continuous equivalent
of the overfitting bias that inflates training-set classifier accuracy. As for classifier accuracy, the bias
can be removed by using an independent test set (or cross-validation, where results are averaged
across different splits of the data into training and test sets). The crossnobis estimator uses this
method to remove the bias. Unbiasedness entails that the estimator’s expected value is 0 when the
true distance is 0. As a result, an unbiased distance estimator must be able to return negative values
and thus cannot itself be a distance or a metric. The crossnobis estimator combines a multinormal
noise model (which captures spatial noise correlations) with cross-validation (which removes the
bias) and provides continuous distance estimates (not compromised by quantization or saturation)
with an interpretable 0 point. The crossnobis RDM is therefore an attractive way to estimate the
representational geometry in practice.

Recall (from Section 2) that the Euclidean distance matrix [in conjunction with an isotropic,
homoscedastic Gaussian noise model and a flat prior p(s) over the stimuli] defines the joint dis-
tribution p(s, r) up to a rotation and translation in the space spanned by the response channels
and thus completely defines the mutual information I(s; r) between stimulus and response. The
Mahalanobis distance generalizes this relationship toGaussian noise that is anisotropic (correlated
between response channels) and homoscedastic (equal across stimuli). The Mahalanobis distance
matrix completely defines the total encoded information I(s; r), as well as the encoded information
about any given particular stimulus feature. We can use the signed square root of the crossnobis
estimator in practice, which provides an unbiased estimate of the Mahalanobis distance.

Beyond the encoded information, the representational geometry also characterizes the format
of the code, up to an affine transformation (linear transformation and translation) of the pattern
ensemble in the response space. This means that, given the true Mahalanobis distances, we know
not only what information is encoded, but also how well any decoder can read out any feature
if it has access to all neurons in the population and is capable of an affine transformation. This
includes all reasonable nonlinear decoders.

The representational geometry thus contains two subsets of information: the encoded infor-
mation and additional information about the format of the code. The encoded information might
represent a good target for analysis because it captures all the information that the code might
possibly provide to downstream computations. This suggests that we should peel off the format
information contained in the representational geometry so as to arrive at the encoded information
core of the onion (Figure 4).

The encoded information can be conceptualized as a function I[f , p(s, r)] of the stimulus feature
of interest and the joint distribution of stimulus and response. The function is passed a feature f
to be decoded (i.e., a property vector with an entry for each stimulus) as an input, and it returns
the amount of information that the code contains about the feature. This definition strips away
all format information and captures how well the code reflects each stimulus feature.

A complex network of neurons reading the code can implement an arbitrary nonlinear
decoder and thus could theoretically access all encoded information. However, not all encoded
information can be extracted directly by single neurons reading out the code. Readout neurons
are limited to simple operations, such as linear decoding, and may not be able to access the entire
population. The encoded information core of the onion thus invites us to peel further (Figure 4,
right) in search of a biologically valid definition of explicit encoded information.We can think of
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Information potentially used
by single readout neurons

Information potentially used
by researchers

Researcher information

FocusedComprehensive

Encoded information

ExplicitImplicit

a Spatial activity patterns
Neuronal locations L and
activity profiles U

b

c Representational geometry
2nd moment G of activity profiles or
representational distance matrix D

d Particular linear decoders
e.g., for a pair of stimuli (i, j), yielding
representational distance Di, j

L and U

D
i,
j

U
G 

or
 D

i Particular neurons
Single-cell explicit information

h Local linear readout
Downstream neuron can perform 
linear readout from neurons in a 
restricted spatial neighborhood

g Restricted-input linear readout
Downstream neuron can perform 
linear readout from a limited number
of neurons

f Linearly decodable information
Downstream neuron can perform 
linear readout from all neurons

e Encoded information
Downstream neuron can perform 
arbitrary linear or nonlinear readout 
from all neurons

Activity-profile distribution
Activity profiles U or all 
moments of activity-profile 
distribution

Figure 4

Peeling the encoded-information core of the onion. In search of the mental content represented by the code, a researcher might decide
to peel off the outer layers of the onion (a,b). The representational geometry (c) captures the encoded information (assuming isotropic,
homoscedastic noise), along with aspects of the format of the code (d). We can peel away the format information from the
representational geometry to arrive at the encoded-information core of the onion (e). Readout neurons may be limited to simple
operations, such as linear decoding, and may not be able to access the entire population. This suggests further peeling of the
encoded-information core of the onion. However, to select subsets of the encoded information that are visible to particular biologically
plausible decoders, we need to look back at the outer layers of the onion (at the geometry, the profiles, and the locations). To avoid
confusion, we cut the encoded-information core transversely (right) and keep the outer layers close at hand (left). Peeling off the
information not amenable to linear readout (dark red) requires knowledge of the representational geometry. It reveals the linearly
decodable information ( f ) for each stimulus feature. A researcher may want to use more information about the code to further restrict
what portion of the encoded information is considered. Using the distribution of activity profiles, a researcher can specify what
information is available for readout if each readout neuron has access to a limited number of neurons from the code (g). Finally, using
the spatial locations of the neurons, a researcher can specify what information is available for readout if the readout neuron can only see
the code within a restricted spatial neighborhood (h). We can think of a kernel of the encoded-information core of the onion as the
information gleaned by a linear decoder using only a single neuron (i). Note that, although linear decoding is a popular approach, it is
not the only biologically plausible variant. For example, radial-basis-function decoding may be plausible and would give rise to an
alternative decomposition of the encoded information.

the explicit information as information that is inferentially close, requiring only a single layer of
readout neurons to be explicated.

As a first step, we peel off the portion of the encoded information that is not amenable to
linear readout (the dark red layer in Figure 4). Selecting the linearly decodable subset requires
knowledge of the representational geometry. The linearly decodable information is the union
of all the information that can be directly linearly decoded. However, it does not contain the
synergistic information of all linear decoders. If we included the synergistic information, then a set
of linear decoders would always recover the entire encoded information because the decoders can
always just copy the code. To capture the portion of the information that a given class of decoders
can explicate, we need to exclude the synergistic information. The synergistic information is the
implicit portion of the information in the decoder outputs and may, of course, be explicated by
neurons further downstream.
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Linear decoding of the entire population might be considered biologically implausible. For
example, no single readout neuron is likely to receive input from the entire population of V1
neurons. We would therefore like to further peel the encoded information core, restricting what
we consider explicit to subsets of the information that are accessible to more biologically plausible
decoders. To define what information is accessible to decoders restricted to subsets of neurons,
we need to bring back more of the outer layers of the onion (the profiles and the locations) because
the representational geometry does not contain this information. So let us continue to put the
onion back together.

3.3. Distribution of Activity Profiles

Although the representational geometry gives us much information about the format of the code,
it fails to specify to what extent a variable is encoded in a localized or distributed fashion within
our region of interest. A weak distributed selectivity can provide as much information as a strong
localized selectivity.To a linear decoder that can access all neurons, these differences are irrelevant.
The readout weight pattern can select localized signals or integrate weak distributed signals over
the entire extent of the region, flipping signs as needed for decoding.

Consider a data set of V1 neuronal responses to Gabor stimuli. If someone snuck into the lab
at night and replaced the stimulus–response matrix U with a randomly rotated matrix U′ = UR,
whereR is a P × P orthonormal rotationmatrix, then the electrophysiologist inspecting the tuning
curves in the morning might no longer recognize the data as coming from V1. The receptive
fields of the individual responses would no longer be localized in small regions of the visual field.
Rather, every measured channel would respond somewhat to stimuli at every location. However,
linear decoding analyses would show all the same results as on the previous day. RSA, PCMs,
and encoding models using 0-mean Gaussian weight priors (i.e., ridge regression) would also all
give the same results as on the previous day when used to evaluate representational models on
the entire set of responses (i.e., in terms of overall prediction accuracy).1 However, inspecting the
weights of the encoding model for individual responses would reveal that sensitivities no longer
appear localized to retinotopic locations.

The way that effects are distributed across the neuronal population likely matters to neuronal
computation. For example, a downstream readout neuron might not have access to the entire code
(e.g., when the code is spread out over a cortical area like V1). This motivates the use of further
information in the distribution of activity profiles that is not contained in the representational
geometry. We might restrict what we consider explicit information to what can be linearly read
out from a limited number of neurons in the code. Focusing on this restricted-input linear-readout
information (Figure 4g) strips off another layer of the encoded information core of the onion.

Note that, to narrow our definition of the explicit portion of the encoded information, we
use researcher information from layers outside the encoded information. Narrowing our focus
to linearly decodable information (Figure 4f ) requires the use of the format information in the
representational geometry (Figure 4c). Further narrowing our definition of explicit information to
restricted-input linear-readout information requires us to use information from the next enclosing
layer: the distribution of activity profiles.There is onemore layer to go to recover the entire onion.

1To understand why a ridge-regression encoding model will predict the data equally well after the rotation
of the pattern ensemble in the space spanned by the response channels, consider Figure 3b and imagine that
the encoding model contains two indicator predictor profiles, the first containing a one for stimulus 1 and the
second containing a one for stimulus 2. Both scenarios (Figure 3b, i and ii) can be explained equally well with
the encoding model, and the optimal weights will yield identical L2 penalties.
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3.4. Spatial Structure of Activity Patterns

Neurons can receive signals through long axonal projections from far-away locations in the op-
posite hemisphere. However, the development of the axonal tracts and the propagation of sig-
nals through them is costly. As a result, most connections are local, and the location of a neuron
in three-dimensional brain space is thought to reflect its place in the topology of the network
(Chklovskii & Koulakov 2004, Chen et al. 2006).

Imagine that we attempted to reengineer a brain with the locations of all neurons randomly
shuffled while preserving the network topology and resulting dynamics. The volume of axonal
tracts would likely vastly exceed the space available in the skull.The energy requirements would be
much higher. Finally, it seems impossible that the dynamics could be preserved, since most signal
latencies would be much longer (and some shorter). A neuron’s function prominently depends on
its connections in the network, not its location in the brain. However, its location in the brain
determines which other neurons it can connect with cheaply at short latency.

These considerations motivate the use of the locations of the neurons L (outer layer of the
onion) to further constrain what information is considered explicit in the code. At the simplest
level, we could assume that a downstream neuron can only read out information from the code
within a small radius of its own location. If we define the explicit information in the code as
information that can be linearly read out from local clusters of neurons in the code, then we
peel off another layer of the onion (Figure 4h).

If we restrict the admissible input to a single neuron, then we recover the extreme definition
of explicit coding. This definition was, in fact, widely used before larger numbers of neurons were
routinely measured and analyzed with linear decoders.We can think of the single-neuron explicit
information as the innermost bit of the onion—the union of a set of kernels, each of which contains
the explicit information carried by a single neuron (Figure 4i).

The assumptions that we made in peeling the encoded information core of the onion are not
the only assumptions that make sense. For example, we could assume that downstream neurons
read the code with radial basis functions, activating according to a nonlinear (e.g., Gaussian) func-
tion of the distance between a preferred pattern and the current input pattern. This would induce
an alternative decomposition of the encoded information.Or we could assume a more biologically
detailed model of the way downstream neurons read the code. Moreover, we could use connec-
tomic information, rather than simply locations, to define what information is directly accessible.
A different readout model of this type would lead us to a different core of encoded information
that is to be considered explicit.

As we put the onion back together, access to successive outer layers enables us to progressively
peel the encoded information core of the onion. We can use the representational geometry, the
activity-profile distribution, and the locations of the neurons to define the explicit information in
more biologically plausible ways.

4. WHAT LAYERS OF THE ONION SHOULD INFORM TESTS
OF BRAIN-COMPUTATIONAL MODELS?

Representational models enable us to combine prior assumptions with brain-activity data to make
inferences about brain representations.They support data-driven as well as theory-driven analyses.
At the data-driven end of the spectrum, they can help us discover what features are prominently
represented in different brain regions (e.g., Kriegeskorte et al. 2008b, Huth et al. 2012). At the
theory-driven end of the spectrum, they enable us to test task-performing brain-computational
models (Kriegeskorte & Douglas 2018a).

To test a model of brain information processing, we need to compare model and brain in terms
of behavior and activity dynamics (Kriegeskorte 2015, Kriegeskorte & Diedrichsen 2016, Yamins
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& DiCarlo 2016, Paninski & Cunningham 2017). This requires some measure of the goodness of
fit to the data that themodel achieves.Naively,wemightmap each unit of a spiking neural network
model to a neuron in the brain and directly compare the spatiotemporal activity pattern during the
same task, requiring precise prediction of each spike.However, such an approach of precise spatial
and temporal correspondence is both unrealistic and undesirable. It might be a useful exercise
to model a particular individual brain and the dynamics of a particular cognitive act. Given the
idiosyncrasies of each animal’s brain and the unique nature of each trial of some cognitive act,
however, we are, in general, interested in a more abstract kind of functional correspondence. We
should not expect our model’s dynamics to be more precisely mapped in space and time to a
given subject’s brain dynamics than one subject’s brain dynamics can be mapped to another’s while
both are performing the same cognitive task.We consider the spatial and temporal aspects of the
mapping in turn.

Each individual primate brain is unique.A given cortical area to bemodeled will have a different
number of neurons in each individual,with each neuron having idiosyncratic functional properties.
The approximate functional consistency reported in the literature resides at the level of cortical
areas and populations of neurons. Spatial correspondence between individuals can sometimes be
defined even within cortical areas, but breaks down at the level of cortical columns. Consider
the primary visual cortex. The global retinotopic map could form the basis for defining a more
precise spatial correspondence between individuals within the area. However, the organization
of orientation columns and the specific neurons within them are not expected to have a spatially
precise correspondence across individuals.

The temporal correspondence problem is similarly difficult. Each repeated trial of a cognitive
task is unique, even in the same individual.Consider the act of recognizing a particular image.First,
brain dynamics might be inherently stochastic, precluding precise reproduction of the measured
response pattern. Furthermore, a brain’s internal state at trial onset cannot be entirely controlled,
as would be necessary to precisely repeat the trial with even a deterministic brain. Finally, the
act of perceiving the image the first time permanently changes the brain and will specifically and
measurably alter the way that the image is processed the second time (Grill-Spector et al. 2006).
The same brain never sees a picture twice, as Heraclitus might assert today.

Despite the difficulties of defining precise spatial and temporal correspondence mappings, a
tacit fundamental assumption of neuroscience is that different individual brains of the same species
implement the same computational functions. This implies some appropriate level of abstraction
at which functional correspondence is evident. Qualitative similarities among individuals abound,
of course, at the levels of behavior, regional brain activation, and local neuronal tuning. However,
to make functional correspondence a rigorous, mathematically defined concept, we will need to
choose summary statistics of brain activity at the right level of abstraction. Our choice of statistics
must trade off dynamic detail for interindividual generalizability to some extent, but we would
like to retain rich signatures of the computational functions while discarding the idiosyncrasies
of individual brains. Such summary statistics will be essential for testing and adjudicating among
models of brain information processing with brain-activity measurements, enabling us to compare
dynamics between models and brains. The onion of brain representations is a step in the direction
of organizing some of the abstractions available.

For example, we could choose a level of spatial and temporal precision, say, a spatial unit like
the cortical area and a temporal unit of 100 ms. We could then choose a degree of peelage for
the onion, say, the representational geometry, as a basis for comparing model to brain. The brain
dynamics within an experimental context comprising a finite set of representational states (stimuli)
would then be characterized by a spatiotemporal field of RDMs Di, j (l , t ), where i, j indicate the
representational states, l the location in the brain, and t the time after trial onset. Alternatively,
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M: K ×Q matrix of
model features (where
Q is the number of
features)

T : number of
measurement points or
trials

yp: measured activity
time course for the pth
channel (column
vector of length T )

up: activity profile
(across conditions) of
the pth channel (pth
column of U)

Z: T × K design
matrix, indicating how
measurements relate
to experimental
conditions

we could peel the onion further and focus comparisons on the encoded information or the explicit
information. Or we could choose to peel the onion less and compare representations on the basis
of the distribution of activity profiles.

We could also choose a different level of spatial or temporal precision.Greater precision of the
spatial mapping is attractive because it gives us greater sensitivity to subtle differences between
models.However, a fundamental question is whether a spatial correspondence at the desired preci-
sion even exists between individual animals. More practically, the mapping needs to be estimated
from a separate data set, which can be costly. At the level of cortical areas, the correspondence
mapping is relatively simple, realistic to estimate, and likely to generalize across subjects. At the
level of small patches of cortex (e.g., cortical columns), the mapping is complex, is potentially
unrealistic to estimate, and would likely have to be estimated separately for each subject. Similar
trade-offs need to be considered in choosing the level of precision in the temporal domain.

5. CONCLUSION

The onion of brain representations organizes the different aspects of brain-activity data into a
nested hierarchy. As we peel it, we focus progressively on aspects that appear more directly related
to the representational content. We hope to peel away layers that reflect developmental coinci-
dences, random biological variation, and other epiphenomena without functional relevance, to
arrive at the brain’s representational core: the neural code used by the brain itself to mind and
manipulate the world. Peer Gynt, the tragic hero of Henrik Ibsen’s (1867, p. 218) eponymous
play, peeled an onion in search of himself and came to conclude: “It’s nothing but layers, smaller
and smaller. Nature’s a joker.” We embrace the research program outlined in this review despite
understanding its caveat: The layers might fall away to reveal no core of meaning.The brain is not
a conventional computer. Nature, the joker, might leave us with nothing but a dynamical system.

6. APPENDIX: MATHEMATICAL DETAILS

6.1. Representational Models

Representational models define a probability distribution of activity profiles, p (u|θ ,M ). These
models often have some second-level parameters θ that determine the size or shape of the distribu-
tion. Given a set of brain observations yp = Zup + ε, we seek to evaluate the (marginal) likelihood
of the data, given the model M and second-level parameters:

p
(
yp|θ ,M

) =
∫
p
(
yp|up

)
p
(
up|θ ,M

)
du. 5.

The integral is being taken over all possible activation profiles thatmay be the cause of our brain
observations yp. In encoding approaches, this marginal likelihood is approximated using cross-
validation; in pattern component modeling, the integral is evaluated directly. Both approaches
assume (implicitly or explicitly) a Gaussian distribution of both signal (u) and noise (ε).

6.2. Second-Moment Matrix

When evaluating the marginal likelihood, the critical statistic that fully defines the representa-
tional model is the second moment of the activity profiles,

G =
P∑
p=1

upuTp /P = UUT /P. 6.
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wp: encoding weights
for channel p (Q
weights, one for each
model feature)

Assuming a mean of 0 across channels,G is the (co)variance matrix of the activity-profile distri-
bution. In encoding models, each activity profile is expressed as a linear combination of model
features: up = Mwp, where M are the model features, and wp are the feature weights. Further-
more, it is often assumed that the feature weights are identically and independently distributed
across channels (ridge regression). In this case, the second-moment matrix becomes G = MMT .

The highest eigenvalues and associated eigenvectors ofG are used to plot the representational
space. An unbiased estimate of the second moment matrix, ĜCV , can be obtained from the data
using cross-validation (Diedrichsen et al. 2018).

6.3. Representational Dissimilarities

Representational dissimilarities measure how different the activity patterns for two conditions
(i, j) are from each other. The Euclidean distance (or, by extension, the Mahalanobis distance) is
commonly used and can be directly derived from the second moment matrix:

dEuci, j =
√(

ri − r j
)T (

ri − r j
) =

√
(Gi,i + G j, j − 2Gi, j ) · P. 7.

The Euclidean distance is sensitive to any difference between the activity patterns, including scal-
ing of the intensity of the patterns. If a distances measure that is insensitive to this scaling is
required, the cosine distance is a useful measure:

dcosi, j = 1 − rTi r j√
rTi ri · rTj r j

= 1 − Gi, j√
Gi,iG j, j

. 8.

The cosine distance becomes the correlation distance, when each pattern ri is normalized by
subtracting itsmean from each element. If we apply these formulae for each pair (i, j) of conditions,
the second-moment matrix can be transformed into an RDM D. For the Euclidean distance, this
transformation can be written more compactly as

d = diag(CGCT ), 9.

where C is a matrix of contrasts (one for each pair of stimuli), and d is a vector containing all
unique (lower triangular) entries of the squared Euclidean distance matrixD (which is symmetric
about a diagonal of zeros). For the inverse transformation, we need to consider that the second
moment matrixG retains a little bit more information thanD in that it specifies the geometry with
respect to the origin of the multivariate response space. We can rotate the geometry arbitrarily
about the origin without changing G. However, if we translate the geometry or rotate about a
different point, then G changes, while D remains the same. All we have to do to make the two
matrices entirely equivalent is to add the baseline condition (all-0 vector) to the set of stimuli
captured by the distance matrix, yielding D′ (K + 1 by K + 1). Alternatively, we can remove the
baseline information fromG by removing the mean activity pattern from each pattern (thus cen-
tering the geometry on the origin of multivariate response space). The second momentG′ for the
centered geometry can then be computed from D as follows:

G′ = −1/2HDH, 10.

where H is a centering matrix: H = IK1K/K . 1K is a square matrix of ones. Since G can be com-
puted from D and vice versa, the two contain identical information (Diedrichsen & Kriegeskorte
2017).
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