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A B S T R A C T

Fine-grained activity patterns, as measured with functional magnetic resonance imaging (fMRI), are thought to
reflect underlying neural representations. Multivariate analysis techniques, such as representational similarity
analysis (RSA), can be used to test models of brain representation by quantifying the representational geometry
(the collection of pair-wise dissimilarities between activity patterns). One important caveat, however, is that non-
linearities in the coupling between neural activity and the fMRI signal may lead to significant distortions in the
representational geometry estimated from fMRI activity patterns. Here we tested the stability of representational
dissimilarity measures in primary sensory-motor (S1 and M1) and early visual regions (V1/V2) across a large
range of activation levels. Participants were visually cued with different letters to perform single finger presses
with one of the 5 fingers at a rate of 0.3–2.6 Hz. For each stimulation frequency, we quantified the difference
between the 5 activity patterns in M1, S1, and V1/V2. We found that the representational geometry remained
relatively stable, even though the average activity increased over a large dynamic range. These results indicate
that the representational geometry of fMRI activity patterns can be reliably assessed, largely independent of the
average activity in the region. This has important methodological implications for RSA and other multivariate
analysis approaches that use the representational geometry to make inferences about brain representations.
1. Introduction

Multivariate analysis of activity patterns has profoundly changed
functional magnetic resonance imaging (fMRI) data analysis. Traditional
fMRI studies have examined differences in overall activity levels in
extended brain regions. In this approach, local fine-grained patterns of
activity are removed by smoothing, as they are typically not consistent
across individuals. However, it was realized that one could decode the
experimental condition from activity patterns within individuals, even if
the average activity is the same between conditions (Haxby et al., 2001).
Decodability is often interpreted as evidence that the region represents
something about the underlying distinction between conditions (Haxby
et al., 2014), i.e. that another area can potentially read out information
about the distinction (de-Wit et al., 2016; deCharms and Zador, 2000).
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Extending this idea, the degree to which different pairs of activity pat-
terns are dissimilar may tell us something about the structure of the
underlying neural population code. For example, a region involved in
object recognition should show large dissimilarities between activity
patterns associated with objects from different categories, but smaller
dissimilarities between objects of the same category (Kriegeskorte et al.,
2008b). The relationship between all pair-wise dissimilarities defines
what we call the representational geometry. Representational similarity
analysis (RSA, Kriegeskorte et al., 2008a), pattern component modelling
(PCM, Diedrichsen et al., 2018) and encoding models (Naselaris et al.,
2011) all analyze this representational geometry to test between models
of brain representations (Diedrichsen and Kriegeskorte, 2017).

When testing representational models with fMRI data, we base our
analysis on the Blood Oxygenation Level Dependent (BOLD) signal. To
November 2018
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Fig. 1. Experimental paradigm. A) Participants made short, isometric presses of
an individual finger onto a keyboard while in an MR scanner. Each finger press
was cued with a unique color-letter combination. B) A cue at the start of each
trial (1s) instructed participants which finger they would press. Participants
then executed presses when prompted by a larger cue presentation. The cues
flashed either 2, 4, 8, or 16 presses in 6 s (0.3, 0.6, 1.3, 2.6 Hz). A 1s inter-trial-
interval (ITI) separated each trial. Random periods of rest were interleaved
between trials in each block. This design yielded 20 conditions (5 fingers/letters
x 4 frequencies).
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what degree can we make inferences about neural representations using
this indirect measure of neural activity? There are a number of reasons
why representational fMRI analysis may be limited (see discussion). One
important problem, which is the main focus of this paper, is that the
measured representational geometry may depend strongly on the overall
activity in a region. This is of concern as we often make comparisons
across regions, participants, or attentional states with different activity
levels. Although RSA is in theory independent of average activity, it is
possible that the patterns and their dissimilarities distort with increasing
activation. The relationship between the pair-wise pattern dissimilarities
is only guaranteed to remain the same if all voxel activities in a region
scale (up to a multiplicative constant) according to the same function.
Thus, even though there is evidence that the relationship between neural
activity and the average BOLD is fairly linear in M1 (Siero et al., 2013)
and V1 (Boynton et al., 1996; Heeger et al., 2000), these findings do not
guarantee that the representational geometry would also scale in an
orderly fashion.

There are a number of potential mechanisms that could lead to sub-
stantial distortions of the representational geometry when measured
with fMRI. For example, the spatial point-spread function of BOLD may
differ across activity levels. Recent work using optical imaging suggests
that although vasodilation of arterioles is relatively coupled with the pre-
and post-synaptic activity of the surrounding neural tissues (O'Herron
et al., 2016), the authors observed many instances of vasodilatory re-
sponses in the absence of local changes in neural activity. Notably, they
propose that this decoupling may change with increasing neural activity.
We interpret this result as cause for concern, as this effect could cause an
increasing spread of the BOLD signal to neighboring voxels as activity
increases. Because such spread would affect different activity patterns
differently, it could lead to severe distortions of the representational
geometry, which would make it difficult to draw conclusions about the
representational content of neural population codes using fMRI data.
Therefore, it is important to empirically test if the representational ge-
ometry remains stable across a wide range of overall activity levels.

We investigated this question with an experiment that allowed us to
assess patterns in sensory-motor regions (S1 and M1) and in primary and
secondary visual cortices (V1 and V2) using RSA. Ejaz et al. (2015)
demonstrated a stable representational geometry across humans for in-
dividual finger movements in M1 and S1, in which the thumb had the
most distinct activity pattern and neighboring fingers showed higher
similarities than non-neighboring fingers. Similarly, it has been shown
that letters (Miyawaki et al., 2008) as well as colors (Brouwer and
Heeger, 2009), can be decoded from activity in visual cortices. We
therefore cued finger presses with colored letter cues presented on a
screen. We chose a specific letter and color for each finger, such that the
perceptual similarities between stimuli would be different from the dis-
similarities of motor actions. To increase the overall activity in both re-
gions, we varied the letter flashing and finger pressing frequency
between 0.3 Hz and 2.6 Hz. For individual finger presses on our isometric
device (see methods), a rate of 2.6 Hz is close to the upper performance
limit.

In interpreting the results, it is important to distinguish between
changes in the representational geometry that arise from the fact that the
neural activity patterns change qualitatively with higher stimulation
frequency, and changes that arise through distortions when measuring
the representational geometry using BOLD. We designed our task
assuming that the underlying neural activity patterns would scale by a
single multiplicative factor with increasing speed, allowing us to identify
distortions arising in the neural-to-BOLD coupling.

We note that the data have been already included in a recent publi-
cation from our lab (Diedrichsen et al., 2018) as an example to highlight
the technical aspects of fitting different types of PCM models. Although
not the focus of the paper, the results already indicate that, on a group
level, the representational geometry in M1 remains relatively unchanged
across movement speeds. However, because possible distortion may be
idiosyncratic across individuals, we here re-investigate this issue with
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dedicated analyses within the framework of RSA.

2. Methods & procedures

2.1. Participants

We measured cortical activity patterns in 5 female and 3 male par-
ticipants (mean Age¼ 25.5 (2.41) years). All participants were self-
reported right handers (mean Edinburgh questionnaire laterality quo-
tient¼ 91.25 (7.82)), and made individuated finger presses of the right
hand. Motor cortex data from these participants were used as example
data in a method article describing non-linear pattern component models
(Diedrichsen et al., 2018).

2.2. Apparatus and stimuli

The motor behavior was monitored by a keyboard-like device. The
device had a key for each finger of the right hand, with a force transducer
(Honeywell-FS series, dynamic range¼ 0–16N, resolution <0.02N)
mounted under each key. A bevel on each key ensured fingertip place-
ment across participants was consistent. Forces were recorded at a
sampling rate of 200Hz.

To evoke visual responses, we presented colored letter stimuli on the
screen at the same frequency as the finger presses. The aim was to pick
letters and colors that would induce a dissimilarity structure that would
differ considerably from that of the fingers. Therefore, we chose similar
letters and colors for fingers which evoke different activity profiles (see
Fig. 1a for finger-letter-color pairs). The letters were presented centrally
and peripherally (see Fig. 1b). The size of the letters on the screen were
8� 10 cm, subtending a visual angle of approximately 70�. The screen
background was black. Participants were instructed to maintain visual
fixation on a gray cross presented centrally on the screen. Cues were
presented centered on the fixation cue. Five lines were presented in the
lower third of the screen, one for each of the five fingers. The locations of
these lines were dynamically updated to indicate the real-time force
applied to each key of the fingerboard device.

2.3. Behavioral task

In the MR scanner, participants completed a paced finger pressing
task. Each trial lasted for 8 s and was divided into three phases (see
Fig. 1b). In the announce phase (1 s), participants saw a visual cue
indicating which finger of their right hand they were to press in the
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current trial. During the following execution phase (6 s), participants
made 2, 4, 8, or 16 isometric presses of the finger (0.3, 0.6, 1.3, and
2.6 Hz pressing frequency). Each press was paced by a visual metronome,
which flashed the letter cue from the announce phase for 100ms each.
The first and the last press always occurred at the beginning and end of
the execution phase, with the intermediate presses being cued at a con-
stant rate (see Fig. 1b). Following this, there was an inter-trial interval of
1 s before the next trial started. Throughout the entire experiment, par-
ticipants were instructed to refrain from moving their wrist or fingers of
either hand when not instructed to do so.

There were 20 possible conditions (5 fingers/letters x 4 pressing
frequencies). The task was divided into 8 runs of 40 trials each, with two
repeats per condition. Trial order within each run was randomized. Seven
periods of rest (13 s) were randomly interspersed between trials in each
run. Each run lasted 411 s. Participants were instructed to produce a
minimum of 2 N, but not to exceed a maximum of 4N with each finger
press. Minimum and maximum force thresholds were visually presented
on screen above the finger force lines. Between presses, the force applied
to each key needed to be below 0.75N before another press could be
registered. The fixation cross turned white for each correct press. Par-
ticipants trained on this task prior to the scanning portion of the exper-
iment to ensure stable performance.

2.4. fMRI data acquisition

Functional images were acquired using a Siemens Magnetom 7T MRI
scanner with a 32-channel head coil at Western University (London,
Ontario, Canada). Volumes were acquired using an interleaved, multi-
band slice acquisition (TR¼ 1000ms, 44 slices, 1.4 mm isotropic vox-
els, no gap between slices, in-plane acceleration factor¼ 3, multi-band
factor¼ 4). The first three images of each functional run were dis-
carded to allow magnetization to reach equilibrium. The slices covered
the dorsal aspects of the cerebrum, encompassing M1 through to V1. A
T1-weighted anatomical scan (3D MPRAGE sequence, TR¼ 6000ms,
0.75mm isotropic voxels, 208 vol) was also acquired at the start of the
scan. Fieldmaps were collected at the end of the imaging session.

2.5. Preprocessing and first-level model

First-level fMRI analyses were conducted with SPM12 (http://www.
fil.ion.ucl.ac.uk/spm/). Functional images were realigned to correct for
motion across runs. Within this process, we utilized a B0 fieldmap to
correct for magnetic field inhomogeneities. Due to the short TR, no slice
timing corrections were applied. The functional data was co-registered to
the individual anatomical scan, but no normalization was applied.

The pre-processed images were analyzed with a general linear model
(GLM) with separate task regressors for each condition (20 regressors) for
each run. Each regressor was a boxcar function that was on for 6 s of the
trial duration and off otherwise. These regressors were then convolved
with a hemodynamic response function with a peak onset of 4.5 s and a
post-stimulus undershoot minimum at 11 s.

We used the SPM FAST autocorrelation model in conjunction with
restricted-maximum likelihood (ReML) estimation to estimate the long-
range temporal dependencies in the functional timeseries. This relies
on a minor modification of the standard SPM analysis routine. SPM
proceeds in a two-step estimation process. First, SPM estimates an ordi-
nary least square regression to collect sufficient statistics on the voxels in
order to select voxels that are used for autocovariance estimation using
ReML. By default, the inclusion of voxels is decided using an omnibus F-
test (any difference in any condition vs. zero) with a threshold set to
0.001. This means voxels that are probably “involved” in the task of in-
terest will be included. Using the FAST option to estimate the temporal
covariance effectively attenuates low-temporal frequencies. This means
it is unnecessary to apply a separate high-pass filter. Without additional
high-pass filtering, however, very few voxels will be significant in the
omnibus F-test in the first step because the data is dominated by low-
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frequency noise (which is now only removed in the second stage with
the FAST option). Therefore, we modified the estimation procedure to
specify separate masks that defined which voxels are included in the first
and second steps of the analysis. Here, we were interested in optimal
inferences for gray-matter. Therefore, the coefficients of this model were
estimated from all gray-matter voxels using a gray-matter mask. We
found that on several data sets, this analysis procedure improves the
reliability of activity pattern estimates as compared to the standard high-
pass filtering and subsequent temporal autocorrelation correction with
FAST.

2.6. ROI definitions

We used Freesurfer software (Dale et al., 1999) to extract the
white-gray matter and pial surfaces from each participant's anatomical
image. These surfaces were inflated to a sphere and aligned using sulcal
depth and curvature information to the Freesurfer average atlas (fsa-
verage, Fischl et al., 1999). Following alignment, both hemispheres in
each participant were resampled into a 163,842 vertex grid. This allowed
us to reference similar areas of the cortical surface in each participant by
selecting the corresponding vertex on the group atlas.

Anatomical regions of interest (ROI) were defined using a procedure
established in previous work (Wiestler and Diedrichsen, 2013; Ejaz et al.,
2015). All ROIs were defined using a probabilistic cytoarchtectonic atlas
(Fischl et al., 2008) projected onto the common group surface. For M1
and S1, we constrained the resulting ROIs to the hand and arm region by
choosing the area of the cyctoarchteconically defined strip 2 cm above
and below the hand knob (Yousry et al., 1997). To avoid
cross-contamination between M1 and S1 activities along the central
sulcus, voxels with more than 25% of their volume originating from the
opposite side of the central sulcus were excluded. The primary and sec-
ondary visual cortices (V1/V2) were grouped as one ROI. The group area
was then projected onto the individual volume using the individual
surface reconstruction.

2.7. Multivariate fMRI analysis

Multi-voxel analyses were conducted within each ROI (M1, S1, and
V1/V2), using the RSA (Nili et al., 2014) and PCM toolboxes (Die-
drichsen et al., 2018). For each ROI, we extracted the beta-weights from
the first-level GLM for each condition in each imaging run. These
beta-weights were then spatially pre-whitened using multivariate
noise-normalization to suppress correlated noise across voxels (Walther
et al., 2016). The mean pattern was not removed from each run to pre-
serve information about activity from baseline in each voxel.

We then calculated the squared cross-validated Mahalanobis distance
(crossnobis; Walther et al., 2016; Diedrichsen et al., 2016) between ac-
tivity patterns:

d2ðxy; xzÞ ¼ ðxy � xzÞTAΣ�1ðxy � xzÞB (1)

where ðxy � xzÞA corresponds to the difference between the activity
patterns of conditions y and z in run A, and Σ refers to the voxel-wise
noise covariance matrix (Walther et al., 2016). We repeated this pro-
cedure over all possible leave-one-run-out crossvalidation folds and then
averaged the resulting dissimilarities across folds. This procedure leads to
an unbiased distance estimate, which on average will be zero if there is
no reliable difference between the two patterns. This also means that the
crossnobis estimator can become negative. The large advantage for this
measure, however, is that zero is meaningfully defined and hence ratios
between distances can be interpreted in a meaningful way.

The representational geometry is characterized by the dissimilarities
between all possible pairs of condition activity patterns, that can be
collected into a representational dissimilarity matrix (RDM). The RDM is
a (number of conditions x number of conditions) symmetric matrix, with
zeros along the diagonal. Dissimilarities were calculated for the left
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hemisphere M1 and S1 ROIs (contralateral to the side of finger move-
ments). For V1/V2 ROIs, we first calculated dissimilarities for each
hemisphere, then averaged the dissimilarities across hemispheres within
each participant. We used classical multi-dimensional scaling (eigen-
value decomposition) to visualize a low-dimensional projection of the
representational geometry (Diedrichsen et al., 2018).

2.8. Stability of the representational geometry across stimulation-
frequencies.

To assess the stability of the representational geometry across fre-
quency conditions, we correlated the RDMs across all 6 possible fre-
quencies pairs within each participant. For each frequency condition (j),
we had 10 pairwise dissimilarities (di,j, where i corresponds to one of the
10 dissimilarities for frequency condition j). We calculated a Pearson
correlation without subtracting the mean across the 10 dissimilarities
first, as zero is a fixed and meaningful value for the unbiased crossnobis
distance (see section 2.7). The RDM correlation between frequency
conditions j and k then becomes

rj;k ¼
P10

i¼1di;jdi;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP10
i¼1d

2
i;jd

2
i;k

q (2)

Because the RDM is a symmetric matrix, we correlated only the dis-
similarities in the lower triangular of each RDM (excluding the zero di-
agonal values).

To compare the correlation values to a meaningful noise ceiling (see
section 2.9), we split the data into odd and even runs and calculated
crossnobis distances for each partition separately. We then calculated the
correlation either between odd runs for frequency condition j and even
runs for frequency condition k, or the other way around. The two cor-
relations were then averaged for each participant and cross-frequency
pair.

2.9. Reliability of representational geometries

Even if the representational geometry was perfectly stable across
frequencies, the resultant correlations would not be 1 given the noise in
our measurements. Therefore, to interpret these cross-frequency RDM
correlations meaningfully, we used the reliability of each RDM to esti-
mate a noise-ceiling for each of the 6-possible cross-frequency pairs. We
measured the split-half reliability of the RDM at each frequency (rj, rk)
using the same procedure used to calculate the cross-frequency correla-
tions, but this time correlating the RDMs for odd and even runs within
frequencies. If the true activity patterns for frequency condition j and k
were identical, the expected cross-frequency correlation would be

Eðrj;kÞ ¼
ffiffiffiffiffiffiffiffiffiffi
rj*rk

p
: (3)

This prediction therefore provides an appropriate noise ceiling for the
measured cross-frequency correlations. We then scaled the measured
cross-frequency correlations to their corresponding noise ceilings, such
that a value of 1 indicates the RDMs of the two frequency conditions were
highly similar after correcting for measurement noise. Due to the cross-
validated calculation of the cross-frequency correlations, we can
encounter scaled correlations >1 (where the cross-frequency correlation
is larger than expected). We tested if the rescaled cross-frequency cor-
relations were significantly lower than 1 using a one-tailed sign-test.
Deviations significantly lower than 1 indicated that the cross-frequency
RDM correlations were lower than expected given the reliability of
each RDM.

2.10. Bayesian analysis to quantify the evidence for no RDM distortion

Given that we are also interested in quantifying the evidence for the
Null-hypothesis (no distortions), we conducted a Bayesian analysis. For
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this, we first needed to determine what size of deviation from perfect
stability wouldmatter for model comparison, i.e. we needed to determine
the effect size of the alternative hypothesis. As an example for a difficult
model comparison problem, we used the muscle model and natural sta-
tistics model RDMs from Ejaz et al. (2015). Both models specify how
finger movements are represented in the sensory-motor cortex. The
natural statistics model hypothesizes that fingers that frequently move
together evoke cortical activity patterns that are more similar. In
contrast, the muscle model hypothesizes that finger movements that
engage similar muscles would have a high overlap. Comparing between
these models is difficult because the predicted distances from each model
are highly correlated (r¼ 0.9).

As a slightly easier model comparison, we used the contrast between
the somatotopic model and the natural statistics model (Ejaz et al., 2015).
The somatotopic model hypothesizes that cortical activity patterns for
single finger movements are arranged in an orderly fashion along the
central sulcus, with some overlap between neighboring fingers. The
RDMs of the somatotopic and natural statistics model were only
moderately correlated (r¼ 0.68).

We simulated 1000 RDMs under each of the three models, then dis-
torted the distances for each simulated RDM by increasing or decreasing
each distance by a specific percentage of the true value. At each level of
simulated distortion, we calculated the average correlation with the true
model. We also determined whether the resulting RDM was closer to the
true model or to the competing model with a Pearson correlation with a
fixed intercept. Each misclassification was counted as a model confusion.
Model RDMs that are more distinct would result in lower confusion rates
at the same levels of distortion.

Next, we evaluated the probability of the observed cross-frequency
RDM correlations from each ROI under the Null-hypothesis (no distor-
tion, corrected r¼ 1), and various levels of the alternative hypothesis
(some distortion, corrected r< 1). As a distribution of the differences, we
assumed a Gaussian distribution with a mean of 1 and the empirical
standard deviation (σ) of the corresponding cross-frequency correlations:

H0 � Nð1; σÞ (4)

For the alternative models, we shifted the Gaussian to be centered on
the average correlation for each distortion level from our simulation (rDÞ:

HD � NðrD; σÞ (5)

To obtain a Bayes factor, we averaged the empirical differences in
correlations for each participant across all non-neighboring frequency
pairs, and then evaluated the probability of this group data under each of
the alternative models. A Bayes factor �3 is considered to be positive
evidence for the hypothesis in question, and factors �20 indicate strong
positive evidence (Raftery and Kass, 1995). This approach allowed us to
determine the distortion levels for which we observe positive evidence in
favor of the alternative model (i.e. the data is probable under this level of
distortion) and the levels at which we have positive evidence in favor of
the null model (i.e. the data is more likely under the null model).

3. Results

We measured cortical BOLD activity patterns as participants saw
digits flashed repeatedly on the screen (Fig. 1b), and made short, iso-
metric presses of each finger of the right hand (Fig. 1a). We systemati-
cally increased the stimulation and pressing frequencies (Fig. 1b) to
increase the overall activity in the visual and motor regions. Our main
question was whether the representational geometry (the collection of
relative dissimilarities between different conditions) would remain
relatively stable across a large range of overall activity. Behaviorally,
participants were able to follow the pacing and to perform the task with
relatively high accuracy and matched forces (see Table 1).

Table 1. Mean and (in parentheses) between-subject standard error of
behavioral measure of the finger pressing task. The pressing frequency is
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reported in Hertz (Hz), and forces in Newtons (N). Participants (n¼ 8)
were able to approximately match the instructed frequency and keep the
pressing forces relatively stable.

Fig. 2a shows a surface representation of the activity patterns in the
left hemisphere hand region of primary motor and sensory cortices (M1
and S1) from one participant (see supplemental figures for V1/V2 ac-
tivity maps from the same participant, and maps from another partici-
pant). The overlapping nature of the activity patterns for the different
fingers is clearly visible, as well as an overall gradient with the thumb
activating more ventral and the little finger more dorsal aspects of the
hand region. The overall intensity of the activity increased with
increasing pressing frequency, but the spatial distribution of the activity
associated with each finger movement appeared to remain stable.
Overall, we observed an approximately 5-fold activity increase in M1 and
S1 (Fig. 2b), with less activity evoked in visual cortices (V1/V2).

Our main interest was whether intensity-dependent variations in
neural-to-BOLD coupling would lead to distortions of the representa-
tional geometry. Therefore, to assess this, we calculated the dissimilarity
between pairs of activity patterns for each condition of the same fre-
quency (i.e. the representational geometry), for each ROI in each
participant. We then examined how stable this geometry remained
despite the nearly 5-fold increase in overall activity. As a first step, we
visualized the group average representational geometry in M1 (S1
representational geometries are very similar to those in M1: see Ejaz
et al., 2015) and V1/V2 using a multi-dimensional scaling plot.

For M1 (Fig. 3a), we observed the expected representational geom-
etry with the thumb having the most unique pattern and the other fingers
being arranged according to their neighborhood relationship (Ejaz et al.,
2015). As pressing frequency increased, this arrangement scaled up and
substantially moved away from resting baseline (Fig. 3a, cross), but the
overall geometry remained the same. This stability can also be appreci-
ated when visualizing the 10 pairwise dissimilarities between fingers for
each frequency (Fig. 4a, e).

In the visual cortices (V1/V2), we observed a distinct arrangement of
the conditions, with the representational geometry relating to the letters
and colors presented for each finger. Similarly to M1 and S1, this struc-
ture scaled up with increasing stimulation frequency (Fig. 3b). However,
the lowest stimulation frequency was not very successful in eliciting
either average activity or very reliable activity patterns (see below).

To quantify the stability of the representational geometry across
different levels of activity, we correlated the dissimilarities in M1, S1,
and V1/V2 (Fig. 4a, e, & i) across frequencies within each participant.
The average cross-frequency correlations (Pearson correlation without
intercept-see equation (2)) was r¼ 0.92 inM1 (Fig. 4b) and r¼ 0.94 in S1
(Fig. 4f). In V1/V2 (Fig. 4j), cross-frequency correlations were lower
when they involved the lowest stimulation frequency (average of all
cross-frequency correlations was 0.69), but increased with stimulation
frequency (the average cross-frequency correlation between the RDMs of
the two highest frequencies was 0.95).

Given measurement noise in the data, however, the cross-frequency
correlations are expected to be< 1 even if they are perfectly stable.
Therefore, to quantify the stability of the representational geometry, we
calculated a noise-ceiling (the expected correlation if the true patterns
were identical across frequencies-see section 2.9) for each cross-
frequency pair. We first determined the split-half reliabilities of the
Table 1
Finger pressing behavior during MRI data acquisition.

Cued freq. Pressing freq. (Hz) Force (N) Pressing freq. (Hz) Force (N

0.3 Hz 0.6 Hz

Thumb 0.33 (0.02) 3.04 (0.08) 0.66 (0.03) 3.12 (0.0
Index 0.32 (0.03) 2.82 (0.07) 0.65 (0.04) 2.91 (0.0
Middle 0.34 (0.02) 3.62 (0.16) 0.67 (0.02) 3.53 (0.1
Fourth 0.33 (0.04) 2.94 (0.08) 0.67 (0.04) 2.99 (0.0
Little 0.33 (0.02) 2.99 (0.06) 0.65 (0.04) 2.99 (0.0
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RDMs within each frequency. In M1 and S1, the average split-half re-
liabilities across participants (Fig. 4c,g) was high (r> 0.88) for all
pressing frequencies. In V1/V2 (Fig. 4k), the reliabilities of the dissimi-
larities measured at the slowest stimulation frequencies were lower,
likely due to low levels of evoked activity, but increased comparably to
reliabilities measured for M1 and S1 at higher frequencies (average split-
half reliabilities across participants in V1/V2 for all stimulation fre-
quencies was 0.78). We then estimated the noise-ceilings for each cross-
frequency pair by calculating the geometric means of pairs of split-half
reliabilities for different frequencies within each participant (see sec-
tion 2.9).

Comparison between the measured and the expected (noise ceiling)
correlations confirmed that the representational geometries remained as
stable as could be expected based on the level of measurement noise
across a broad range of overall activities. The right-most column in Fig. 4
shows the measured cross-frequency correlations as a ratio of their
respective noise-ceilings. Values< 1 indicate that the measured correla-
tions were lower than expected given an estimate of measurement noise
for that cross-frequency pair, whereas values> 1 indicate the opposite. In
V1/V2, one-tailed sign-tests indicated the measured cross-frequency
correlations did not significantly differ from their estimated noise ceil-
ings (p-values evaluated without corrections for multiple comparisons).
In M1, only the measured correlations for the lowest and third highest
frequency (Fig. 4d, pair 1 vs. 3) deviated significantly from the expected
correlations (p¼ 0.035). In S1, the only significant deviations were for
frequency condition pair 2 vs. 4 (Fig. 4h, p¼ 0.004). Although these
deviations in M1 and S1 are statistically significant, the magnitude of
these deviations were minor (average rescaled cross-frequency correla-
tions in M1 and S1¼ 0.97). More importantly, the correlations between
the RDMs measured at the lowest and highest activity level were not
significantly different from the noise ceiling estimates.

To assess whether these relatively minor distortions would be of
practical relevance, we assessed their influence on model inference
through simulations. For different levels of distortions, we determined
the model confusion rate for a difficult model comparison problem
(model RDMs are correlated with r¼ 0.9, see section 2.10), and a mod-
erate model comparison problem (r¼ 0.68). As can be seen in Fig. 5a, the
model confusion rate increased with increasing levels of RDM distortion.
However, at the observed distortion rates (dashed lines in Fig. 5a), the
confusion rates were below 12%, even for the difficult model inference.

To quantify the statistical evidence that our data shows no distortion
(the Null-hypothesis), we calculated the Bayes Factor (BF, see section
2.10) of the Null against distortions of various sizes. Because we were
interested in distortions that would arise due to intensity-dependent
variations in neural-to-BOLD coupling, we analyzed the empirical dif-
ferences between 1 and the cross-frequency correlations (corrected to
their respective noise-ceiling) for all non-neighboring cross-frequency
pairs (averaged across pairs within each participant). Fig. 5b shows the
log Bayes factor for various levels of distortion for the three ROI. We
obtained positive evidence (jBFj � 3) in favor of the null at a distortion of
r¼ 0.95 for M1 and for r¼ 0.93 for S1, which were associated with a
model confusion rate of 5–17% and 9–19%. For V1/V2, we excluded the
lowest stimulation frequency, as we could not measure the representa-
tional structure reliably here. We observed positive evidence against a
higher distortion level (r¼ 0.91) corresponding to a confusion range of
) Pressing freq. (Hz) Force (N) Pressing freq. (Hz) Force (N)

1.3 Hz 2.6 Hz

5) 1.32 (0.04) 3.18 (0.07) 2.65 (0.10) 3.13 (0.07)
7) 1.33 (0.02) 2.99 (0.05) 2.67 (0.21) 2.97 (0.07)
4) 1.34 (0.03) 3.52 (0.14) 2.70 (0.14) 3.39 (0.11)
5) 1.34 (0.03) 3.07 (0.05) 2.63 (0.24) 2.98 (0.07)
5) 1.32 (0.05) 3.11 (0.04) 2.66 (0.21) 2.97 (0.05)



Fig. 2. Scaling of activity patterns. A) BOLD activity
patterns from the hand area of the primary sensori-
motor cortices of an example participant projected
onto a flat, surface reconstruction of their cortex.
Dotted lines indicate the fundus of the central sulcus.
The top insert reflects sulcal depth (darker colors
reflect larger depths) and denotes location of M1 and
S1. Color maps reflect t-values of activity against rest.
Each column corresponds to one finger (thumb to lit-
tle), and each row one pressing frequency
(0.3–2.6 Hz). The activity increases with increasing
pressing frequency. B) Activity (beta-coefficients) in
contralateral M1, S1, and bilateral V1/V2 as a function
of pressing/stimulation frequency. Data from each
participant are plotted. The group average for each
region are plotted in bold. Error bars reflect s.e.m.

Fig. 3. Multidimensional scaling of group average representational geometries for M1 (A) and bilateral V1/V2 (B). Colors correspond to pressing/stimulation fre-
quency. Numbers indicate fingers (1¼ thumb, 5¼ little finger). Letters correspond to the flashed letter cue (1¼ E, 2¼ I, 3¼M, 4¼ F, 5¼ J). Note that the conditions
are connected differently for M1 and V1/V2. Panels in the same row present different views of the same space, defined by the first three eigenvectors. The blue cross
indicates baseline.
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approximately 12–28%. Evidence in favor of the Null hypothesis for
these high distortion levels indicates the true distortion is substantially
lower. Indeed, the average of the non-neighboring scaled cross-frequency
correlations in M1, S1, and V1/V2 were close to 1 (M1: r¼ 0.98, S1:
r¼ 0.97, V1/V2: r¼ 0.97). The evidence for the alternative hypothesis at
these levels of distortion was weak in M1 (jBFj ¼ 2.8) and positive in S1
(jBFj ¼ 9). The associated model confusion rates were 0–6% in M1 and
2–12% in S1, respectively. We did not observe positive evidence for RDM
distortions at any level in V1/V2.

Together, these results demonstrate that the relationship between
crossnobis dissimilarities remains relatively stable across a broad range
of overall activity in sensorimotor cortices, and to a lesser extent in and
primary and secondary visual cortices.

4. Discussion

Here we critically investigated whether there are measurable distor-
tions of the representational geometry as measured by BOLD as overall
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neural activity increases. We tested this assumption by stimulating both
sensory-motor and visual regions at increasing frequencies. We assumed
that on the neural level, each repeated event should elicit approximately
the same activity pattern. Therefore, the temporally integrated patterns
should scale in an orderly fashion across frequencies. Importantly, this
does not imply that neural activity would increase linearly with the
number of events. Indeed, previous findings have shown that the neural
response to subsequent finger taps is strongly attenuated in M1 (Hermes
et al., 2012). However, as pointed out in the introduction, this
non-linearity between behavioral and average BOLD does not provide
insight into whether the representational geometry would distort.

Indeed, we found that in M1 and S1 the representational geometry
scales in a relatively orderly manner, even though the local activity
increased over a large dynamic range – likely close to the achievable
maximum for this paradigm. The drop in correlation across pressing
frequencies (as compared to the noise ceiling derived from within-
frequency consistency) was minor (average drop¼ 0.03). It also needs
to be kept in mind that some of the observed distortions may have been



Fig. 4. Stability of representational geometry across stimulation frequencies. A) Average dissimilarity between all possible pairs of the five activity patterns measured
at each frequency in M1. Colors indicate pressing/stimulation frequency, and shaded regions reflect s.e.m. B) Cross-frequency correlations (equation (2)) between
dissimilarities depicted in A. The box plot extends from the 25th to 75th percentiles, and whiskers extend to the full range of the data. The line in the center of each box
denotes the median. Outliers (circles) are points more than 1.5 times the box length away from the median. C) Within participant split-half reliabilities (Pearson
correlation with a forced intercept) of the dissimilarities depicted in A. D) Measured cross-frequency correlations from B scaled by their respective expected corre-
lations (noise ceiling, see equation (3)). Values< 1 indicate the observed correlation (stability) is lower than what would be expected given the internal reliability of
each RDM. Deviations from 1 were evaluated with one-tailed signed rank tests. Asterisks indicate significant deviations (p< 0.05). The outlier data in M1 does not
drive this result. E-H) Results for S1. I-L) Results for V1/V2. Note that the representational geometry in visual regions is different from the one found in M1/S1,
reflecting the finger-to-letter assignment. Due to low stimulation intensity, visual regions have lower reliabilities for low stimulation frequencies.
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due to real changes in the representational geometry of the neural ac-
tivity patterns - after all our assumption that the neural representational
geometry would be completely stable may not be true. Thus, our results
provide an upper bound for distortions that can be attributed the neural-
to-BOLD coupling. Our ability to identify the correct representational
model at this level of distortion remained good, even for a difficult model
comparison.

Our results in V1/V2 were slightly weaker. While the measured dis-
tortions were at a similar level as in M1/S1, the variability of our RDM
estimates were much higher in than in sensorimotor regions, especially
for lower stimulation frequencies. This likely reflects limitations in our
task design, which succeeded in driving the overall activity level in M1
and S1 across a large range, but was not optimal to elicit maximal activity
in visual regions.

Overall, our findings provide an important extension of previous
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studies that report linear coupling between neural activity and BOLD
responses in M1/S1 (Siero et al., 2013) and V1 (Boynton et al., 1996;
Heeger et al., 2000). Showing that BOLD signal and neural activity are
linearly coupled on average does not guarantee that the fine-grained ac-
tivity patterns would also retain their representational geometry. For
this, every individual voxel would have to obey the same scaling func-
tion. Testing this commonly-held assumption, we provide here the
strongest empirical evidence to date that the dissimilarities of multivar-
iate fMRI activity patterns are stable across a wide range of activation
levels. Our findings are broadly consistent with a PCM-style analysis of
the same data (Diedrichsen et al., 2018), which already showed the
stability of the representational structure on the group level in M1. The
current paper extends these results by quantifying the stability on the
individual level, in multiple brain regions, and by estimating the effect
the distortions may have on model comparison.



Fig. 5. The effect of RDM distortions on model com-
parisons. A) Simulated model confusion rates between
two highly correlated (dark gray, r¼ 0.9) and two
moderately correlated (light gray, r¼ 0.68) model
RDMs (see section 2.10). Dotted lines reflect the
average observed cross-frequency correlations (scaled
to noise-ceilings) from each of the three ROIs. RDMs
are more commonly misclassified as distortion in-
creases (shown here as a decrease in the correlation
between the true and distorted RDM). The magnitude
of misclassification depends on how similar the two
model RDMs are. B) Bayes factors (BF) for evidence of
the null (no distortion) over the alternative (distor-
tion) models for increasing levels of RDM distortion
(x-axis). Negative BF indicate evidence in favor of the
alternative model, which means that the cross-
frequency RDM correlations are more probable under
the corresponding level of distortion. In contrast,
positive BF indicate evidence in favor of the null
model, suggesting that the cross-frequency RDM cor-
relations exhibit a lower level of distortion than the
corresponding level tested. The dashed red lines
indicate the thresholds for positive evidence (jBFj � 3)
and strong evidence (jBFj � 20).
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These findings have important implications for multivariate fMRI
analyses. In general, most papers rely explicitly or implicitly on the
assumption that the representational geometry as measured with fMRI
veridically reflects the representational geometry of the underlying
neural population code. While this strong assumption may still be
violated for other reasons (see below), we at least show here that the
representational geometry can be meaningfully compared across a large
range of overall activation levels. Thus, under appropriate conditions,
representational geometries can be compared across different regions,
individuals, or patient populations. Furthermore, from our data it ap-
pears justified to compare RDMs between different attentional states or
different levels of learning, even if these differ in their average activity.
Given our results, changes in the representational geometry across these
conditions are likely due to real changes in the underlying neural pop-
ulation code, rather than due to distortions induced by neural-to-BOLD
coupling.

For RSA, these findings also have implications for the choice of a
dissimilarity measure. Not all measures make equally strong assumptions
about the relation between the underlying neural representational ge-
ometry and the one measured with fMRI. For example, a common prac-
tice in RSA is to evaluate rank-correlation between measured and
predicted RDMs. Arguably, this approach makes interpretations more
robust against minor distortions in the measurement process (Krie-
geskorte et al., 2008; Nili et al., 2014). Our results indicate that the exact
ratio-relationship between dissimilarity measures can be meaningfully
interpreted across a large range of average activation states. For this to be
true, we of course need to use a dissimilarity measure that provides a
meaningful zero point unbiased by noise – a condition met by the
crossnobis estimator (Diedrichsen et al., 2016; Kriegeskorte and Die-
drichsen, 2016; Walther et al., 2016). The additional information in the
exact ratio-relationships allow for more powerful inference about the
underlying representations (Diedrichsen and Kriegeskorte, 2017).

The stability of the representational geometry is also good news for
alternative approaches that test representational models. PCM (Die-
drichsen et al., 2011; Diedrichsen et al., 2018) and encoding models
(Naselaris et al., 2011) make inferences about the underlying represen-
tational geometry in a very similar way to RSA (Diedrichsen and Krie-
geskorte, 2017). Therefore, PCM and encoding approaches are subject to
similar assumptions as RSA – and our findings generalize, such that in-
ferences using these twomethods will also be stable across activity levels.

Do these results suggest that one can make inferences about the
representational geometry of the underlying neural population code from
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fMRI measures? While our results are reassuring in some aspects, there
are two important caveats that we did not address in the current paper.
First, fMRI samples neural activity with dramatic spatial averaging, even
when using sub-millimeter resolution. Representations that exist at a
finer spatial scale in the neural population code will be under-
represented in BOLD activity patterns, while representations at a large
spatial scale will be over-represented (see Kriegeskorte and Diedrichsen,
2016). Therefore, the representational geometry of BOLD activity pat-
terns may differ systematically from the underlying neural code.

Secondly, the physiological processes underlying the BOLD signal and
underlying extracellular neural recording are fundamentally different:
While the BOLD signal reflects to a large degree the metabolically
expensive processes of ion transport after excitatory postsynaptic po-
tentials (Attwell and Laughlin, 2001; Harris et al., 2012), extracellular
recordings reflect neural spiking. Crudely stated, therefore, BOLD reflects
more the input to a region, while neural extracellular recordings reflect
the output. Additionally, most extracellular recordings are biased to-
wards large output neurons, as these provide the clearest extracellular
signal (Firmin et al., 2014; Harris et al., 2016), whereas the BOLD signal
indiscriminately averages metabolic activity. These important caveats
need to be kept in mind when drawing parallels between representa-
tional analysis of extracellular recordings and BOLD signal.

5. Conclusion

One common assumption in multivariate fMRI analyses is that the
relationship between activity patterns can be meaningfully interpreted.
Intensity-dependent variations in neural-to-BOLD coupling, however,
could lead to substantial distortions of multivariate measures when
overall activity increases. Our results demonstrate that, across a broad
range of overall activation states in M1 and S1 the ratio-relationships
between pair-wise dissimilarities remain stable. This suggests that it is
viable to leverage more powerful techniques, such as the use of cross-
validated dissimilarities and likelihood-based RSA (Diedrichsen et al.,
2016; Diedrichsen and Kriegeskorte, 2017), for model comparison. The
finding also applies to other multivariate techniques that analyze the
relationship of BOLD activity pattern.
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