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Abstract 28 

Production of rapid movement sequences relies on preparation before (pre-planning) and during (online planning) 29 

movement. Here, we asked how different cortical sensorimotor areas contribute to these processes. Human 30 

participants performed three single-finger and three multi-finger sequences in a delayed movement paradigm. 31 

During preparation, 7T functional MRI revealed that primary motor (M1) and somatosensory (S1) areas showed 32 

pre-activation of the first movement, even though the overall activation level did not change from baseline. During 33 

production, the activity in M1 and S1 could be explained by temporal summation of activity patterns 34 

corresponding to constituent fingers. In contrast, dorsal premotor (PMd) and anterior superior parietal lobule 35 

(aSPL) showed substantial activation during preparation of multi-finger as compared to single-finger sequences. 36 

The same regions were also more activated during production of multi-finger sequences, suggesting that the same 37 

areas are involved in both pre- and online planning. Nonetheless, we observed small but robust differences 38 

between the two contrasts, suggesting preferential involvements of these areas in pre- and online planning. 39 

Multivariate analysis revealed sequence-specific representations in both PMd and aSPL, which remained stable 40 

across both preparation and production phases. This suggests that these areas maintain a sequence-specific 41 

representation before and during sequence production, likely guiding the execution-related areas. 42 

Keywords 43 

Sequential movements; Motor planning; Hand control; fMRI; MVPA. 44 

Significance Statement (120 max) 45 

Understanding how the brain orchestrates complex behavior remains a core challenge in human neuroscience. 46 

Here, we combine high-resolution neuroimaging and a carefully crafted design to study the neural control of rapid 47 

sequential finger movements, like typing or playing the piano. Advancing prior research, we show that the brain 48 

areas involved in planning these movements maintain those representations throughout the execution of the 49 

sequence. This representational stability across planning and execution suggests an intricate connection between 50 

these processes. Our results shed light on the nuanced contributions of different cortical areas to different aspects 51 

of coordinating skilled movement. This work is well placed to inform future research in animal models and the 52 

development of targeted interventions against movement disorders.53 

Introduction (650 max) 54 

From buttoning a shirt to texting with a smartphone, many everyday actions depend on the brain’s ability to 55 

coordinate rapid sequences of finger movements. Behavioral studies have demonstrated that, when tasked to 56 

produce a sequence of multiple finger presses, participants pre-plan the first two or three elements before sequence 57 

production starts (Ariani & Diedrichsen, 2019; Ariani et al., 2021). Once the sequence starts, planning the 58 

upcoming movements continues throughout sequence production, a process called online planning. Most 59 
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behavioral improvements during motor sequence learning can be explained by participants becoming faster at 60 

pre- and online planning (Ariani & Diedrichsen, 2019). Which, and how, different cortical motor areas contribute 61 

to these different aspects of motor sequence planning, however, is poorly understood. 62 

Previous neuroimaging studies of motor sequences have used multivariate analysis of fMRI data to reveal 63 

a hierarchy of sequence representations across cortical motor areas (Berlot et al., 2020; Yokoi et al., 2018; Yokoi 64 

& Diedrichsen, 2019). The dorsal premotor cortex (PMd) and the superior parietal lobule (SPL) exhibit sequence-65 

specific representations, i.e., activity patterns that encode the specific sequence of actions, not just the individual 66 

movements themselves. Sequence-specific representations in association cortex have also been shown using 67 

electrophysiology in non-human primates (Russo et al., 2020; Shima et al., 2006; Tanji & Shima, 1994). In 68 

contrast, activity patterns in the primary motor (M1) and somatosensory cortex (S1) could be explained by a 69 

summation of the patterns related to the individual finger presses (Berlot et al., 2021; Yokoi et al., 2018). Due to 70 

difficulties related to fMRI temporal resolution, however, this work did not distinguish between activity arising 71 

from sequence planning or execution. Although Gallivan et al. (2016) showed that sequences of two upper-limb 72 

actions (e.g., reaching to grasp and place vs. hold a cup) could be distinguished from preparatory fMRI activity 73 

patterns, but the nature of these representations remains unknown. 74 

Here, we used high-field (7T) fMRI while human participants planned and executed both multi- and 75 

single-finger sequences on a keyboard device (matched number of keypresses across sequences). A delayed-76 

movement paradigm with no-go trials (Ariani et al., 2018) allowed us to isolate brain activity related to planning 77 

and execution and address the following three questions about the role of cortical areas in sequence planning. 78 

First, we investigated brain responses in primary sensorimotor cortex (M1 and S1) during the preparation 79 

of a sequence. For single-finger actions, we have previously shown that movement planning pre-activates the 80 

relevant finger-specific activity pattern in both M1 and S1 (Ariani et al., 2022). But what is the preparatory state 81 

in M1 for multi-finger movements? 82 

Second, recent behavioral studies suggest that online planning of movement sequences shares important 83 

behavioral features with sequence pre-planning—both exhibit a similar planning horizon and both contribute to 84 

performance improvements with sequence learning (Ariani & Diedrichsen, 2019; Ariani et al., 2021). We 85 

therefore tested to what degree pre- and online planning engage the same cortical areas by contrasting multi- and 86 

single-finger movements during preparation and production phases. 87 

Finally, employed multi-variate analysis to study two of the identified brain regions, PMd and SPL, in 88 

more depth. Previous results (Berlot et al., 2021; Yokoi & Diedrichsen, 2019) have revealed sequence-specific 89 

representations in both. Our paradigm now allowed us to ask whether these representations are present only during 90 

preparation or whether they persist during movement production. Furthermore, we investigated to what degree 91 

the sequence-specific representations underlying pre- and online planning are the same, or whether they 92 

dynamically change from preparation to production. 93 
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Materials and Methods 94 

Participants 95 

Twenty-three right-handed neurologically healthy participants volunteered to take part in the experiment (13 F, 96 

10 M; age 20–31 years, mean 23.43 years, SD 4.08 years). Criteria for inclusion were right-handedness and no 97 

prior history of psychiatric or neurological disorders. Handedness was assessed with the Edinburgh Handedness 98 

Inventory (mean 82.83, SD 9.75). All experimental procedures were approved by the Research Ethics Committee 99 

at Western University. Participants provided written informed consent to procedures and data usage and received 100 

monetary compensation for their participation. One participant withdrew before study completion and was 101 

excluded from data analysis (final N = 22). A part of the data used in the current paper was previously published 102 

(Ariani et al., 2022). 103 

Apparatus 104 

Sequences of right-hand finger presses were performed on a custom-made MRI-compatible keyboard device (Fig. 105 

1A). Participants used their fingers to press the keys. The keys of the device did not move, but force transducers 106 

underneath each key measured isometric force production at an update rate of 2 ms (Honeywell FS series; 107 

dynamic range 0-25 N). A keypress/release was detected when the force crossed a threshold of 1 N. The forces 108 

measured from the keyboard were low pass filtered to reduce noise induced by the MRI environment, amplified, 109 

and sent to the PC for online task control and data recording. 110 

Task 111 

We used a task in which participants produced sequences of keypresses with their right-hand fingers in response 112 

to numerical cues (Fig. 1B) presented on a computer screen that was visible to the participants lying in the scanner 113 

through an angled mirror. On each trial, a string of 6 numbers (instructing cue) instructed which sequence to plan 114 

(Fig. 1C, white outline). 115 
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 116 
Figure 1. Sequence conditions and task timing. (A) Response keyboard with mapping between numbers and 117 

fingers. Numbers were not visible on the keys. (B) Digits presented on the screen for single-finger (red) and multi-118 

finger sequences (blue). (C) Temporal structure of a trial. During the preparation phase, a sequence of 6 numbers 119 

was displayed within a box at the top of the screen. With a probability of 0.6, the box frame then changed to a 120 

blue color, instructing participants (N=22) to produce the memorized sequence as fast as possible (go trials). 121 

Each correct press caused an asterisk to turn green. With 0.4 probability, the box frame turned orange, signaling 122 

participants to withhold the response (no-go trials). ITI = inter-trial interval. 123 

The length of the preparation phase was randomly sampled to be 4 s (56% of trials), 6 s (30%), or 8 s 124 

(14%). To control for involuntary overt movements during the preparation phase, we required participants to 125 

maintain a steady force of around 0.25 N on all the keys during the delay, which was closely monitored online. 126 

As a visual aid, we displayed a red area (between 0 and 0.5 N) and asked participants to remain in the middle of 127 

that range with all the fingers (touching either boundary of the red area would count as unwanted movement, thus 128 

incurring an error). 129 

At the onset of the production phase, participants received a color cue (go/no-go cue) indicating whether 130 

to perform the planned finger presses (blue outline = go, p = 0.6) or not (orange outline = no-go, p = 0.4). The 131 

role of no-go trials was to dissociate the hemodynamic response to the successive preparation and production 132 

events, which would otherwise always overlap in fast fMRI designs due to the sluggishness of the fMRI response. 133 

To encourage planning during the delay period, at the go cue, the digits were masked with asterisks at go-cue 134 

onset, and participants had to perform the presses from memory. Participants had 2.5 s to complete the sequence 135 

of 6 presses, and a vanishing white bar under the asterisks indicated how much time was left. Participants received 136 

online feedback on the correctness of each press with asterisks turning either green, for a correct press or red, for 137 

+1

+2

1 3 5 3 1 5

Go
(p = 0.6)

No-go
(p = 0.4)

******

******

ITIRewardPreparation Production
1-16 s0.5 s4-8 s 2.5 s

1 2 3 4 5 Single finger
1 1 1 1 1 1
3 3 3 3 3 3
5 5 5 5 5 5

Multi finger
1 3 5 3 1 5
3 5 1 5 3 1
5 1 3 1 5 3

SequencesA

C

B
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incorrect presses. As long as the participants remained within task constraints (i.e., 6 keypresses in less than 2.5 138 

s), an exact movement speed was not enforced. In no-go trials, participants were instructed to remain as still as 139 

possible, maintaining the finger pre-activation until the end of the production phase (i.e., releasing any of the keys 140 

would incur an error). 141 

During the reward phase (0.5 s), points were awarded based on performance and according to the 142 

following scheme: -1 point in case of no-go error or go cue anticipation (timing errors); 0 points for pressing any 143 

wrong key (press error); 1 point in case of a correct no-go trial; and 2 points in case of a correct go trial. 144 

Inter-trial-intervals (ITI, gray background) were randomly drawn from {1, 2, 4, 8, 16 s} with the respective 145 

proportion of trials {52%, 26%, 13%, 6%, 3%}. 146 

Experimental design and structure 147 

Our chosen distribution of preparation times, inter-trial intervals, and no-go trials were determined by minimizing 148 

the variance inflation factor (VIF). VIF is the ratio of the mean estimation variance of all regression weights 149 

(preparation- and production-related regressors for each sequence) to the mean estimation variance had these 150 

regressors been estimated in isolation. Therefore, VIF quantifies the severity of multicollinearity between model 151 

regressors by providing an index of how much the variance of an estimated regression coefficient is increased 152 

because of collinearity. Large values for VIF mean that model regressors are not independent of each other, 153 

whereas a VIF of 1 means no inflation of variance. After optimizing the design, VIF was on average 1.15, 154 

indicating that we could separate planning and execution-related activity without a large loss of experimental 155 

power. 156 

Participants underwent one fMRI session consisting of 10 functional runs and 1 anatomical scan. In an 157 

event-related design, we randomly interleaved 3 types of repeated single-finger presses involving the thumb (1), 158 

the middle (3), and the little (5) fingers (e.g., 111111 for thumb presses, Fig. 1B) and 3 types of multi-finger 159 

sequences (e.g., 135315). The day before the fMRI scan, participants familiarized themselves with the 160 

experimental apparatus and the go/no-go paradigm in a short behavioral session of practice outside the scanner 161 

(5 blocks, about 15-30 minutes in total). For the behavioral practice, inter-trial intervals were kept to a fixed 1 s 162 

to speed up the task, and participants were presented with different sequences from what they would see while in 163 

the scanner. These 6-item sequences were randomly selected from a pool of all possible permutations of the 164 

numbers 1, 3, and 5, with the exclusion of sequences that contained consecutive repetitions of the same number. 165 

Each sequence trial type (e.g., 111111) was repeated 5 times (2 no-go and 3 go trials), totaling 30 trials per 166 

functional run. Two periods of 10 seconds rest were added at the beginning and at the end of each functional run 167 

to allow for signal relaxation and provide a better estimate of baseline activation. Each functional run took about 168 

5.5 minutes, and the entire scanning session (including the anatomical scan and setup time) lasted for about 75 169 

minutes. 170 
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Imaging data acquisition 171 

High-field functional magnetic resonance imaging (fMRI) data were acquired on a 7T Siemens Magnetom 172 

scanner with a 32-channel head coil at Western University (London, Ontario, Canada). The anatomical T1-173 

weighted scan of each participant was acquired halfway through the scanning session (after the first 5 functional 174 

runs) using a Magnetization-Prepared Rapid Gradient Echo sequence (MPRAGE) with a voxel size of 175 

0.75x0.75x0.75 mm isotropic (field of view = 208 x 157 x 110 mm, encoding direction coronal). To measure the 176 

blood-oxygen-level dependent (BOLD) responses in human participants, each functional scan (330 volumes) used 177 

the following sequence parameters: GRAPPA 3, multi-band acceleration factor 2, repetition time [TR] = 1.0 s, 178 

echo time [TE] = 20 ms, flip angle [FA] = 30 deg, slice number: 44, voxel size: 2x2x2 mm isotropic. To estimate 179 

and correct for magnetic field inhomogeneities, we also acquired a gradient echo field map with the following 180 

parameters: transversal orientation, a field of view: 210 x 210 x 160 mm, 64 slices, 2.5 mm thickness, TR = 475 181 

ms, TE = 4.08 ms, FA = 35 deg. 182 

Preprocessing and univariate analysis 183 

Preprocessing of the functional data was performed using SPM12 (fil.ion.ucl.ac.uk/spm) and custom MATLAB 184 

code. This included correction for geometric distortions using the gradient echo field map (Hutton et al., 2002), 185 

and motion realignment to the first scan in the first run (3 translations: x, y, z; 3 rotations: pitch, roll yaw). Due 186 

to the short TR, no slice timing corrections were applied. The functional data were co-registered to the anatomical 187 

scan, but no normalization to a standard template or smoothing was applied during preprocessing. To allow 188 

magnetization to reach equilibrium, the first four volumes of each functional run were discarded. The pre-189 

processed images were analyzed with a general linear model (GLM). We defined separate regressors for each 190 

combination of the 6 finger-actions (single, multi) x 3 phases (preparation go, preparation no-go, production), 191 

resulting in a total of 18 regressors (12 go + 6 no-go), plus the intercept, for each run. We also conducted an 192 

analysis where the same preparation regressor was used in go and no-go, which resulted in qualitatively similar 193 

as reported here. For the main text, however, we decided to be conservative and not use the regressors for the 194 

preparation of go trials, thereby controlling for a residual bias from the execution-related activity onto the 195 

preceding planning-related activity. Each regressor consisted of boxcar functions of length 2s convolved with a 196 

two-gamma canonical hemodynamic response function with a peak onset at 5 s and a post-stimulus undershoot 197 

minimum at 10 s. Given the relatively low error rates (i.e., number of error trials over the total number of trials, 198 

timing errors: 7.58 ± 0. 62 %; press errors: 1.18 ± 0.26 %; see Task above), all trials were included to estimate 199 

the regression coefficients, regardless of whether the execution was correct or erroneous. Ultimately, the first-200 

level analysis resulted in activation images (beta maps) for each of the 18 conditions per run, for each of the 201 

participants. 202 
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Surface reconstruction 203 

Based on the 0.75mm anatomical scan, we reconstructed each individual cortical surface. Individual participants’ 204 

cortical surfaces were reconstructed using Freesurfer (Dale et al., 1999). First, we extracted the white-gray matter 205 

and pial surfaces from each participant's anatomical image. Next, we inflated each surface into a sphere and 206 

aligned it using sulcal depth and curvature information to the Freesurfer average atlas (Fischl et al., 1999). 207 

Subsequently, surfaces were resampled to a left-right symmetric template (fs_LR.164k.spec; Van Essen et al., 208 

2012) included in the connectome workbench distribution (Marcus et al., 2011). The functional imaging data 209 

(2mm resolution) was then mapped onto this surface. In this analysis we excluded voxels that lay within the sulci 210 

and touch both banks (with more than 25% of the voxel volume in the grey matter on both sides sulcus). The 211 

individual surface maps were brought into alignment by morphing the surfaces based on the depth and curvature 212 

(van Essen et al., 2012). This approach is currently the state-of-the-art in imaging analysis to achieve the best 213 

regional specificity of group analysis despite the considerable inter-subject variability in cortical folding. 214 

Regions of interest (ROI) 215 

We focused our imaging analysis on the dorsolateral aspect of the contralateral (left) hemisphere (purple area of 216 

Fig. 2A), including the motor regions of the medial wall. 217 

To summarize the results and for statistical analysis, we have used a set of motor-related ROIs on the 218 

cortical surface that we have used consistently in previous papers (Ariani et al., 2022; Berlot et al., 2020, 2019; 219 

Jörn Diedrichsen et al., 2013; Yokoi et al., 2018). The definition relies on a post-mortem cytoarchitectonic 220 

analysis of 10 human brains (Fischl et al., 2008) that were normalized into a spherical (surface-based) group atlas. 221 

In comparison to a volume-based normalization of the same maps (Eickhoff et al., 2007), this approach leads to 222 

a cleaner separation of cortical areas. One of the limitations of such ROI-based approaches is potentially 223 

combining functional heterogeneous regions into a single ROI. For the current paper, we therefore chose a more 224 

refined approach that allows us to study differences in function within these ROIs in a more continuous manner, 225 

while still summarizing the data better than the map-wise approach. 226 

For visualization of the functional profiles along the cortical surface, we defined an anterior-posterior line 227 

through the anatomically defined hand-knob (Yousry et al., 1997) that ran approximately orthogonal to the 228 

boundaries between different Brodmann areas (BA; Fischl et al., 2008). By extending the line ±20 mm above and 229 

below the line, we defined a strip of surface area in each hemisphere that mainly captures the hand area of M1 230 

and S1 (white area in Fig. 2B). We subdivided this area into 50 vertical sections running from anterior to posterior, 231 

allowing us to summarize the result on a one-dimensional profile-view (e.g., Fig 2G,H; Fig. 3E,F). For statistical 232 

analysis only, we combined results by major region (grouping vertical sections together) according to the 233 

cytoarchitectonic probabilistic atlas. We defined the region of interest for the primary motor cortex (M1; BA4), 234 

primary somatosensory cortex (S1; BA 1, 2, and 3), dorsal premotor cortex (PMd; BA 6), and the anterior parietal 235 
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lobules (aSPL; BA 5) by selecting the strips that had the highest probability (averaged over all vertices within the 236 

strip) as determined by a probabilistic cytoarchitectonic atlas (Fischl et al., 2008) of belonging to their respective 237 

BA. The supplementary motor areas (SMA) lay outside of the defined strip of surface area. We therefore defined 238 

the SMA ROI by choosing the part of BA6 that was situated in the medial wall. 239 

ROI-based analyses were conducted in the space of the individual data acquisition for each individual 240 

participant by determining the voxel that would be projected onto the set of surface nodes associated with each 241 

ROI. In this analysis (as well as for surface-based mapping), we excluded voxels with more than 25% of their 242 

volume in the grey matter on the opposite side of a sulcus. This avoided cross-contamination of activity measured 243 

in M1 and S1, as well as across the pre-central and post-central sulcus. No smoothing of functional activity in the 244 

volume was applied. This approach has allowed us in one previous paper to carefully analyze the specialization 245 

of subregions of human S1 and M1 (Arbuckle et al., 2022). 246 

Analysis of activation 247 

We calculated the percent signal change for each condition relative to the baseline activation for each voxel for 248 

each functional run and averaged it across runs. For ROI analysis, these values were averaged across all voxels 249 

in the native volume space of each participant selected for the respective ROI. For surface-based group maps, 250 

individual data were projected onto the group map via the individual surfaces, using all voxels touching the line 251 

that connected corresponding nodes on the pial and white-matter surfaces. 252 

Statistical analyses to assess the cortical activity of each sequence type during each phase of preparation 253 

or production included a two-sided one-sample t-test vs. zero. For statistical tests on the surface, we used an 254 

uncorrected threshold of p=0.001 and controlled the family-wise error by calculating the size of the largest 255 

suprathreshold cluster across the entire cortical surface (estimated smoothness of FWHM 7.9 mm) that would be 256 

expected by chance (p=0.05) using Gaussian field theory as implemented in the fmristat package (Worsley et al., 257 

1996). 258 

Multivariate distance analysis 259 

To evaluate which brain areas displayed sequence-specific representations, we used the representational similarity 260 

analysis (Kriegeskorte & Diedrichsen, 2019). We calculated the cross-validated Mahalanobis distances (Walther 261 

et al., 2016) between evoked regional patterns (beta estimates from first-level GLM) of different pairs of 262 

conditions, 6 sequences (3 single, 3 multi) x 2 phases (preparation no-go, production). Prior to calculating the 263 

distances, beta weights for each condition were spatially pre-whitened (i.e., weighted by the matrix square root 264 

of the noise covariance matrix, as estimated from the residuals of the GLM). The noise covariance matrix was 265 

slightly regularized towards a diagonal matrix (Ledoit & Wolf, 2003). Multivariate pre-whitening has been shown 266 

to increase the reliability of dissimilarity estimates (Walther et al., 2016). 267 
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Cross-validation ensures the distance estimates are unbiased, such that if two patterns differ only by 268 

measurement noise, the mean of the estimated value would be zero (Diedrichsen et al., 2020). This also means 269 

that estimates can sometimes become negative. Therefore, dissimilarities significantly larger than zero indicate 270 

that the two patterns are reliably distinct, akin to an above-chance performance in a cross-validated pattern 271 

classification analysis. 272 

Multivariate analysis was conducted for ROI and surface analysis. For surface-based maps, we also 273 

conducted a searchlight analysis (e.g., Fig 3A). For each surface node, we selected a circular region of 100 voxels 274 

(with a maximal radius of 12 mm) and assigned the result to the central node of the searchlight. 275 

Dispersion metric 276 

To determine whether there were significant differences in the dispersion of the representations for multi- and 277 

single-finger sequences during preparation, we first set all negative dissimilarity values to 0. We then normalized 278 

the dissimilarities for each sequence type such that all vertices’ dissimilarities in the white strip (Fig. 2A) summed 279 

up to 1. This defined the weight of each surface vertex. The center-of-gravity (COG) per participant was then the 280 

weighted average of the x and y coordinates of these vertices on the flat map. Then, we calculated the dispersion 281 

(𝑑) around this COG by calculating the squared distance between each vertex and COG and averaging them 282 

weighted by 𝑤!. 283 

𝑑 = $ 𝑤! %(𝑥 − 𝐶𝑂𝐺")# + .𝑦 − 𝐶𝑂𝐺$0
#1

!	∈	'()*!+(,

 284 

The difference in dispersion between multi- and single-finger sequences was assessed using a two-sided paired t-285 

test. 286 

Correlation analysis 287 

To assess the relationship between planning and execution-related activity, we estimated the correlation between 288 

them. For estimation, we employed two different approaches. First, we used simple Pearson's correlation. When 289 

estimating the correlation between sequence-specific activity patterns, we first removed the mean pattern for the 290 

preparation and production phase. We then stacked the three activity patterns into a single vector. The average 291 

(across runs) activity patterns for preparation and production were correlated directly. When estimating the 292 

correlation between multi vs. single contrasts across preparation and production, we first calculated the difference 293 

between activity patterns of 3 multi-finger sequences and the corresponding single-finger movements (i.e., 294 

sequence 135351 with 111111, etc.) and then averaged the three maps. The average (across runs) difference maps 295 

for preparation and production were then correlated directly. Correlations were calculated separately within each 296 

participant. To test for a positive correlation, we performed a two-sided paired t-test against zero. 297 

To obtain an estimate of the correlation, corrected for the level of measurement noise, we used pattern 298 

component modelling (PCM, Diedrichsen et al., 2018). The problem with Pearson’s correlations estimated on the 299 
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noisy data is that they are always smaller than 1, even if the underlying patterns are identical. PCM solves this 300 

issue by modelling the noise and true pattern separately and estimating the likelihood of the data given any value 301 

of correlation (Diedrichsen et al., 2023). We created 100 correlation models with correlations in the range [0–1] 302 

in equal step sizes and assessed the likelihood of the observed data from each participant under each correlation 303 

model (Fig. 4C). First, we used the winning model as an estimate of the noise-corrected correlation (maximum-304 

likelihood estimate). To test whether two sets of activity patterns are identical, we compared the likelihood of the 305 

best-fitting model within each participant to the likelihood of a competing correlation model (r=1), using a two-306 

sided paired Wilcoxon signed-rank test. The choice of the best-fitting model was acquired using a cross-validated 307 

approach, estimating the group-winning model from n-1 participants, and determining the log-likelihood of this 308 

model for the left-out participant (for whom this model may not be the best one). 309 

Analysis of principal components 310 

To test if the activity patterns for the difference between multi- and single-finger sequences across preparation 311 

and production are systematically different in some brain regions, we employed principle competent analysis 312 

(PCA). The simple contrast between the two difference maps could not answer this question because they have 313 

different scales. We obtained the multi vs. single contrast during preparation and production averaged across 314 

sequences for all voxels within the region of interest (Fig. 2A, purple area). For each individual, we then 315 

conducted a singular value decomposition on the 2xP matrix, in which the two rows represented the preparation 316 

and production contrasts. The first PC captured the common neural activity shared by processes happening during 317 

preparation and production while accounting for the differing degrees of activation in specific voxels. The second 318 

PC represented the tendency of each voxel to be relatively more engaged during one process than the other. We 319 

ensured that for each participant the positive value on the second PC represented relatively more engagement 320 

during the production phase. Lastly, we projected the value for each voxel to the nearest vertex and created a 321 

preference map. These maps were then submitted to a surface-based group analysis (see above). 322 

Results 323 

Pre-planning of multi-finger sequences activates the first finger in M1 and S1 324 

First, we asked what processes occur during sequence preparation in the core sensorimotor areas S1 and M1. For 325 

single-finger movements (Fig. 2C), BOLD activity in these regions was suppressed relative to rest (Fig. 2G; M1: 326 

t21=−6.939, p=7.4e−07; S1: t21=−5.508, p=1.8e−05). For multi-finger movements (Fig. 2E), we also observed 327 

some suppression deep in the central sulcus, however, averaged across the ROI, the activation was not different 328 

from the resting baseline (M1: t21=−0.692, p=0.496; S1: t21=−0.523, p=0.606). 329 

We then used multi-voxel pattern analysis to examine whether the fine-grained pattern of activity in these 330 

areas differed between the planned sequences. To this end, we calculated cross-validated Mahalanobis distances 331 
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 12 

(Diedrichsen et al., 2020; Walther et al., 2016) between the activity patterns associated with the 3 sequences. 332 

Systematically positive values of this measure indicate reliable multivariate pattern differences. As previously 333 

reported (Ariani et al., 2022), we found that during the preparation of single-finger movements (Fig. 3A), the core 334 

hand areas of M1 and S1 exhibited finger-specific activity patterns (M1: t21=2.343, p=0.029; S1: t21=3.137, 335 

p=0.005). Analysis of multi-finger sequences revealed a similar result: although M1 and S1 were not activated 336 

overall, there were significant differences between activity patterns for three sequences (Fig. 3E; M1: t21=2.991, 337 

p=0.007; S1: t21=2.829, p=0.010). 338 
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 339 
Figure 2. Premotor and superior parietal lobule are activated during sequence preparation. (A) inflated cortical 340 

surface of the contralateral (left) hemisphere, highlighting the displayed areas (B-F, purple). (B) Flat 341 

Single
Multi

CS Post-CSPre-CS

PMd M1 S1 aSPL
-0.5

0

0.5

1

%
 si

gn
al 

ch
an

ge

** *** ****** ***

Single
Multi

CS Post-CSPre-CS

*** *** *** ****** *** *** ***
PMd M1 S1 aSPL

0

1

2

3

%
 si

gn
al 

ch
an

ge
10.1-0.1-1 10.1-0.1-1

10.1-0.1-1 20.1-0.1-2

20.1-0.1-2

C

BA

D

E

G

F

H

Percent signal change
Production single

Production multi

Preparation single

Preparation multi

SMA
pre-
SMA

IFS

SFS

Pre-CS

CS
Post-CS

IPS

STS
LOS

S1 aSPL
M1

PMd

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2023.11.05.565682doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.05.565682
http://creativecommons.org/licenses/by/4.0/


 14 

representation of the neocortex with major sulci indicated by white dotted lines, and the boundaries of different 342 

regions indicated by black dashed lines. The strip highlighted in white was used for the profiles (G, H) and region-343 

of-interest definition. (C) Group-averaged percent signal change during preparation and (D) production of 344 

single-finger sequences. (E,F) Same as (C,D) but for multi-finger sequences. (G) Profile ROI analysis (see 345 

Materials and methods) of the mean percent signal change (± standard error of the mean [SEM]) during the 346 

preparation and (H) production of single-finger (red) and multi-finger sequences (blue). The x-axis corresponds 347 

to Brodmann areas (BA) shown in (B). **p < 0.01, ***p<0.001 in a two-sided one-sample t-test vs. zero for 348 

selected ROIs. Vertical black lines mark the approximate boundaries between the BAs (see Methods). Black 349 

triangles point to the approximate location of the main anatomical landmark. Sulci: superior frontal sulcus (SFS), 350 

inferior frontal sulcus (IFS), precentral sulcus (Pre-CS), central sulcus (CS), post central sulcus (Post-CS), intra-351 

parietal sulcus (IPS), lateral occipital sulcus (LOS), superior temporal sulcus (STS). ROIs: anterior superior-352 

parietal lobule (aSPL, BA 5), primary somatosensory cortex (S1, BA 3, 1, 2), primary motor cortex (M1), dorsal 353 

premotor cortex (PMd, BA 6), secondary motor area (pre-SMA and SMA, BA 6). 354 

What do these activity differences for multi-finger sequences reflect? One possibility is that during 355 

sequence preparation, the first element of the sequences is pre-activated in M1. Because each sequence started 356 

with a different finger, this would cause large differences between the activity patterns without constituting a 357 

sequence representation. This idea predicts that the activity pattern during preparation should correlate with the 358 

activity pattern observed when only the first finger movement is pressed. To test this, we correlated the 359 

preparation activity of 3 multi-finger sequences with the production activity of the corresponding single-finger 360 

sequences (i.e., sequence 135351 with 111111, etc.) after subtracting the mean activity pattern. This analysis 361 

revealed a significant correlation in both M1 (average r=0.043, t21=2.366, p=0.027) and S1 (r=0.047, t21=2.285, 362 

p=0.032) but not in PMd (t21=-1.227, p=0.233) and aSPL (t21=-0.242, p=0.811) with the values of correlation 363 

being significantly larger in M1/S1 than PMd/aSPL (t21=3.068, p=0.005). While these correlations are very small, 364 

correlation estimated on noisy data consistently underestimate the true correlation (Diedrichsen et al., 2023). To 365 

account for measurement noise in a principled way, we used Pattern Component Modeling (PCM, see Methods) 366 

to build potential models of the correlation between activity patterns for the preparation of multi-finger sequences 367 

and production of single-finger sequences and evaluate the likelihood of the data given each model. We removed 368 

the average activity pattern common to all sequences from the patterns (separately for multi- and single-finger 369 

sequences), and then correlated the patterns across the two conditions. The group maximum-likelihood estimates 370 

of correlation indicated substantial correspondence with r=0.40 for S1 and r=0.34 for M1. Thus, there is 371 

substantial overlap between the patterns during pre-planning of multi-finger sequences and the patterns during 372 

the execution of the first finger in the sequence. 373 

In previous studies, we have found that the activity patterns in M1 and S1 (averaged over preparation and 374 

production phases) can be explained by a temporal summation of the patterns related to the individual finger 375 
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presses, with an especially high weight from the first finger in the sequence (Berlot et al., 2021; Yokoi et al., 376 

2018). If this weighting is due to the pre-activation of the first finger during movement preparation, we would 377 

predict that the pattern differences between sequences should disappear during the execution phase, as all three 378 

involved the same three fingers (albeit in a different order). Indeed, the pattern differences were significantly 379 

attenuated during the production phase (Fig. 3D, planning vs. execution in M1: t21=2.123, p=0.0458, and S1: 380 

t21=2.305, p=0.0345), with a small pattern difference remaining only in M1 (t21=2.814, p=0.0104). 381 

In sum, these results are consistent with the idea that the first finger in a sequence is pre-activated during 382 

the preparation phase and that after production starts, the activity pattern in M1 and S1 are determined by a 383 

temporal summation of the patterns related to the individual finger presses (Yokoi et al., 2018). 384 

Pre- and online planning engage a highly overlapping set of cortical areas 385 

If the activity patterns in the M1 and S1 are related to the individual finger presses, then continuous input from 386 

higher-level regions that retain a representation of the entire sequence is required to move reliably from finger to 387 

finger. We refer to this process as planning, whether it occurs before (pre-planning) or after movement onset 388 

(online planning; Ariani & Diedrichsen, 2019; Ariani et al., 2021). Here investigate whether pre- and online 389 

planning engage exactly the same, or different sets of cortical areas. Given that the number, speed, and force of 390 

the finger presses were closely matched across single and multi-finger movements (Table 1), we assumed that 391 

both conditions involve similar execution-related processes. Therefore, the difference between the production of 392 

single-finger and multi-finger sequences should mostly reflect activity related to online planning. If pre-planning 393 

and online planning involve the exact same cortical areas, then this difference should be similar to the difference 394 

between single-finger and multi-finger movement during preparation (reflecting the need for increased pre-395 

planning). 396 

 Single-finger Multi-finger Difference 

ET [ms] 1450 ± 58 1370 ± 70 t21=1.815, p=0.083 

Force [N] 1.7 ± 0.1 1.8 ± 0.1 t21=1.423, p=0.169 

Table 1. Average execution time (ET, i.e., time needed to complete a sequence) and average peak force for single-397 

finger and multi-finger sequences across participants. A two-sided paired t-test for a difference between 398 

conditions is reported in the last column. 399 

In contrast to single-finger movements (Fig. 2C), preparation of multi-finger sequences (Fig. 2E) strongly 400 

activated the dorsal premotor cortex (Fig. 2G; PMd, t21=5.125, p=4.4e-05), the supplementary motor areas 401 

(SMA/pre-SMA, t21=4.016, p=2.3e-04) and the anterior part of the superior parietal lobule (aSPL, t21=7.482, 402 

p=2.3e-07). Thus, the demands of planning multiple different finger movements evoked significant brain 403 

activation in premotor and parietal areas. 404 
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 During the production, we found widespread activity in both primary sensorimotor, parietal, and pre-405 

motor areas for both sequence types (Fig. 2D, F). The contrast between these two conditions revealed higher 406 

activity for multi-finger over single-finger sequences in PMd (Fig. 2H, 4B; t21=6.022, p=5.6e-6) and aSPL 407 

(t21=8.264, p=4.8e-08). In contrast, in caudal M1 and rostral S1 the same two conditions elicited very similar 408 

activity levels, consistent with the idea that the basic motor requirements were well matched between single- and 409 

multi-finger sequences. 410 

Importantly, the spatial distribution of multi vs. single contrast during production was very similar to multi 411 

vs. single contrast during preparation (Fig. 4A, B). When we correlated the unsmoothed voxel-wise activity maps 412 

within each participant, we found a highly significant correlation between the brain activity patterns under these 413 

two conditions (r=0.12, t21=10.796, p=4.9e-10). Thus, pre- and online planning activated overlapping cortical 414 

areas. 415 
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 416 
Figure 3. Sequence representations during preparation and production phases. (A) Group-averaged 417 

multivariate searchlight map of the crossnobis distance between the preparation and (B) production of the three 418 

single-finger. (C) Same as A but for mean crossnobis distance between the preparation and (D) production of 419 

three multi-finger sequences. (E) Profile ROI analysis of the mean crossnobis distance (±SEM) during the 420 

preparation of single-finger (light red line) and multi-finger (light blue) sequences. (F) Same as E but for the 421 

production of single-finger (dark blue) and multi-finger (dark red) sequences. *p < 0.05, **p<0.01, ***p<0.001 422 

in a two-sided one-sample t-test vs. zero for selected ROIs. 423 
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Preferential activation for planning before and during movement 424 

The strong overlap between the activity maps for pre- and online planning, however, does not tell us whether the 425 

two maps were identical (in other words, pre- and online planning activated - within each participant - exactly the 426 

same voxels) or whether there were true differences between the maps. This is because measurement noise will 427 

lead to an observed correlation smaller than 1, even if two maps are identical (Diedrichsen et al., 2023). Again, 428 

we applied PCM to model the correlation between multi-single contrast activity patterns in both preparation and 429 

production, followed by an assessment of data likelihood for each model (see Fig. 4C). The group maximum-430 

likelihood estimate of correlation was r=0.65 with strong evidence that the patterns were not identical (against 1-431 

corr model: z = 3.815, p=0.0001). 432 

 Therefore, we asked whether there were systematic differences across participants, which would indicate 433 

that some areas have a preference toward either pre- or online planning. Because the contrast during pre-planning 434 

was generally larger than during execution, we could not simply subtract the two difference maps. Instead, we 435 

plotted the multi-single difference for each voxel during preparation (Fig. 4E, x-axis) against the difference during 436 

production (y-axis). We then estimated the average relationship between the two contrasts using Principal 437 

Component Analysis (PCA) within each participant. The first principal component (PC1) captured the tendency 438 

of voxels to be similarly responsive for pre- or online planning. The loading on the second principal component 439 

captured the deviation from this lawful relationship, with positive values indicating relatively more activity during 440 

online planning and negative values more activity during pre-planning. By mapping the voxel preferences back 441 

to the surface, we created an average preference map across participants within our window of interest (Fig. 4F). 442 

This map revealed that clusters (solid outlines in Fig. 4F) in PMd (p=5.9e-07, corrected for multiple comparisons, 443 

see Methods), M1/S1 (p=8.8e-06), and aSPL (p=5.9e-07) were more active during online planning, while clusters 444 

in SMA (p=3.1e-06), the ventral premotor cortex (PMv, p=7.2e-07 and p=0.0096), and the inferior parietal lobule 445 

(IPL, p=0.0492) were relatively more active during pre-planning (Fig. 4F). This set of results indicates that pre-446 

planning and online planning of movement sequences preferentially activated slightly different sets of cortical 447 

areas. 448 

 449 
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 450 
Figure 4. Activation maps for pre- and online planning are highly, but not perfectly, correlated. (A) The 451 

difference in evoked activation between multi-finger and single-finger sequences during the preparation and (B) 452 

production. (C) PCM evaluation of models assuming a correlation between the sequence-general activity patterns 453 

shown in A and B of 0 to 1. The group average (black line) and individual curves (thin gray lines) express the 454 

difference from the log-likelihood from the mean value (i.e., zero on the y-axis). Red dots indicate the best-fitting 455 

correlation model for each participant and the red solid line cross-validated best-fitting model across all 456 

participants. Yellow-shaded area indicates models that perform significantly worse than the best-fitting 457 
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correlation model (p < 0.05). (D) Similar to (C), but for the correlation between sequence-specific activity 458 

patterns evoked during preparation and production of multi-finger sequences in PMd and aSPL. For each 459 

participant, we averaged the curve corresponding to each of the two areas. (E) Voxel-wise values of the 460 

preparation multi-single contrast, plotted against the voxel-wise values of the production multi-single contrast. 461 

Two principal components (PCs) of the data are shown. Voxels in the red area (positive PC2) show a preference 462 

for online planning, whereas voxels in the blue area (negative PC2) show for pre-planning. An example of a 463 

single participant is shown. (F) Group t-value for the second PC projected on the flat map. Areas with black solid 464 

outlines represent significant clusters. Note that for this surface-based (rather than ROI-based) analysis, there is 465 

no strict correspondence between the clusters on the map and our pre-defined ROIs. The labels next to the 466 

significant clusters correspond to the more closely matching ROI. 467 

PMd and SPL maintain sequence-specific representations both during preparation and production 468 

If the increased activation for multi-finger sequences in PMd and SPL (Fig. 4A-B) was related to pre-planning 469 

and online planning, then these areas should exhibit sequence-specific representations during both the preparation 470 

and production phases. 471 

Indeed, for the preparation phase multivariate analysis (Fig. 3C) revealed that both areas showed 472 

sequence-specific representations of multi-finger sequences. We found significant pattern differences in PMd 473 

(Fig. 3E, t21 = 2.266, p=0.034) and aSPL (t21=3.491, p=0.002). In contrast to the preparation of single-finger 474 

movements (Fig. 3A), the representations of multi-finger sequences appeared to be more widespread on the 475 

cortical sheet. To quantify this observation, we calculated a spatial dispersion metric, which reflects the spatial 476 

variance of pattern dissimilarities (see Methods). This analysis confirmed that the planning of multi-finger 477 

sequences was associated with a more widespread representation across the sensory-motor network compared 478 

with single-finger sequences (t21=3.542, p=0.002). Therefore, premotor and parietal areas were not only more 479 

active during the preparation of multi- than single-finger sequences (Fig. 4A), but also represented the identity of 480 

the sequence. 481 

Importantly, we also found that these representations were maintained during the execution phase (Fig. 482 

3D, PMd: t21=3.221, p=0.004; aSPL: t21=2.490, p=0.021). When comparing the multivariate distances between 483 

preparation (Fig. 3C) and execution (Fig. 3D) we found a strong reduction in M1 (t21=2.123, p=0.045) and S1 484 

(t21=2.305, p=0.0314). In contrast, the pattern differences in PMd and aSPL did not attenuate from the preparation 485 

to the execution phase (PMd: t21=0.271, p=0.7889, and aSPL: t21=1.895, p=0.0719). Note that the multivariate 486 

distances reported in Fig. 3 are measured with noise, so the small-scale differences that can be observed between 487 

Fig. 3C and Fig. 3D should not be overinterpreted. When conducting a map-wise comparison, none of the subtle 488 

differences are significant after controlling for multiple comparisons. We therefore chose a ROI approach to 489 
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increase our statistical power. These results are consistent with the idea that premotor and parietal areas are 490 

involved in the planning of movement sequences both before and during sequence production. 491 

Finally, we asked whether the sequence-specific representations in these areas remained stable or whether 492 

they changed dynamically from preparation to production. To address this question, we again used PCM. We 493 

removed the average activity pattern common to all multi-finger sequences from the patterns (separately for 494 

preparation and production phase), and then correlated these sequence-specific pattern differences between 495 

sequences across the two phases. Figure 4D shows the likelihood curves for different correlation models averaged 496 

across PMd and aSPL. The small signal-to-noise for relatively subtle differences between multi-finger sequences 497 

resulted in small model evidence for almost all participants. The cross-validated group-winning model predicted 498 

that sequence-specific activity patterns were perfectly correlated with strong evidence that patterns were not 499 

uncorrelated (against 0-corr model: PMd: z = 2.646, p=0.008; aSPL: z = 2.873, p=0.004). These results suggest 500 

that sequence-specific representations remain stable across pre-planning and execution. 501 

Discussion (1500 max) 502 

We used 7T fMRI and multivariate analyses to investigate the role of human cortical areas in the preparation of 503 

movement sequences, separating processes that occur before and during movement production. We found that 504 

primary sensorimotor cortices (M1, S1) showed activity patterns resembling the first movement in the sequence 505 

during preparation, and of a temporal summation of individual movements during production. In contrast, 506 

secondary sensorimotor areas (PMd, SMA, SPL) were more activated during both pre- and online planning of 507 

motor sequences. These regions also maintained a stable representation of the sequence across preparation and 508 

production phases.  509 

 In previous fMRI studies, we found that the activity patterns in M1 and S1 during sequence production 510 

can be explained by the linear combination of the patterns associated with the individual movements (Berlot et 511 

al., 2021; Yokoi & Diedrichsen, 2019). The pattern for the first finger in the sequence contributed substantially 512 

more to the overall pattern (average over preparation and execution) than all the subsequent fingers (Yokoi et al., 513 

2018). Our results now provide evidence that this ‘first finger effect’ was caused by the pre-activation of the first 514 

sequence element during preparation rather than by the transition from planning to execution state space 515 

(Kaufman et al., 2016; Yokoi et al., 2018): the pre-planning of a multi-finger sequence activated a pattern similar 516 

to that observed during the execution of the first movement in that sequence.  517 

In a study using sequences of object-directed reach-to-grasp movements, Gallivan et al. (2016) found that 518 

the activity patterns in M1 were also slightly different between two sequences that started with the same 519 

movement but differed in the second movement. This suggests that, not only the first, but possibly also the second 520 

movement may be reflected in M1 preparatory activity patterns. This observation would be consistent with the 521 

“competitive queuing” hypothesis (Averbeck et al., 2002), the idea that the first movement in a sequence being 522 
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most, the second less, and subsequent movements even less activated (Kornysheva et al., 2019). However, 523 

because the first reach-to-grasp movement was always the same across conditions, it was unclear whether these 524 

findings would generalize to longer and more complex sequences where every sequence element is different and 525 

needs to be planned anew from trial to trial. 526 

 After sequence production began, the pattern differences in M1 and S1 between the 3 multi-finger 527 

sequences were strongly attenuated. This is likely due to the fact the pattern corresponding to the single-finger 528 

movements were sequentially activated. Due to the low temporal resolution of fMRI, these patterns combined 529 

additively, such that the three multi-finger sequences (which were matched in terms of the involved fingers) 530 

elicited overall similar activity pattern when we isolated the activity during the production phase. 531 

These results also suggest that the production of the sequence cannot be maintained autonomously by 532 

primary motor areas, but that it depends on input from secondary motor areas (Russo et al., 2020; Tanji & Shima, 533 

1994; Yokoi & Diedrichsen, 2019). Consistent with this idea, we found that PMd, SMA, and SPL (but not caudal 534 

M1 and rostral S1) were more activated during the preparation and production of multi-finger as compared to 535 

single-finger movements. We also found sequence-specific activity patterns in these areas, which were correlated 536 

across preparation and production phases. This suggests that premotor and parietal areas maintained a stable 537 

representation of the sequence throughout, likely to drive the next movements in M1. 538 

As shown in recent behavioral studies (Ariani & Diedrichsen, 2019; Ariani et al., 2021; Kashefi et al., 539 

2023), even relatively short 5-item sequences cannot be fully pre-planned. Instead, planning of remaining items 540 

needs to continue throughout sequence production. To determine if the same areas are involved in the pre- and 541 

online planning, we contrasted the univariate multi-finger to single-finger activity maps. As basic execution 542 

processes were matched, we interpreted these contrasts as reflecting the increased need for planning. We found 543 

that the contrast maps were highly correlated across preparation and production phases (Fig. 4C), indicating that 544 

pre-planning and online planning activated similar regions. Within two of these regions, the PMd and aSPL, we 545 

also found that the sequence-specific activity patterns were highly correlated across these preparation and 546 

production (Fig. 4D), suggesting that the sequence-specific representations remained stable. Together these two 547 

findings are evidence that the processes involved in online planning are similar to those involved in pre-planning. 548 

Despite considerable overlap in brain activation between pre- and online planning (Fig. 3A,B), however, 549 

further analysis revealed small but systematic differences in the involvement of different brain areas: PMd, S1, 550 

and SPL tended to be more active during online planning, and SMA and ventral premotor cortex (PMv) more 551 

during pre-planning. This indicates that the two processes are not exactly identical. One possible explanation 552 

could be the differential engagement of brain areas in memory encoding and memory retrieval processes that, as 553 

part of planning processes, happened during preparation and production, respectively. The exact nature of these 554 

differences, however, remains to be tested in future studies. 555 
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Our results offer testable predictions for future neurophysiological recordings in sensorimotor areas of 556 

non-human primates. They predict that M1 shows fast dynamics related to each individual movement, with linear 557 

superposition of subsequent movements (Zimnik & Churchland, 2021). Additionally, they predict the presence 558 

of sequence-specific representation in premotor and superior parietal areas both during preparation and 559 

production. The observed consistency of these representations during preparation and production suggests that 560 

these representations have slow dynamics and change very little from preparation to production. However, it is 561 

also possible that these patterns are stable at a voxel level—i.e., pre- and online planning activate the same cortical 562 

columns—but show faster dynamics at the single neuron level. Studying these representations at a neuronal level 563 

at high temporal resolution will provide additional insight into how the motor system solves the fundamental 564 

problem of serial order in behavior (Lashley, 1951). 565 

 566 
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