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How does the brain change during learning? In functional magnetic resonance imaging (fMRI) studies, both multivariate pat-
tern analysis (MVPA) and repetition suppression (RS) have been used to detect changes in neuronal representations. In the
context of motor sequence learning, the two techniques have provided discrepant findings: pattern analysis showed that only
premotor and parietal regions, but not primary motor cortex (M1), develop a representation of trained sequences. In con-
trast, RS suggested trained sequence representations in all these regions. Here, we applied both analysis techniques to a five-
week finger sequence training study, in which participants executed each sequence twice before switching to a different
sequence. Both RS and pattern analysis indicated learning-related changes for parietal areas, but only RS showed a difference
between trained and untrained sequences in M1. A more fine-grained analysis, however, revealed that the RS effect in M1
reflects a fundamentally different process than in parietal areas. On the first execution, M1 represents especially the first fin-
ger of each sequence, likely reflecting preparatory processes. This effect dramatically reduces during the second execution. In
contrast, parietal areas represent the identity of a sequence, and this representation stays relatively stable on the second exe-
cution. These results suggest that the RS effect does not reflect a trained sequence representation in M1, but rather a prepar-
atory signal for movement initiation. More generally, our study demonstrates that across regions RS can reflect different
representational changes in the neuronal population code, emphasizing the importance of combining pattern analysis and RS
techniques.
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Significance Statement

Previous studies using pattern analysis have suggested that primary motor cortex (M1) does not represent learnt sequential
actions. However, a study using repetition suppression (RS) has reported M1 changes during motor sequence learning.
Combining both techniques, we first replicate the discrepancy between them, with learning-related changes in M1 in RS, but
not pattern dissimilarities. We further analyzed the representational changes with repetition, and found that the RS effects
differ across regions. M1’s activity represents the starting finger of the sequence, an effect that vanishes with repetition. In
contrast, activity patterns in parietal areas exhibit sequence dependency, which persists with repetition. These results demon-
strate the importance of combining RS and pattern analysis to understand the function of brain regions.

Introduction
The ability to learn and produce complex sequences of move-
ments is essential for many everyday activities, from tying shoe-
laces to playing instruments. Searching for where these acquired
skills are represented in the brain has been one of the central
questions in motor neuroscience (Lashley, 1950). One prominent
issue in this debate is whether skilled sequence execution relies
on representations in premotor area and supplementary motor
area (SMA), or whether the sequences are represented in the pri-
mary motor cortex (M1; for review, see Dayan and Cohen, 2011;
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Berlot et al., 2018). We recently conducted a systematic longitu-
dinal five-week training study (Berlot et al., 2020) employing
functional magnetic resonance imaging (fMRI) to assess brain
changes with motor sequence learning. We observed no change
in overall activity with learning in M1, and no changes in the
sequence-specific activity patterns. In contrast, clear learning-
related changes in both overall activity and fine-grained activity
patterns were observed in premotor and parietal areas, suggest-
ing that learning-related changes occur outside of M1.
Consistent with this idea, activity patterns in M1 seem to reflect
individual movement elements, but not the sequential context
(Yokoi et al., 2018; Yokoi and Diedrichsen, 2019; Russo et al.,
2020). This suggests that M1 does not represent learnt motor
sequences, but must rely on inputs from other areas to select the
next correct movement element.

Using the technique of repetition suppression (RS), however,
Wymbs and Grafton (2015) provided evidence for learning-
related changes during motor sequence learning in M1. RS refers
to the observation that a stimulus repetition evokes reduced neu-
ronal activity compared with its initial presentation (Gross et al.,
1967). It is commonly used as a tool for investigating brain rep-
resentation (Buckner et al., 1998; Henson et al., 2003; for review,
see Segaert et al., 2013) following the logic that if regional activa-
tion reduces on repetition, the underlying neuronal population
must represent some aspect of the stimulus that repeated (Grill-
Spector et al., 2006). Wymbs and Grafton (2015) found learning-
related changes in RS across several regions, including M1, where
they reported a non-monotonic change in RS over weeks: early
increase, followed by a decrease, and again an increase in RS,
which they interpreted as skill-specific specialization in M1.
Altogether, their results indicate that M1’s activity patterns are mal-
leable when learning motor sequences. This stands in stark contrast
to the above-mentioned studies that used pattern dissimilarity anal-
yses and found no evidence of sequential representation inM1.

We reasoned that this discrepancy between RS and pattern
analysis may reflect the fact that different underlying compo-
nents of activity patterns might bring about the suppression of
activity observed on repetition, some of which may not be
directly related to a sequence identity (Grill-Spector et al., 2006;
Alink et al., 2018). To understand RS effects in more detail, we
need to know what aspects of the underlying representations
reduce from the first to the second repetition. We therefore
designed a paradigm that allowed us to investigate changes in
brain representation using both tools, RS and multivariate pat-
tern analysis (MVPA). We trained healthy volunteers to produce
motor sequences over fiveweeks and tested their performance
during high-field (7 T) MRI scanning. Participants performed
trained and untrained sequences, each sequence twice in a row,
allowing us to conduct both pattern and RS analysis on the same
data. Replicating previous results, we observed significant learn-
ing-related changes in M1 for RS, but not for pattern dissimilar-
ities. In contrast, both metrics showed learning-related changes
in premotor and parietal regions. Using pattern analysis, we then
decomposed the activation patterns in the first and second repe-
tition to determine which representational aspects underlie the
RS effects in the different regions. Finally, we performed control
analyses to test whether observed effects could be attributed to
learning-related improvements in the execution speed.

Materials and Methods
Participants
A total of 27 participants took part in the experiment. Data of one partic-
ipant were excluded because the field map was distorted in one of the

four scans, resulting in 26 participants whose data were analyzed (17
females, 9 males). Their mean age was 22.2 years (SD=3.3 years).
Criteria for study inclusion were right-handedness and no prior history
of psychiatric or neurologic disorders. They provided written informed
consent to all procedures and data usage before the study started. The
experimental procedures were approved by the Ethics Committee at
Western University.

Apparatus
Finger sequences were performed using a right-hand MRI-compatible
keyboard device (Fig. 1A). The keys of the device had a groove for each
fingertip, with keys numbered 1–5 for thumb-little finger. The keys were
not depressible, so participants performed isometric finger presses. The
force of the presses was measured by the force transducers underneath
each finger groove (FSG-15N1A, Sensing and Control, Honeywell;
dynamic range 0–25 N; update rate 2ms; sampling 200Hz). For the key
to be recognized as pressed, the applied force had to exceed 1 N.

Figure 1. Experimental paradigm. A, Experimental setup, finger sequences composed of
nine digits were executed on a keyboard device. Participants received visual feedback on cor-
rectness of their presses, with digits turning green for correct presses, and red for incorrect
presses. B, Group-averaged performance on trained sequences over the five-week behavioral
training protocol. Red shade indicates the standard error of the group mean (SEM). C, Group-
averaged performance during the scanning sessions. Trained sequences are in red, untrained
in blue. Dark color indicates first execution, light second execution. White bars indicate the
group mean performance. D, Experimental paradigm inside the scanner. Each sequence was
presented twice in a row. Trials started with a 1-s preparation time in which the sequence
was presented, followed by a 3.5-s period of main phase, when the sequence was also exe-
cution, followed by 0.5 s of intertrial interval (ITI). The plotted timeseries for an insert of the
design is group-averaged evoked activation of M1. Shaded error bars indicate the SEM.
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Experimental design, behavior
Participants were trained over a five-week time period to perform six
nine-digit finger sequences (Fig. 1B). They were split into two groups,
with trained sequences of one group being the untrained sequences of
the second group, and vice versa (for all of the chosen sequences, see Fig.
4B). The chosen sequences for both groups were matched as closely as
possible on several features: starting finger, number of repetitions per
finger, and first-order finger transitions. The decision to split partici-
pants into two groups was made to ensure that none of the observed
effects could be because of the specific set of sequences chosen.

On day 1 of the study, participants were acquainted with the appara-
tus and the task performed in the scanner. To ensure no sequence-spe-
cific learning would take place before scan 1, we used finger sequences
different from the trained and untrained sets which participants did not
encounter at any later stage of the experiment.

During the behavioral training sessions, participants were trained to
perform the six sequences. They received visual feedback on the correct-
ness of their presses online with each digit turning green for correct, and
red for incorrect press (Fig. 1A). They were instructed to perform the
sequences as fast as possible while keeping the overall accuracy .85%.
The details of the training protocol, as well as a few other design features
(which were not assessed for this paper) have been described elsewhere
(Berlot et al., 2020).

Experimental design, imaging
Longitudinal studies assessing learning have to tackle the challenge that
performance changes with learning, and that it is not clear whether brain
changes reflect the acquisition of new skills, or are caused indirectly by
the changed behavior (Poldrack, 2000). For motor learning, the higher
speed of execution could lead to different brain activation, unrelated to
learning. Pacing participants to perform at the same speed for trained
and untrained sequences, and across sessions, presents a possible solu-
tion for this problem. On the other side, pacing participants at a slower
speed might not tap into the same neural circuitry as skilled behavior.
For this reason, we decided to include both approaches; sessions with
paced performance and a session where participants performed at full
speed.

Participants underwent a total of four MRI scanning sessions (Fig.
1C) while executing trained and untrained sequences. The first session
served as a baseline before the start of the training protocol (in week 1),
where the “trained” and “untrained” sequences were both untrained and
seen for equivalent amounts of time. The second session was conducted
in week 2, and the last two after training protocol was completed in
week 5. In scanning sessions 1–3, participants’ performance inside
the scanner was paced with a metronome, whereas in session 4, they
performed as quickly as possible. For the purpose of this paper, we
analyzed data of scanning session 1 (before training, paced), 3 (after
learning, paced) and 4 (after learning, unpaced; Fig. 1C), allowing
us to examine both learning-related and performance-related
changes. Session four allows for the closest comparison to the previ-
ous RS study (Wymbs and Grafton, 2015), which also employed a
full-speed performance design.

Each scanning session consisted of eight functional runs with event-
related design randomly intermixing trials across the 6 trained and the 6
untrained sequences (totaling 72 trials per functional run). Each
sequence was executed for two trials in a row (Fig. 1D). In this way, our
design did not differentiate between RS and expectation suppression
(Summerfield et al., 2008; Kok et al., 2012). In contrast to perceptual
studies, however, in motor studies the influence of the expectation of a
repetition is likely much less important. After the informative cue, pre-
paratory processes are executed in a full awareness of whether the
sequence is repeated from last trial, no matter if that repetition was
expected or not. Thus, repetition effects in motor control will always
contain an element of expectation. For this reason, we chose repetition
to be a predictable feature of our experimental design.

Each trial started with a 1-s preparation time with nine digits of the
sequence presented on the screen (Fig. 1D). A “go” signal was presented
afterward. In scans 1–3, a pink line appeared underneath the sequence
and started expanding, indicating the pace at which participants were to

press. In scan 4, participants executed the sequence as fast as possi-
ble after the go cue. After execution, they received feedback on their
overall performance – three points for correct and zero for incorrect
performance. Each trial lasted for 5 s total, with a 0.5-s intertrial
interval (Fig. 1D). Five periods of 10-s rests were added throughout
each functional run to provide a better estimate of baseline activa-
tion. These rests were added randomly, but never between the first
and second execution of the same sequence. In total, each scanning
session lasted for;75min.

Image acquisition
Data were acquired on a 7-Tesla Siemens Magnetom MRI scanner with
a 32-receive channel head coil (eight-channel parallel transmit). At the
beginning of the first scan, we acquired anatomic T1-weighted scan for
each participant. This was obtained using a magnetization-prepared
rapid gradient echo sequence (MPRAGE) with voxel size of 0.75� 0.75 -
� 0.75 mm isotropic [field of view= 208� 157 � 110 mm (A-P; R-L;
F-H), encoding direction coronal]. Data during functional runs were
acquired using the following sequence parameters: GRAPPA 3, multi-
band acceleration factor 2, repetition time (TR)= 1.0 s, echo time
(TE)= 20ms, flip angle (FA)= 30°, slice number: 44, voxel size: 2 � 2 �
2 mm isotropic. To estimate magnetic field inhomogeneities, we
acquired a gradient echo field map with the following parameters: trans-
versal orientation, field of view: 210� 210 � 160 mm, 64 slices, 2.5 mm
thickness, TR= 475ms, TE= 4.08ms, FA= 35°. The dataset is publicly
available on OpenNeuro (accession number ds002776).

Preprocessing and first level analysis
Data preprocessing was conducted using SPM12. Preprocessing of func-
tional data included correcting for geometric distortions using the
acquired field map data, and head motion correction (three translations:
x, y, z; three rotations: pitch, roll yaw). The data across sessions were all
aligned to the first run of the first session, and then co-registered to the
anatomic scan.

Preprocessed data were analyzed using a general linear model (GLM;
Friston et al., 1994). We defined a regressor for each of the performed 12
sequences (six trained, six untrained), separately for their first and sec-
ond execution, resulting in a total of 24 regressors per run. The regressor
was a boxcar function defined for each trial, and convolved with a two-g
canonical hemodynamic response function (time to peak: 5.5 s, time to
undershoot: 12.5 s). All instances of sequence execution were included
into estimating regressors, regardless of whether the execution was cor-
rect or erroneous. This analysis choice was also taken by Wymbs and
Grafton (2015), thus allowing a more direct comparison of RS results.
Even when the error trials were excluded (i.e., removing all error trials as
well as second execution trials when the first execution was erroneous),
our results remained unchanged.

As standard in SPM, the mean of all voxels (averaged over space and
time) was set to 100, thus providing a common scale across runs and
subjects. We did not apply global scaling in our first-level model. The
temporal autocorrelation was modeled using the “FAST” option in
SPM12, which offers a flexible basis function to model dependencies on
longer timescales. High-pass filtering was achieved by temporally pre-
whitening the matrix using the obtained temporal autocorrelation esti-
mate. Ultimately, the first level analysis resulted in activation images
(b maps) for each of the 24 conditions per run, for each of the four
scanning sessions.

Surface reconstruction and regions of interest (ROIs)
Individual subject’s cortical surfaces were reconstructed using
FreeSurfer (Dale et al., 1999). Individual surfaces were aligned and
spherically registered to match a template atlas (Fischl et al., 1999).
Subsequently surfaces were resampled to FreeSurfer’s left-right
symmetric template (fs_LR.164k.spec) in the connectome work-
bench distribution (v.1.3.2; Marcus et al., 2011).

These surfaces were used to define the ROIs, which were defined on
the group surface template using aligned probabilistic cytoarchitectonic
maps (Fischl et al., 2008) and then projected into the individual brains.
Specifically, our ROIs included areas covering the M1 and secondary
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associative regions. The M1 was defined by including nodes with the
highest probability of belonging to Brodmann area (BA)4, which in
addition corresponded to the hand knob area (Yousry et al., 1997). The
dorsal premotor cortex (PMd) was included as the lateral part of the
middle frontal gyrus. The anterior part of the superior parietal lobule
(SPLa) was defined to include anterior, medial and ventral intraparietal
sulcus. The subsequent analyses carried in the space of the original func-
tional data acquisition for each individual subjects by determining the
voxel that lay between the individual pial and white matter surfaces.

Additionally to the ROI analysis, we also performed a continuous
searchlight analysis (Oosterhof et al., 2011). A searchlight was defined
for each surface node, encompassing a circular neighborhood region
containing 120 voxels. The voxels for each searchlight were found in
exactly the same way as for the ROI definition. As a slightly coarser alter-
native to searchlights, we also defined a regular tessellation of the cortical
surface separated into small hexagons, and extracted the functional data
in the same way.

Evoked activation and RS
We calculated the percent signal change for execution of each sequence
relative to the baseline activation for each voxel, for each functional run
and averaged across runs. The calculation was split between the first and
second execution (Fig. 1D).

To calculate RS, the activation during the first execution was sub-
tracted from the elicited activation during the second execution. Thus,
negative values of this difference contrast represented relative suppres-
sion of activation on the second execution, i.e., RS. For most subsequent
analyses, the obtained values of activation and RS were averaged sepa-
rately for trained and the untrained sequences. For ROI analysis, the vol-
ume maps were averaged across the predefined regions (M1, PMd,
SPLa) in the native volume space of each subject. Additionally, for visu-
alization the volume maps were projected to the surface for each subject,
and averaged across the group in Workbench space.

Dissimilarities between activity patterns for different sequences
To evaluate which regions displayed sequence-specific representation,
we calculated crossnobis dissimilarities between the evoked b patterns
of individual sequences. To do so, we first multivariately prewhitened
the b values, i.e., we standardized them by voxels’ residuals and
weighted by the voxel noise covariance matrix. We used optimal shrink-
age toward a diagonal noise matrix following the Ledoit andWolf (2004)
procedure. Such regularized prewhitening has been found to increase
the reliability of dissimilarity estimates (Walther et al., 2016). Next, we
calculated the crossvalidated Mahalanobis dissimilarities (i.e., the cross-
nobis dissimilarities) between evoked regional patterns of different pairs
of sequences, resulting in a total of 66 dissimilarities. This was performed
twice: once by combining the activation patterns across the two execu-
tions and second time by separately obtaining dissimilarities between
evoked patterns split per execution. The obtained dissimilarities were
then averaged overall, as well as separately within the pairs of trained
sequences, and the untrained sequences. This analysis was conducted
separately for each ROI and using a surface searchlight approach
(Oosterhof et al., 2011). In the searchlight approach, dissimilarities were
calculated among the voxels of each searchlight, with the resulting dis-
similarities values assigned to the center of the searchlight.

Changes in dissimilarities with repetition
We then related the change in dissimilarities with repetition to the
changes in overall activity. Activation pattern for each sequence can be
characterized as a point in a high-dimensional space, with each axis re-
ferring to the activation of a voxel. As a measure of the overall activation,
we used the length of the activity vector from the origin (rest), and as
dissimilarities the lengths of the vectors between different conditions.
Unbiased estimates of the length of activity vectors relative to rest were
derived from the crossvalidated second-moment matrix. The square
root of each diagonal element (variance of evoked pattern) indicates the
length of the activity vector, relative to rest. The square root of crossno-
bis dissimilarity (variance–covariance between patterns) is the length of
the vector between the two patterns. The crossnobis dissimilarities were

averaged across the conditions before taking the square root transform,
separately for each execution. Similarly, overall activity vector length was
averaged across conditions to obtain an overall activity vector length for
executions 1 and 2.

Using the obtained average activity vector length and dissimilarities
per execution, we assessed whether RS simply scaled the entire activity
pattern downward. To do so, we computed the ratio of activity vector

length change:
actexe2
actexe1

. Based on this value, we computed what dissimilar-

ities would be predicted on the second execution if representation decreased

proportional to the decrease in activation (disspred ¼ actexe2
actexe1

x dissexe1). This

was then contrasted with the observed dissimilarities on execution 2
ðdissexe2 � disspred). A positive difference indicates that dissimilarities
decrease relatively less with repetition than the reduction in average activa-
tion. This suggests a relatively sharper representation on the second execu-
tion. In contrast, a negative difference would reflect a further reduction in
dissimilarities relative to that obtained in activation. This would suggest that
with repetition, representation decreases relatively more than activation.

Pattern component analyses: modeling representational
components
To determine what specific features of the patterns might change across
the two executions, we decomposed the pattern component modeling
(PCM) toolbox (Diedrichsen et al., 2011, 2018). PCMmodels the covari-
ance structure (second moment matrix) of regional activity patterns
according to different representational hypotheses. In our experiment
based on presented sequences, we defined five representational
components.

First finger
Both trained and untrained sequences started with one of three possible
fingers: thumb, middle, or little finger. The first-finger component pre-
dicts that activity pattern for sequences that start with the same finger
are identical. For sequences starting with a different first finger, the pre-
diction was based on the covariance of the natural statistics of hand
movement (Ejaz et al., 2015).

All fingers
The sequences were slightly different in terms of which fingers were
involved. The “all fingers” component simply characterized how often
each finger occurred in each sequence. If two sequences consisted exactly
of the same presses (just in a different order), they were predicted to be
identical. The predicted covariance was again weighted by the natural
statistics of hand movement (Ejaz et al., 2015).

Sequence type
This component split the performed sequences based on whether they
were trained or untrained, predicting one regional activity patterns for
all the trained and a different activity pattern for all the untrained
sequences.

Trained sequence identity
This component modeled any differences between the six trained
sequences.

Untrained sequence identity
Similar as the trained sequence identity, this component predicted a
unique activity patterns for each untrained sequence.

The overall predicted second moment matrix (G) was then a convex
combination of the component matrices (Gc), each weighted by a posi-
tive component weight expðHiÞ.

G ¼
X

c

exp Hcð ÞGc:

The construction of the model components was done separately for
the two groups of participants, as different sequences constituted trained
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or untrained sequences for the two groups. The subsequent steps of
model fitting and evaluation were carried together for all subjects.

We formulated a model family containing all possible combinations
of the five chosen components (Yokoi and Diedrichsen, 2019). This
resulted in 32 combinations, also containing the “null” model that pre-
dicted no differences among any of the sequence patterns. We evaluated
all of the 32 models using a crossvalidated leave-one-subject-out scheme.
The components weights were fitted to maximize the likelihood of the
data the data of subject 1,...,N–1. We then evaluated the likelihood of
the observed regional activity patterns of subject N under that model.
The resultant cross-validated likelihoods were used as model evidence
for each model (see Diedrichsen et al., 2018). The log model Bayes factor
BFm, the difference between the crossvalidated log-likelihood of each
model and the null model, characterizes the relative evidence for that
model.

In addition to the model family of the chosen components, we also
fit a “noise-ceiling” model to assess maximal logBFm that would be
achievable for a group model (Nili et al., 2014; Diedrichsen et al., 2018).
For each of the two groups, we predicted the second moment matrix of a
left-out subject based on n–1 subjects in the same group. This metric of
intersubject consistency was then combined across the subjects of the
two groups.

To integrate the results across models, we used model averaging.
Assuming a uniform prior probability across models, we first computed
the posterior probability of each model (1–32) in each region directly
from the log-Bayes factors:

posteriorm ¼ expðlogBFmÞXm

j¼1
expðlogBFjÞ

:

In this expression, the denominator normalizes the log-Bayes factors
across 32 models to ensure they sum to 1. The obtained posterior proba-
bility was used in calculation of two subsequent metrics: (1) component
log-Bayes factor; and (2) variance accounted for by each component.
The log-Bayes factor for each of the five components (first finger, all fin-
gers, etc.) was calculated as the log of the ratio between the posterior
probability for the models containing the component (c= 1) versus the
models that did not (c= 0).

logBFc ¼ log

1
Nm:c¼1

X
m:c¼1

posteriorm

1
Nm:c¼0

X
m:c¼0

posteriorm

0
BB@

1
CCA;

where Nm:c=1 (Nm:c=0) denotes the number of models (not) containing
the component (Shen and Ma, 2019). The component log-Bayes factor is
monotonically related to the posterior probability of model components.

To determine the amount of pattern variance accounted for by each
component (across the models), we normalized the trace of each model
component to be 12 (number of conditions) before fitting. Thus, the fit-
ted component weight expðHi;mÞ indicates the amount of variance
accounted for by the component i in the context of model m. The
model-averaged amount of variance accounted for by each component c
was then calculated as:

variancec ¼
X32

m¼1

posteriorm expðHc;mÞ:

Important to note is that the estimated variance is always positive,
such that this quantity cannot be used to test whether a component is
present at all. On the other hand, the log-Bayes factor does not take into
account the actual weighting of the component in explaining the activity
patterns. In univariate models, the average variance accounted for is
tightly related to the evidence for that component; however, this is not
necessarily the case in the multivariate setting. While component c1 can
be crucial to account for the covariance between the patterns, it may

actually play a relative small role in predicting the activity patterns.
Thus, both the component Bayes factor and the averaged explained var-
iance provide informative, albeit slightly different, measures of the im-
portance of a component.

Statistical analysis of RS and dissimilarities
We employed a within-subject design. For each subject’s data, we calcu-
lated RS and dissimilarities, separately for trained and untrained sequen-
ces. This was done for each region and session. To statistically quantify
how RS and dissimilarities changed with learning (across sessions for
trained/untrained sequences), we performed a session � sequence type
ANOVA on those metrics, in predefined ROIs. Afterwards, we used a
two-sided paired t test to assess the effect of sequence type per session.
We additionally performed a three-way session � region � sequence
type ANOVA to examine whether the learning-related effects differed
across regions. For the analysis of dissimilarities split by execution (exe-
cution 1 vs 2), we calculated, per subject, the expected crossnobis dissim-
ilarities for execution 2 of the cortical surface regions. The observed
dissimilarities on the second execution were contrasted with those by
using a two-sided paired t test.

Statistical analysis of PCM
We report the component log-Bayes factors, averaged across subjects.
Additionally, the log-Bayes factors were submitted to a one-sample t test
against 0 (two-sided). To quantify the change in component variance
across executions, we calculated, per subject, the percent reduction in
component variance from execution 1 to 2. The relative reduction in var-
iance with repetition was contrasted across components by using a two-
sided paired t test.

Results
Changes in RS with learning
To examine learning-related changes in RS and pattern analysis,
we calculated both metrics on fMRI activation patterns both pre-
and post-learning (i.e., weeks 1 and 5). Relative to rest, sequence
execution activated M1, primary somatosensory cortex (S1),
PMd and ventral premotor cortex (PMv), SMA, and SPLa (Fig.
2A). In general, activity was higher for the first than for the sec-
ond execution (Fig. 2B). RS was calculated as the difference in
activity between the two executions of the same sequence (Exe2 -
Exe1). Negative values indicate a relative reduction in activation
with repetition, i.e., RS. Already in week 1, before learning, RS
was observed in nearly all regions displaying task-evoked activa-
tion (Fig. 2C). Only in regions that showed de-activation during
task performance (Fig. 2B, blue shades), did we observed positive
difference values between the executions (Fig. 2C, areas in red
shades). This indicates that both the amount of activation and
the amount of deactivation reduced with repetition.

We statistically quantified how RS changed across weeks (spe-
cifically between sessions 1 and 4) for three predefined ROIs:
SPLa, PMd, and M1 (Fig. 2D; see Fig. 2E,F for a breakdown of
activation per execution). The increase in RS across sessions was
higher for trained than untrained sequences in all regions, as
confirmed by a significant session� sequence type interaction in
each region (PMd: F(1,25) = 5.29, p= 0.030; SPLa: F(1,25) = 4.62;
p= 0.041). The increase in RS was particularly strong in M1 (M1:
F(1,25) = 24.74; p=3.9e�5). Indeed, the three-way interaction of
region � session � sequence type was significant (F(2,50) = 9.19,
p= 3.9e�4). To summarize the RS results, all regions showed evi-
dence of an increase of sequence-specific representation with
learning, with a particularly strong effect in M1.

Changes in pattern dissimilarities with learning
As another measure of sequence-specific representations, we
tested whether the regions that displayed RS also showed
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Figure 2. Changes in repetition suppression (RS) and dissimilarities with learning. A, Group-averaged evoked activation, measured as percent signal change over resting baseline in week 1,
averaged across all sequences and projected to an inflated representation of the left hemisphere, i.e., hemisphere contralateral to the performing hand. B, Group-averaged activation for each
execution (Exe1, Exe2), in the baseline session (session 1/week 1) and after training (session 4/week 5) represented on a flattened representation of the left hemisphere. CS stands for the cen-
tral sulcus. C, The difference in evoked activation between the two executions. Blue represents relative suppression of activation on the second, relative to the first, execution. Regions of interest
(ROIs): primary motor cortex (M1), dorsal premotor cortex (PMd), anterior superior parietal lobule (SPLa). D, RS in the predefined ROIs, separately for trained (red) and untrained (blue) sequen-
ces. Error bars reflect the standard error of the group mean (SEM). More negative values indicate more suppression during second execution, relative to the first; p signifies p, 0.05. E,
Elicited activation measured in percent signal change over resting baseline for trained sequences on first (dark) and second (light) execution. RS is calculated as the difference between activa-
tion across executions, i.e., Exe2–Exe1. Error bars reflect SEM. F, Elicited activation split by execution for untrained sequences. G, Average dissimilarity between evoked patterns for all pairs of
sequences, in week 1, averaged across the group. Pattern dissimilarity was computed using a searchlight approach, by calculating the average crossnobis dissimilarity of activation patterns
between all sequence pairs in each searchlight. H, Average dissimilarity between activation patterns of different sequence pairs in weeks 1 and 4. I, Dissimilarities between trained (red) and
untrained (blue) sequence patterns, across weeks 1 and 5. Error bars reflect the SEM; p signifies p, 0.05.
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distinguishable fine-grained activity patterns for each
sequence. As a measure of pattern dissimilarity, we calcu-
lated the average crossvalidated Mahalanobis dissimilarity (i.e.,
crossnobis dissimilarity) between activation patterns of all possible
sequence pairs. Overall, regions with dissimilar activity patterns for
the different sequences corresponded to regions which also exhib-
ited RS effects (Fig. 2G,H). Additionally, both metrics (RS and pat-
tern dissimilarities) increased from sessions 1 to 4, with the effect
particularly pronounced in the parietal cortex (Fig. 2C,H). Thus,
based on visual inspection, RS and pattern dissimilarity metrics
seem to provide consistent evidence for the development of
sequence-specific representations with learning in an overlapping
set of regions.

However, when quantifying the change in pattern dissimi-
larities across weeks in predefined ROIs, we observed impor-
tant differences from RS. In SPLa and PMd, pattern
dissimilarities increased more for trained than untrained
sequences across sessions (Fig. 2I), as quantified by a significant
interaction in a session � sequence type ANOVA (SPLa: F(1,25)
= 4.80; p= 0.038, PMd: F(1,25) = 5.29, p= 0.030). In contrast, the
week by sequence type interaction was not significant in M1
(F(1,25) = 2.13, p= 0.16; Fig. 2I). This indicates that while PMd
and SPLa show learning-related changes on the level of pattern
dissimilarities, these are absent in M1. The three-way interac-
tion (region � session � sequence type) on the observed dis-
similarities was indeed significant (F(2,50) = 3.39, p= 0.041),
confirming the difference between regions.

Pattern dissimilarities reduce with repetition
Within the same dataset, we observed learning-related changes
in RS in M1, but no change in pattern dissimilarities with learn-
ing. While the increase in pattern dissimilarities, as well as direct
evidence for pattern changes across weeks (Berlot et al., 2020),
clearly argue that sequence-specific learning occurs in premotor
and parietal areas and not in M1, RS provides evidence for the
development of sequence-specific representations in all these
regions. How can this discrepancy be explained? To resolve this
question, we need to understand how the role that each area
plays during skilled sequence performance changes from the first
to the second execution. We first inspected pattern dissimilarities
for each of the two executions separately (execution 1, execution
2) in the trained state (week 5/session 4). We observed that, on
average, pattern dissimilarities in week 5 decreased with repeti-
tion in most cortical regions (Fig. 3A). This decrease was particu-
larly pronounced around the central sulcus, including M1 (Fig.
3B).

Of course, some decrease in dissimilarities would be expected
given the decrease of overall activity with repetition (Fig. 2B).
We therefore compared the decrease in dissimilarities to what
would be predicted if activation decreased proportionally for all
sequences. First, we calculated the relative decrease in activity,
i.e., the ratio of the length of the activity vector during the second
execution over the activity vector during the first execution (for
details, see Changes in dissimilarities with repetition for details).
This ratio was applied to the observed dissimilarities on the first

Figure 3. Representational change with repetition of sequence execution. A, Dissimilarities between pairs of sequences in session 4, split by first and second executions. B, Difference in pat-
tern dissimilarities between executions 1 and 2. Blue hues reflect relatively lower dissimilarities on the second execution. C, Difference between the observed dissimilarity during execution 2
and the predicted distance based on the reduction of activation with repetition. Blue hues indicate lower dissimilarities than predicted, red higher. The difference between the two was signifi-
cant with p, 0.05 in tessels which are fully visible (i.e., not greyed out). D–F, Same as A–C but for the paced speed session, i.e., session 3. Same thresholds were applied to the visualizations
as the respective figures from A–C.
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execution, yielding a prediction of what dissimilarities would
be expected for the second execution, if representation scaled
with activation. This calculation was applied to activity pat-
terns to each of the parcels on a regularly tessellated cortical
surface (Fig. 3C). Around the central sulcus, i.e., including
M1, the observed dissimilarities on the second execution
were significantly lower than what was predicted from the
reduction in overall activity (Fig. 3C). In contrast, observed
dissimilarities on the second execution in parietal areas were
quite close to the prediction based on dissimilarities scaling
proportionally with average activity.

To quantify whether the reduction in dissimilarities differed
qualitatively across regions, we subjected the difference between
the observed dissimilarities on second execution from those pre-
dicted under the scaling model to a one-way ANOVA with the
main effect of region, which was significant (F(2,50) = 7.42,
p=1.5e�3). Post hoc t-tests revealed that this was driven by a
significantly larger deviation from scaling in M1 as com-
pared with SPLa (t(25) = 3.55, p = 1.56e�3). M1 and PMd did
not differ from one another (t(25) = 1.25, p = 0.22). There was
a significant difference between PMd and SPLa (t(25) = 2.65,
p = 0.013), indicating a more “scaling-like” representation in
SPLa. Altogether this indicates that representational change
with repetition differed across regions: proportional scaling
of representation in parietal regions, and violation of propor-
tional scaling in M1, where a much more pronounced
decrease of dissimilarities was observed.

Decomposing representations across executions 1 and 2
Analysis of average dissimilarities across executions revealed a
compression of representation in M1, but not in parietal regions.
This analysis, however, does not reveal which aspects of the rep-
resentations are responsible for this regional difference. To inves-
tigate exactly how the representation changed, we decomposed
the representations during each execution into several underly-
ing representational components. Differences in the sequence
patterns could reflect differences in various characteristics, or
features (Fig. 4A). Specifically, based on previous results (Yokoi
et al., 2018; Yokoi and Diedrichsen, 2019), we hypothesized
that the covariance (or similarity) between activity patterns
can be explained with the following five components (Fig.
4B; for details, see Materials and Methods): (1) first finger: a
pattern component determined by the starting finger; (2) all
fingers: a pattern component that simply adds the finger-spe-
cific patterns regardless of their sequence; (3) sequence type:
trained and untrained sequences have different average pat-
terns; (4) trained sequence identity: the trained sequences
differ among each other; (5) untrained sequence identity: the
untrained sequences differ among each other. Using PCM
(Diedrichsen et al., 2018), we constructed a model family,
which consisted of all possible combinations of those five
components, totaling 25 = 32 models. These models were
then fit to the observed regional covariance structure (second
moment matrices; Fig. 4C), separately for executions 1 and 2.
In all regions and across both executions, several models
accounted for observed data well, with model fits as good as
the noise ceiling model (M1: 21 models for Exe1, 24 for Exe2;
PMd: 16 for Exe1 and Exe2, SPLa: 16 for Exe1 and Exe2),
showing that, overall, these models accounted well for the
observed data. To integrate the results across models, we
used Bayesian model averaging to estimate which compo-
nents were most important to explain the patterns.

In M1, the regional representation on the first execution was
accounted for by the individual movement elements (all fingers),
with especially high weight on the first finger (Fig. 4D). This rep-
licates the previous findings showing that M1’s representation
during sequence production tasks can be fully explained by the
starting finger (Yokoi et al., 2018; Yokoi and Diedrichsen, 2019).
In these two studies, the number of times each of the five fingers
was pressed was held constant across all sequences. In the cur-
rent study, we did not match this number. Thus, the subsequent
finger presses, encoded in the all-finger component, also
accounted for substantial variance, independent of the exact
ordering of these movements.

To statistically quantify these effects, we calculated compo-
nent Bayes factors for individual components. In M1, the Bayes
factors were significant for both first-finger and all-finger factors
(first finger: BF= 6.8, t(25) = 3.1, p=4.8e�3; all fingers: BF= 9.6,
t(25) = 4.4, p= 1.7e�4). In contrast, the component Bayes factors
were not significant for any sequence-related feature – neither
sequence type (BFc = 3.2, t=1.9, p=0.07), nor sequence identity:
of trained sequences (BFc = 1.6, t(25) = 1.5, p= 0.16) or untrained
sequences (BFc = 0, t(25) =�0.2, p=0.85). Thus, the pattern anal-
ysis clearly shows that activity patterns during the first execution
in M1 can be explained by a superposition of individual move-
ments, without any evidence of a sequence representation.

In SPLa and PMd, the variance explained during the first execu-
tion was well accounted for by sequence type (SPLa: BFc = 16.3,
t(25) = 6.0, p=3.0e�6, PMd: BF=15.5, t(25) = 5.94, p=3.3e�4), and
trained sequence identity (SPLa: BFc = 5.4, t(25) = 3.4, p=2.5e�3;
PMd: BFc = 4.6, t(25) = 2.8, p=0.011). There was no significant evi-
dence for representation of untrained sequence identity in either of
the regions (SPLa: BFc = 0.8, PMd: BF=0.1; t(25)� 1.1, p� 0.28). In
comparison toM1, the variance related on individual movements, ei-
ther the first finger or all fingers were weaker across PMd andM1. In
PMd, the first finger still accounted for some variance (BFc = 4.1),
but this was further reduced in SPLa (BFc=0.5).

In M1, the pattern component related to the first finger dras-
tically reduced by 93% with repetition (Fig. 4D). The reduction
in variance explained by the first-finger component was larger
than for the all-finger component, which reduced by 75% (paired
t-test: t(25) = 9.03, p= 2.4e�9). This indicates that the drastic
reduction of average dissimilarities in M1 with repetition is
mostly due to a pronounced first-finger effect during the first
execution that almost vanishes on the second execution. This
was further confirmed with a significant correlation between the
amount of first-finger suppression and reduction in dissimilar-
ities (r(25) = 0.43, p=0.027). In other words, participants who dis-
played further reduction of the first-finger effect, also showed
stronger reduction in observed dissimilarities.

Large reductions of the first-finger effect were also observed
in session 4 in PMd (by 81%) and SPLa (by 83%). In contrast,
the representation of sequence type and trained sequence iden-
tity in these areas clearly reduced less (PMd: sequence type: 44%,
trained sequence: 64%; SPLa: sequence type: 49%, trained
sequence: 55%). To statistically quantify whether the first-finger
effect reduced more than trained sequence component, we per-
formed a paired t-test on the percentage reduction across the
two components. The results of tests were indeed significant for
both PMd (t(25) = 7.96, p= 2.6�8) and SPLa (t(25) = 12.8,
p= 1.7e�12).

In summary, SPLa’s regional activation patterns were better
accounted for by components related to the sequence identity
than to the first finger, which also reduced much less with repeti-
tion. This likely explains why the average dissimilarities did not
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Figure 4. Component decomposition of regional representation across executions 1 and 2. A, Executed nine-digit sequences. B, Candidate component models used to assess
regional representations across first and second executions. Each row and column indicate a specific sequence, and values in the matrices reflect the correspondence across
sequences on that component, with yellow indicating higher correspondence. C, Regional representations during the first execution of sequences, as assessed by the crossva-
lidated second moment matrix, averaged across subjects of group 1. Similar as for models, each row and column reflect an activation pattern for an individual sequence.
Regions: primary motor cortex (M1) and anterior superior parietal lobule (SPLa). D, Variance explained by candidate model components on executions 1 (black) and 2 (gray)
during the full speed session in M1, dorsal premotor cortex (PMd) and SPLa. Error bars reflect standard error of the group mean (SEM). E, Relative contribution of variance
explained in D across the different components. The total variance explained across the different components (i.e., sum of the bars in D) was normalized across the two exe-
cutions to display the relative shift of importance of different representational components. F, G, Same depiction as D, E for the results of activity patterns during the paced
scanning session.
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compress with repetition in SPLa regions as much as in M1.
With repetition, the proportion of different components to over-
all regional representation remained relatively stable in SPLa
(Fig. 4E), but changed substantially in M1 in that the dominant
first-finger representation on the first execution nearly disap-
peared on the second execution. This was affirmed by an execu-
tion � ROI (SPLa, M1) ANOVA comparing the relative amount
of variance accounted for by the first-finger component. Both
main effects were significant (execution: F(1,25) = 66.39,
p=1.68e�8, region: F(1,25) = 85.98, p=1.44e�9), as well as the
interaction between the two (F(1,25) = 42.33, p=8.16e�7). Thus,
the decrease in M1’s first-finger representation on repetition was
more pronounced than that of SPLa. PMd’s representation was
in-between those of M1 and SPLa, more variance was accounted
for by the first finger than in SPLa, but less than in M1.

Effect of speed on repetition effects
It is important to note that the speed of execution differed
between trained and untrained sequences in session 4 (Fig. 1C).
This speed difference could explain for the observed differences
between trained and untrained sequences in session 4. To control
for this factor, we had designed the study to include an extra ses-
sion, session 3, which was also performed after learning was
completed, but with paced performance. Specifically, the move-
ment speed in session three was matched between trained and
untrained sequences, as well as to performance observed in
session 1.

We have previously reported that after learning, crossnobis
dissimilarities for trained sequences are affected by the speed
of execution. Specifically, the dissimilarities between trained
sequences were lower for paced session (session 3) than full
speed session 4 in PMd and SPLa, but not in M1, where there
was no distinction between trained and untrained dissimilar-
ities in either session (Berlot et al., 2020; Fig. 2I, comparison
sessions 3, 4). Similarly, RS in PMd and SPLa was also less
pronounced in session 3. The RS did not differ significantly
between trained and untrained sequences in session 3 (t(25) �
1.22, p � 0.23; Fig. 2D). In M1, the difference in RS was also
strongly reduced, but remained just above the significance
threshold (t(25) = 2.1, p = 0.046). Additionally, the change in
RS from session 1 to session for trained and untrained
sequences were non-significant. Thus, while the speed of
performance clearly influenced the strength of RS across
regions, it nevertheless appears that M1’s RS cannot be fully
explained by differences in speed between trained and
untrained sequences.

Next, we compared whether the speed of execution affects the
decrease in dissimilarities on repetition. As for the full speed
performance, we observed that dissimilarities decreased on the
second execution (Fig. 3D,E). Also as for the full speed perform-
ance, the reduction in dissimilarities was more pronounced in
M1 as compared with SPLa (t(25) = 2.80, p=9.6e�3).

Finally, we assessed whether the reduction in representational
components on repetition (especially the finger effect in M1) is
observed even during paced performance. Overall, our PCM
modeling accounted for less variance during the paced per-
formance compared with full speed performance (Fig. 4D,F).
We have previously reported that the patterns of activity are
much more distinguishable and have higher signal-to-noise
ratio during the full speed session compared with paced per-
formance (Berlot et al., 2020), which likely accounts for this
difference.

Interestingly, the overall amount of the first-finger versus all-
finger components varied with speed. During full speed perform-
ance, the first-finger component accounted for a larger part of
the pattern variance than during paced performance (Fig. 4D–
G). This was confirmed by an significant interaction of a session
� component (first/all fingers) ANOVA in M1 (F(1,25) = 17.3,
p= 3.3e�4). Nevertheless, a similar reduction of the first-finger
effect in M1 was observed for the paced session as for the full
speed session (first-finger reduction by 92%, all finger by 66%;
t(25) = 3.12, p=4.5e�3), suggesting that the decrease of the
first-finger weight on repetition did not depend on the speed
of execution. The reductions in the first-finger effect were
larger than for trained sequence components also in PMd
and SPLa (PMd: t(25) = 2.34, p = 0.02; SPLa: t(25) = 8.11,
p = 1.8e�8). Altogether this confirms that the larger reduction
of the first-finger effect with repetition does not depend on
the speed of performance.

Discussion
Pattern analysis versus RS
There are two common ways of looking at brain representations,
MVPA and RS. In MVPA types of analyses, differences in multi-
voxel activity patterns across conditions are interpreted to reflect
that the region represents conditions as distinct. In RS, activity
reduction on repetition is interpreted as the region representing
the stimulus dimension along which the repetition occurred
(Grill-Spector et al., 2006). For example, if a region shows less ac-
tivity every time the color of a visual stimulus repeats (rather
than the shape, texture, etc.), it would provide evidence for a role
of the region in the analysis of color. The question on the relation
between RS and pattern dissimilarities measures has been
addressed before especially in visual neuroscience (Sapountzis et
al., 2010; Epstein and Morgan, 2012; Hatfield et al., 2016; Mattar
et al., 2018; Davis and Poldrack, 2013), but the two have not
been directly compared before in the motor domain.

Learning-related changes of RS and pattern dissimilarities
We combined the two methods to investigate changes during
motor sequence learning. Using pattern analysis, several fMRI stud-
ies have failed to provide evidence that M1 obtains a motor
sequence representation with learning (Wiestler and Diedrichsen,
2013; Yokoi et al., 2018; Berlot et al., 2020). In contrast, a study
using RS (Wymbs and Grafton, 2015) reported learning-related
changes even for M1, which suggests a development of
sequence-dependent representation. Here, we report that both
techniques showed the development of sequence-specific repre-
sentations in premotor and parietal cortices. In contrast, the
two metrics provided discrepant insights into M1: we observed
some evidence for learning-related changes using RS, but not
pattern dissimilarities. Additional control analyses suggest that
this difference was not completely driven by the difference in
the speed of execution, although higher speed of execution
increased RS across regions.

As Wymbs and Grafton (2015), we found changes in RS in M1
across learning sessions, as well as a difference between trained and
untrained sequences in sessions posttraining. However, the specific
evolution of the changes differed between the two studies. Wymbs
and Grafton reported a complex increase-decrease-increase pattern
of RS in M1 depending on the level of the training of the sequence.
In contrast, we report higher RS for trained than untrained sequen-
ces after training. There are a number of important differences in
the design of the two studies which could have contributed to the
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observed differences in results. For instance, their design only
employed full speed performance, the probability of sequence repe-
tition was lower, and the training was longer and had three groups
of sequences (highly, medium, and lightly trained) rather than just
two (trained and untrained). Further studies, directly manipulating
these differences, are needed to reconcile the findings reported here
relative to the previous report of Wymbs and Grafton (2015).

Representational changes with repetition
To assess in more detail what aspects of regional representation
are sensitive to repetition, we decomposed regional representa-
tions into different underlying components (e.g., first finger,
combination of all fingers, sequence identity, etc.), separately for
the first and second executions. We observed that M1 mainly
represents the first finger in a sequence. This component dimin-
ishes dramatically on repetition. In contrast, the representation
of sequence type and identity, which accounted for most of the
variance in parietal areas, remained more stable across the two
executions. Activation patterns in PMd reflected a mixture of
sequence-related representations (as in parietal regions), which
remained stable with repetition, and representations related to
single movements (as in M1), which diminished with repetition.
Altogether, our results suggest that RS acts differently on differ-
ent components of neuronal representations. Depending on the
representational composition of each region, RS can therefore be
more or less pronounced. Specifically, regions that represented
more transient information about a sequence (first finger) shows
particularly strong suppression of dissimilarities with repetition,
while regions that represent more persistent information
(sequence type and identity) show a more proportional reduc-
tion of representation with activity.

Interactions between cortical motor regions during sequence
performance
Our findings can be summarized in the following, admittedly
rather speculative, model of how parietal/premotor areas and
M1 interact during skilled motor sequence performance. During
the first execution, premotor and parietal regions contain infor-
mation about the specific sequence that needs to be executed
(Fig. 5). Premotor regions also reflect the starting finger of the
sequence. These regions send signals to M1, preactivating the
neural circuits for the movement of the first finger. This repli-
cates a previous finding that the difference between M1’s activa-
tion patterns is explained by the starting finger, rather than true
sequence representation (Yokoi et al., 2018). The finding is also
consistent with results from neurophysiology (Averbeck et al.,

2002) and magneto-encephalography
(MEG; Kornysheva et al., 2019) showing
that the first action in a sequence is most
highly activated in premotor and motor
areas during the preparatory period.

Upon repetition, activation reduces
across all regions. The decomposition anal-
ysis indicates that the sequence identity
component in premotor and parietal
regions reduces only moderately, sug-
gesting that the sequence representation
is always necessary to successfully guide
M1 through the correct sequences of
actions. In contrast, the preactivation of
the first finger reduced dramatically,
possibly reflecting reduced planning
needs on repetition (Ariani et al., 2020).

Thus, the pronounced RS effect in M1 may be because of
the fact that fMRI activity here is driven to a large degree by
the initial input from other regions that prepares this region for
the first execution of a sequence. On the second execution, the
need for this preactivation may be substantially reduced.

Overall, our results suggest that M1 does not represent indi-
vidual trained sequences with learning, despite increased RS.
Instead, it appears to represent individual finger presses.
Nonetheless, we did find some evidence that RS inM1 was stron-
ger for trained than untrained sequences. The effect was statisti-
cally not particularly strong in session 3, and we were not able to
conclusively show that it was not, at least partially, caused by the
trained versus untrained differences in MT in session 4. Overall,
however, our data are more in favour of the presence of a real
effect than for its absence. If true, could the remaining effect be
driven by a true learned sequence representation in M1? Since
fMRI activity reflects a combination of the input to a cortical
region and recurrent activity (Logothetis, 2002), but not the out-
put spiking (Picard et al., 2013), we suggest that M1’s sensitivity
to sequence type reflects differences in the received input to M1,
with more efficient communication from higher-order areas on
repetition of trained sequences. Some support for this idea comes
from a recent study demonstrating layer-specific effects in M1
(Persichetti et al., 2020). By measuring changes in cerebral blood
volume across layers, the authors demonstrated that superficial
M1 layers (which reflect M1’s inputs) show RS, whereas deep
layers’ activation (which is more indicative of M1’s outputs) is
enhanced during repetition. Since the BOLD signal is biased to-
ward the superficial vascular signals, our activation results more
likely reflect inputs into M1.

Still, rather than input from other areas, increased RS in M1
could reflect sequence dependency at a subvoxel resolution
(Grill-Spector and Malach, 2001; Grill-Spector et al., 2006),
which cannot be detected by pattern analyses. A prior electro-
physiology study provided some support for this, demonstrating
differential M1’s responses to trained relative to random sequen-
ces (Matsuzaka et al., 2007). However, this study did not show
differential activation for different trained sequences, thus no
sequence representation as defined here. Moreover, recent elec-
trophysiological studies have also shown that M1 does not repre-
sent the sequential context (Russo et al., 2020; Zimnik and
Churchland, 2021). Altogether, this makes it unlikely that the RS
observed in M1 reflects sequence dependency.

Our proposed model makes a number of predictions that
could be tested using a combination of techniques. For layer-spe-
cific fMRI studies, we would predict that the first-finger effect in

Figure 5. Conceptual depiction of changes in representation across regions and with repetition. Different dots represent
activation patterns for different finger sequences, with colours indicating the starting finger of the sequence. Regions: ante-
rior superior parietal lobule (SPLa), dorsal premotor cortex (PMd) and primary motor cortex (M1). Activation levels of three
hypothetical voxels are indicated across the three axes.
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M1 can be mostly found in the superficial layers, reflecting cor-
tico-cortico communication. For MEG or intracranial EEG stud-
ies (Ghuman et al., 2008; Gilbert et al., 2010; Korzeniewska et al.,
2020), we would predict that the difference between trained and
untrained sequences would be mainly present at the start of the
sequence, an effect that would strongly reduce on repetition.
Addressing these questions will advance our understanding of
motor sequence on neural circuitry underlying production of
skilled actions.

In conclusion, we demonstrated that RS may not only reflect
a suppression of a specific representation in a region, but that the
role of the region, and hence the structure of the representation,
can change qualitatively from the first to the second repetition.
While the representation of the skilled motor sequences
remained relatively stable in parietal and premotor regions, the
M1’s representation changed, with a strongly reduced activation
related to the beginning of the sequence. These results emphasize
that employing RS only using the average regional activation
sometimes provides incomplete, and possibly misleading,
insights into regional representation. Instead, the combination of
RS with pattern analyses can illuminate how representations
change with repetition, and may provide a deeper understanding
of brain circuits and their function.
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