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ABSTRACT  42 

As a sequence of movements is learned, serially ordered actions get bound together into sets in 43 

order to reduce computational complexity during planning and execution. Here we examined 44 

how actions become naturally bound over the course of learning and how this learning impacts 45 

cortical representations of individual actions. Across five weeks of practice, neurologically 46 

healthy human subjects learned either a complex 32-item sequence of finger movements 47 

(Trained group, N=9; 3 female) or randomly ordered actions (Control group, N=9; 3 female). 48 

Over the course of practice, responses during sequence production in the Trained group became 49 

temporally correlated, consistent with responses being bound together under a common 50 

command. These behavioral changes, however, did not coincide with plasticity in the 51 

multivariate representations of individual finger movements, assessed using fMRI, at any level of 52 

the cortical motor hierarchy. This suggests that the representations of individual actions remain 53 

stable, even as the execution of those same actions become bound together in the context of 54 

producing a well learned sequence.   55 
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SIGNIFICANCE STATEMENT  56 

Extended practice on motor sequences results in highly stereotyped movement patterns that bind 57 

successive movements together. This binding is critical for skilled motor performance – yet it is 58 

not currently understood how it is achieved in the brain. We examined how binding altered the 59 

patterns of activity associated with individual movements which make up the sequence. We 60 

found that fine finger control during sequence production involved correlated activity throughout 61 

multiple motor regions; however, we found no evidence for plasticity of the representations of 62 

elementary movements. This suggests that binding is associated with plasticity at a more abstract 63 

level of the motor hierarchy.  64 
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INTRODUCTION  65 

Being able to combine simple movements into coordinated sets of actions is critical to 66 

many everyday skills, such as typing on the computer or driving a manual transmission car 67 

(Lashley, 1951). Over the course of evolution the brain has solved this sequencing problem 68 

multiple times, resulting in many interacting algorithms that facilitate the consolidation of 69 

complex skills (for review see Beukema and Verstynen 2018). One of these algorithms is the 70 

process of set building, also called chunking or binding (Verwey 1996). Binding serial actions 71 

into sets improves computational efficiency during the production of complex actions by 72 

representing multiple movements under a single selection command (Ramkumar et. al, 2016).  73 

To illustrate this process consider the graphical model presented in Figure 1.  On each 74 

trial, the manual response to a visual cue occurs through a hierarchical system of perception, 75 

selection (e.g., key), and motor planning (e.g., finger movement), that are all represented as 76 

latent states with their own independent sources of noise. In this example, the serial order of cues 77 

across trials follows a deterministic sequential order. Prior to training (Figure 1A), each response 78 

is selected and planned independently of the other responses. Once the order of cues is learned 79 

(Figure 1B), the brain can consolidate the selection process such that a set of motor plans is 80 

represented under a single selection state. This selection state is triggered by the presentation of 81 

the first stimulus in the series, after which subsequent motor commands are cued by the internal 82 

state, rather than by the visual cues. This produces faster responses to items within a set, as well 83 

as a correlation in responses within bound sets due to their shared upstream command (Figure 84 

1C; Verstynen et al., 2012; Acuna et al., 2014; Lynch et al., 2017).  85 

 86 

 87 
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<INSERT FIGURE 1 HERE> 88 

Figure 1: The process of response binding A. One each trial, (t), a visual stimulus (s) triggers 89 
an appropriate finger response (y), in this case reflecting a response time (RT). In the case of 90 
unbound actions, the visual perception (u), selection (w), and motor planning (x) processes are 91 
all represented as latent states that operate independently across trials. B. With training, the 92 
intermediary process of selection binds multiple motor plans together as a set. Each set of 93 
actions, , is triggered by the visual stimulus of the first item in the set. Subsequent actions are 94 
then internally triggered, rather than relying on external visual cues. This example shows two 95 
bound sets, a three item set followed by a two item set. C. The autocorrelation function of 96 
response times for bound actions (dashed line) should exhibit a significant correlation across 97 
trials, while unbound actions (solid line) should not exhibit a temporal autocorrelation. D. A 98 
schematic of four hypothetical voxels in cortical sensory motor networks during the execution of 99 
either the index or middling finger, with darker colors reflecting stronger movement-evoked 100 
responses. Before training, each finger representation is associated with a unique neural 101 
activation pattern. After training, the representations of bound finger movements share more 102 
activation and the neural activation patterns are more similar.   103 

 104 
Some forms of non-sequential motor learning rely on the reorganization of movement 105 

representations in motor networks (Nudo et. al. 1996), suggesting that action binding during 106 

sequence learning could alter internal motor representations of individual movements 107 

themselves; however, this effect has been largely unexplored. By examining neural 108 

representational patterns, previous work has shown that the structure of individual fingers in 109 

primary motor cortex is organized according to their co-articulation during natural hand 110 

movements (Ejaz et. al., 2015), suggesting a degree of plasticity of the cortical representations of 111 

individual digits (Merzenich et al. 1984). Indeed, artificial manipulations of pairwise finger 112 

correlations alters the distance between finger representations in primary somatosensory cortex 113 

(Kolasinski et. al. 2016), although representations of individual fingers can persist in the cortex 114 

even decades after amputation (Kikkert et al. 2016), suggesting some degree of rigidity in 115 

sensory areas (Makin & Bensmaia 2017). Thus it remains unclear whether elementary sensory or 116 

motor representations are plastic and subject to changes over time.  117 
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If individual actions are bound under a common motor command, then the internal 118 

representations of those actions, at some level of the motor hierarchy, should change with 119 

learning. One possibility is that if two movements are executed repeatedly in a sequence, then 120 

the activation of one finger movement may pre-activate the following movement. In the extreme, 121 

this model makes the prediction that two fingers that are regularly paired together will become 122 

enslaved together over time, thereby reducing behavioral flexibility (Lashley, 1951). This, 123 

however, is not typically observed. It is therefore more likely that the process of binding alters 124 

the representation of contextually cued actions in upstream regions linked to more abstract 125 

response selection (Diedrichsen and Kornysheva, 2015), which would predict observing altered 126 

representations in higher premotor areas (e.g., premotor and parietal regions). Wherever this 127 

binding process happens, the multivariate activity pattern for the two bound movements should 128 

become more similar in that region (Figure 1D). 129 

Here we tested this hypothesis using a combination of behavioral analysis and event-130 

related fMRI. Binding was measured behaviorally by looking at the naturalistic emergence of 131 

correlations between successive behavioral responses after training on a unimanual 32-item 132 

sequence. Population-level representations of visually-cued single finger movements in the 133 

cortex were measured using multivariate analysis of fMRI data both before and after five weeks 134 

of training on the complex sequence. If the simple binding hypothesis is correct, then cortical 135 

representations for individual actions that are bound should be reduced following prolonged 136 

practice at the motor sequence task. 137 

 138 

MATERIALS AND METHODS 139 

Participants 140 
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Eighteen right-handed participants (6 female, mean age: 26 years) were recruited locally from 141 

Carnegie Mellon University (CMU) and the University of Pittsburgh. Two authors (PB and TV) 142 

were included in the sample. All participants provided informed consent and were financially 143 

compensated for their time. All experimental protocols were approved by the Institutional review 144 

board at CMU.  145 

 146 

Experimental Design and Statistical Analysis 147 
 148 

Participants were trained for 25 nonconsecutive days on a variant of the serial reaction time task 149 

(Nissen and Bullemer, 1987). Participants were instructed to train for at least 5 days a week, but 150 

could chose to take time off (no more than 2 days) at their discretion, and not in the days leading 151 

up to the scan. All experimental procedures were performed on a laptop running Ubuntu 14.04. 152 

At the beginning of each training session, participants were instructed to place their right hand 153 

over the ”h” (index),”j” (middle), ”k” (ring), and ”l” (pinky) key. Each trial consisted of a 154 

presentation of one of four unique fractal cues appearing on a black background. Each cue was 155 

uniquely mapped to one of four keys on the keyboard (Figure 2A).  The trial ended either when 156 

the participant executed a response or once a maximum response window expired, depending on 157 

which event happened first. A description of the adaptive response window is presented in the 158 

next paragraph. After a trial termination, the next cue was presented after a 250 ms inter-trial 159 

interval. Each trial block consisted of 256 trials and was followed by a rest period where the 160 

mean response time (RT) and accuracy for that block was provided to the participant. On each 161 

training day, participants completed 1792 trials, separated into 7 trial blocks. RT was calculated 162 

as the delay between stimulus presentation and a key press. Stimulus presentation and recording 163 
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was controlled with custom written software in Python using the open source Psychopy package 164 

(Peirce, 2007). The software used for training is available on GitHub (CoAxLab, n.d.). 165 

Prior to the first session, subjects were assigned to either a Trained group (n=9; 3 female) 166 

or a Control group (n=9; 3 female). For participants in the Trained group, trial blocks were 167 

separated into two types: blocks of pseudo randomly ordered cues (Random; blocks 1,2,6) or 168 

blocks of deterministically ordered cues following an embedded 32-element sequence 169 

(Sequence; blocks 3,4,5,7). Figure 2B shows the blockwise structure for a single subject in the 170 

Trained group. Trials during the Random blocks were constrained such that repeated 171 

presentations of the same cue were excluded. This was done so that Random trial blocks would 172 

appear more similar to the Sequence trial blocks. The 32 element sequence presented on 173 

Sequence blocks consisted of the following key presses: 3-4-2-3-1-4-2-1-3-4-3-4-1-3-4-2-1-2-4-174 

2-3-1-2-1-2-4-3-1-3-1-2-4 using the mapping (1-index finger, 2-middle finger, 3-ring finger, 4-175 

little finger). Each Sequence block began in a random position of the sequence. For the first 2 176 

blocks, the response threshold for each trial was set to 1000 ms. To encourage faster responses, 177 

the response window of blocks 3-5 was adaptively controlled such that the response window on 178 

one trial block was the mean plus one standard deviation of the RTs from the previous trial 179 

block. If that value fell below 200 ms or if the accuracy on the preceding block was less than 180 

75%, the threshold was reset to 1000 ms. The threshold was removed for the final probe blocks 181 

(6 and 7) so that participants could move as quickly as they chose. For the Control group, the 182 

procedure was nearly identical to the Trained group, with the exception that all 7 blocks 183 

consisted of pseudorandomly ordered trials, i.e. there was no exposure to Sequence blocks.  184 

 185 

Analysis of training data 186 
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Data analysis was conducted with custom python code which is available on GitHub 187 

(https://github.com/CoAxLab/binding_manuscript) along with source data to generate all 188 

manuscript figures. All behavioral analysis during training focused on responses during the last 189 

two trial blocks (probe blocks) when no adaptive response window was applied: Random and 190 

Sequence conditions for the Trained group, Random and Random conditions for the Control 191 

group.  Differences in response time (RT) and accuracy (percent correct responses) were 192 

measured as the difference in the means between the last two blocks, normalized by the standard 193 

deviation of values in trial block 6, i.e., z-scored difference in performance (Verstynen et al., 194 

2012). In the Trained group this reflects the sequence specific change in performance on each 195 

day. Since 3 subjects completed 24/25 days of training, average group visualizations are 196 

presented for day 24 so as to evaluate the same state of learning for all subjects.   197 

Binding was measured by computing the autocorrelation of the series of RTs within each 198 

probe trial block. The first 32 trials were excluded to remove the exponential decay as it distorts 199 

the autocorrelation analysis (Verstynen et al., 2012). The linear trend was then removed by 200 

regression and the residuals were used to calculate the autocorrelation function for lags 1 through 201 

31, following the same procedure as described in (Verstynen et al., 2012; Lynch et al., 2017).  202 

Positive autocorrelations could be confounded by the fact that the Trained group executed 203 

faster responses than the Control Group. Therefore, we also examined the correlation as a 204 

function of the inter-press interval using linear regression. The IPI was computed as the time 205 

between successive key presses, and the correlation was computed as before. For every subject 206 

we computed the slope of the linear regression line between IPI and correlation (Figure 3D). 207 

Since the autocorrelation function measures general associations across all sequential 208 

lags, it is not sensitive to specific associations between individual elements, and therefore cannot 209 
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be used to measure binding between specific finger pairs. Therefore, we conducted a secondary 210 

analysis on the same data but examined pairwise correlations between each distinct element (1-211 

32) in the sequence across cycles. Average correlations, ordered by sequence element, are shown 212 

in Figure 4A-B. Binding between successive elements is reflected by increases in correlations 213 

before compared to after training.   214 

To measure how much the correlation between finger responses matches the statistical 215 

structure of the trained sequence, we collapsed the elementwise correlation matrices by finger 216 

identity (index, middle, ring, pinky), forming 4x4 observed correlation matrices. To measure the 217 

similarity of the observed binding structure to the expected binding structure, we computed the 218 

mean squared error between the finger pairing frequencies of the sequence and observed 219 

correlations. This gives a normalized similarity measure for how well the pattern of correlations 220 

in the behavioral responses matches the pairwise similarities of the trained sequence.  221 

 222 

Imaging acquisition 223 

Participants were scanned twice, the day before training started (pre-training) and within 2 days 224 

of training completion (post-training). All participants were scanned at the Scientific and Brain 225 

Research Center at Carnegie Mellon University on a Siemens Verio 3T magnet fitted with a 32-226 

channel head coil. High-resolution T1-weighted anatomical images were collected for 227 

visualization and surface reconstruction (MPRAGE, 1 mm isotropic, 176 slices). A fieldmap 228 

with dual echo-time images (TR: 746 ms, TE1: 5.00 ms, TE2: 7.46 ms, 66 slices, 2 mm 229 

isotropic) was acquired to correct for fieldmap inhomogeneities. For the functional imaging 230 

sessions, we acquired 241 T2* weighted echo-planar imaging volumes (2 mm isotropic, TR: 231 

2000ms, TE: 30.3 ms, MB factor: 3, 66 slices, A >> P, FoV: 192 mm, interleaved ascending 232 



 
Stable representations 
 

 11 

order, flip angle: 79 deg, matrix size: 96x96x66, slice thickness: 2.00 mm). For the finger 233 

mapping task, we collected a total of 6 runs resulting in 1446 volumes. Functional images were 234 

oriented so as to maximize coverage of the entire cortex and cerebellum. All imaging data is 235 

openly available at OpenNeuro:  https://openneuro.org/datasets/ds001233/versions/00003. 236 

 237 

Neuroimaging tasks 238 

We collected a set of finger mapping runs to estimate the activation patterns evoked by 239 

performing each distinct cue-response pair in isolation (i.e. not embedded within a sequence). 240 

Prior to the first scan, subject learned the mapping of cue to effector. The same stimuli from the 241 

behavioral experiments were projected on an MR-compatible LCD screen mounted at the rear of 242 

the scanner. Participants could see this screen through a mirror mounted on the head coil. 243 

Responses were recorded on a five-key MR compatible response glove (PST Inc.) placed under 244 

the right hand. Each effector (e.g., individual cue-response pairing) was presented in isolation on 245 

each trial with no structured order between trials. Thus, the paradigm only measured responses to 246 

individual cued movements, not the sequence itself.  Each trial type was repeated 12 times per 247 

run totaling 72 trials per session. Subjects were instructed to press the cued key several times 248 

following stimulus presentation until the cue disappeared from the screen (1 second). The inter-249 

trial interval was sampled according to an exponential distribution ranging from 6-18 seconds. 250 

Between runs, subjects were given the option to take several minutes of rest.  251 

 252 

Imaging Analysis 253 

Functional imaging data were analyzed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) and 254 

custom Matlab and Python functions. Raw functional EPI images were realigned to the first 255 
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volume. No slice time correction was applied due to the fast TR. These realigned images were 256 

then corrected for field distortions using the field maps. All analyses were performed in native 257 

functional space. Structural T1 images were used to reconstruct the pial and white surfaces using 258 

Freesurfer (Fischl, 2012). All custom code is publicly available (CoAxLab, n.d.). 259 

 All analyses of task-related responses were performed using a region of interest (ROI) 260 

approach. Anatomical ROIs were defined separately for each subject, using the surface based 261 

Brodmann areas extracted from Freesurfer (Fischl et al., 2008) following similar conventions as 262 

described in (Wiestler and Diedrichsen, 2013). The hand voxels of the primary motor cortex 263 

(M1) were defined as the surface nodes with the highest probability of belonging to Brodmann 264 

area (BA) 4, 1 cm above and below the hand knob (Yousry et al., 1997). S1 was defined as the 265 

nodes in BA1 BA2, BA3a, or BA3b, 1 cm above and below the hand knob. Premotor cortex was 266 

defined as the nodes belonging to BA6 medial (PMv) or lateral (PMd) to the medial frontal 267 

gyrus. Supplementary motor area (SMA) was defined as the voxels in BA6 along the medial 268 

wall. The Freesurfer atlas was used to define the superior parietal gyrus, as well as the putamen 269 

and caudate as these regions are not defined by Brodmann areaa. As a control ROI, we extracted 270 

the voxels belonging to primary auditory cortex as this region would not be expected to exhibit 271 

any significant decoding of the visually-cued finger patterns. Each surface based ROI was 272 

projected back into native functional space.  273 

Analysis for effector representations was performed using representational similarity 274 

analysis (RSA, Kriegeskorte et al., 2008) using the crossnobis estimator (Nili et al., 2014, 275 

Walther et al., 2015). A GLM with regressors for each effector was fit for each mapping run, 276 

along with the six head motion regressors (x, y, z, pitch, yaw, roll). Omissions and incorrect key 277 

presses were regressed out of the model. Raw time series were orthogonalized by eigenvector 278 
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decomposition and projected into the principal component space to minimize model bias in the 279 

decoding. To estimate the differences between finger patterns, we used a cross-validated estimate 280 

of the Mahalanobis distance between activity patterns for each effector (Diedrichsen et. al. 281 

2016). The “crossnobis” distance has the advantage over other distance measures in that it is 282 

unbiased, since noise is orthogonalized across runs, resulting in an expected distance of 0 if a 283 

voxel or region does not reliably distinguish two finger patterns (Ejaz et al., 2015). The estimated 284 

distance ( ) between the patterns ( ) of two fingers (i,j) was averaged across every pair (m,l) 285 

of runs (M) resulting in (6 choose 2) = 15 folds using the following equation:  286 

 

Equation 1 287 

Unlike correlation distances, Mahalanobis distances can exceed the value of 1. Furthermore the 288 

cross-validated nature of the crossnobis estimate also allows d to become negative. The pairwise 289 

distances between each of the fingers are summarized in a representational dissimilarity matrix. 290 

To test for encoding and plasticity within each voxel or ROI, we extracted the average distance 291 

between each pair of fingers pattern (K=4) using the following equation:  292 

 

Equation 2 293 

To examine the extent of finger representations across all of cortex, we conducted a surface-294 

based searchlight (Oosterhof et al., 2011), assigning every surface node an H value based on the 295 

local (p=160) patterns surrounding an approximately 10 mm radius. Values for the number of 296 

voxels (p) and radius were chosen based on previous studies (Yokoi et. al. 2017). This 297 
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searchlight approach enabled us to examine the entire H distribution across all voxels in each of 298 

the ROIs to confirm that each region reliably discriminated individual effectors. Due to the 299 

observed positive skew, we extracted the median H for all regions across all subjects and 300 

conducted a one sample t-test against 0, in order to establish whether a region reliably decoded 301 

the single finger movement representations.  302 

Changes in representational distances were estimated by calculating the difference in H 303 

values, for each ROI, between the post-training and pre-training imaging sessions (i.e., Hpost-304 

Hpre). For each ROI we calculated both pre-trainig and post-training H values using the responses 305 

from all voxels in the region mask. To estimate group-level training effects, the average 306 

difference in H from these voxels was calculated for each subject and each ROI. The change in H 307 

values was determined by looking for consistent patterns across subjects, within each ROI. 308 

Along with the group level effects, we also calculated the significance of changes in H at the 309 

single subject level.  310 

 In addition to the standard null hypothesis tests, a repeated measures ANOVA was used 311 

to examine the influence of training on distances in each ROI. Bayesian repeated measures 312 

ANOVA with a JZS prior over all models was used to determine the inclusion Bayes Factor to 313 

measure the extent to which the data supported inclusion of the interaction effect (JASP Team, 314 

2017, jasp-stats.org). The guidelines in (Kass and Raftery, 1998) were used to interpret the 315 

weight of the evidence in support of the null hypothesis.  316 

 317 

RESULTS 318 

Learning-related changes in behavior 319 
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To assess how training impacted performance, we compared the evolution of response times and 320 

accuracy across days for the Trained and Control groups. Figure 2B illustrates all trial-wise 321 

responses during a single day for a subject in the Trained group. While responses during random 322 

trial blocks (black dots) remained relatively constant, the response times during sequence trial 323 

blocks (green dots) get steadily faster with training.  The last two trial blocks were used to probe 324 

learning across time. On average both the Control (dashed line, Figure 2C) and Trained subjects 325 

(dashed line, Figure 2D) exhibited a general improvement in response speeds during the final 326 

random trial block (block 6). This general across-session speeding of responses during a trial 327 

block with random sequences likely reflects the improved learning of the cue-response mapping 328 

across days. During the final sequence block (block 7), however, sequence-specific responses in 329 

the Trained group also decreased rapidly across training days. Repeated measures ANOVA 330 

indicated a significant block x time effect: F(23,368) = 15.37, p = 7.93 x 10-41, with average 331 

response times dropping just below 200ms at the end of training (solid line, Figure 2D). As 332 

expected, this effect was not observed in the Control group, F(23,368) = 0.77, p = 0.76, where 333 

the final trial block did not contain an embedded sequence (solid line, Figure 2C). In order to 334 

capture sequence-specific changes in response speed, we normalized the mean response time for 335 

the final trial block (sequence in Trained group, random in Control group) by the mean and 336 

variance of response times during trial block 6 (random in both groups; see Methods). This 337 

analysis depicts a steady improvement in sequence specific response times across the 5 weeks for 338 

the Trained group, with sequence block responses approximately 4 standard deviations faster 339 

than the random trial blocks at the end of training (Figure 2E). Repeated measures ANOVA 340 

indicated a significant group by time effect, F(23,368) = 12.79, p = 1.67 x 10-34. Unlike response 341 

speed, average accuracy during the final trial block gradually rose at a steady rate for both 342 
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groups, saturating at around 90% for the Trained group and 85% for the Control group, with no 343 

significant between group differences, F(1, 368) = 0.36, p = 0.99 (Figure 2F).  344 

<INSERT FIGURE 2 HERE> 345 
Figure 2: Task design and behavioral performance. A. Participants practiced a serial reaction 346 
time task in which each finger movement was prompted by a unique cue. B. Representative 347 
reaction time plot from Day 12. Each dot represents the response time on one trial. C. Reaction 348 
times for the Control group for random trials on blocks 6 and 7. D. Reaction times for the 349 
Trained group for the random trials (block 6) and sequence trials (block 7). E. Mean z-scored 350 
reaction times as a function of day for the Control group (blue) and Trained group (peach). F. 351 
Mean accuracy (correct trials/total trials) in the final trial block, as a function of day, for the 352 
Control group (blue) and Trained (peach) group. Shaded regions in panels C-F show standard 353 
error. 354 
 355 

There are several ways that responses could get faster during the sequence blocks (see 356 

Beukema and Verstynen, 2018). The binding hypothesis (Figure 1B), however, makes the 357 

specific prediction that serially successive actions that are bound under a shared motor plan 358 

should exhibit a correlation in their responses over time, as a consequence of arising from a 359 

common, high-level motor plan (Figure 1C). For an index of binding, we used the 360 

autocorrelation of RTs during the last trial block for both groups (Verstynen et. al. 2012). Figure 361 

3 shows the autocorrelation functions for early (Day 1), middle (Day 12), and late (Day 24) 362 

stages of practice for the Control (Figure 3A) and Trained (Figure 3B) groups separately. While 363 

participants in the Control group did not show reliable autocorrelation structure in RTs with 364 

training, we did see evidence of an emergent structure in the Trained group. Specifically, 365 

participants in the Trained group showed no evidence of an autocorrelation in their RTs at Day 1; 366 

however, by the middle of training a pronounced autocorrelation of temporally adjacent 367 

responses emerged. This correlation increased throughout the training period, tapering off at 368 

approximately the middle of training (Day 12) (Figure 3B inset).  369 
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To exclude the possibility that the observed increases in RT autocorrelations are simply 370 

the result of executing faster responses, we also examined the correlations in consecutive inter-371 

trial RTs as a function of inter-press interval (IPI). If the increased correlation in temporally 372 

adjacent RTs was simply the result of faster responses, then a negative relationship should exist 373 

between the observed autocorrelation and the inter press interval, with higher correlations for 374 

faster responses, and little or no correlation for slower responses. A representative example of 375 

the relationship between the IPI and the RT correlation is shown in Figure 3C reveals no clear 376 

association. Across all subjects, the slope of the regression line between the two variables was 377 

not significantly different from zero (Figure 3D). This result suggests that the observed increases 378 

in correlation are due to executing responses under a shard motor command and not the result of 379 

speed increases alone.  380 

We next set out to examine the structure of the associations across movements by 381 

examining the pairwise correlations between items in the sequence. For this analysis we 382 

organized the data into a matrix of 32 responses by cycles. We then looked at the correlations 383 

between different sequence elements across cycles of sequence production. Before practice, this 384 

32x32 correlation matrix does not show much structure, with all items approximately equally 385 

correlated (Figure 4A). After training, a clear structure in the correlations emerged, with local 386 

clusters of correlated responses found along the diagonal of the matrix (Figure 4B).  387 

If these clusters of correlated responses in the sequence reflected the inter-finger 388 

transition frequency (Figure 4C), then the pairing frequency of individual fingers should 389 

determine the degree of similarity between finger responses. Thus we repeated our inter-item 390 

correlation analysis, except rather than mapping response to each item in the sequence, we 391 

mapped it to the finger that executed the response. This was done by creating a new matrix of 392 
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single trial response times with each column representing a finger and each row representing a 393 

cycle through the sequence and then calculating the 4x4 correlation matrix of inter-finger 394 

responses.  The similarity between the observed correlations and expected correlations based on 395 

the pairwise frequencies (Figure 4D) was computed using the mean squared error (MSE). The 396 

mean observed correlation matrix across all subjects on the final day of training is shown in 397 

Figure 4E. There was increased similarity between the observed and expected correlations across 398 

days (Figure 4F) in the Trained group F(23,184)=0.0026, but the structure in the Control group 399 

remained unchanged F(23,184)=0.41, resulting in a significant group by time interaction, 400 

F(368,23) = 1.90, p =  0.0079. These results indicate that binding occurs in a principled way that 401 

originates at least in part in the statistical structure of the sequence.  402 

<INSERT FIGURE 3 HERE> 403 
Figure 3: Binding in behavioral responses. A,B Mean autocorrelation function for lags 1-31 404 
during early (day 1, purple), middle (day 12, cyan) and late training (day 24, black) for the 405 
Control group (A) and Trained group (B). The asterisks indicates the significant lags, at a cut-off 406 
(p<0.05), for the final training day. Inset in B shows the lag 1 correlation as a function of day 407 
for the Trained group. Shaded regions show standard error of the mean. C. Representative 408 
correlations as a function of the inter press interval showing that the correlation does not appear 409 
to be a function of executing faster responses. D. Boxplots showing the slopes of the linear 410 
regression lines from the correlation by IPI relationship depicted in C for each of the Trained 411 
subjects on the sequence trials (seq) and the random trials (ran) 412 
 413 
 414 
 415 

<INSERT FIGURE 4 HERE> 416 
 417 
Figure 4: A,B. Average correlation between each element in the sequence during the final trial 418 
block for the Trained group, during Day 1 (A) and Day 24 (B). C. The 32 element sequence 419 
showing frequency of each finger transition (i-index, m-middle, r-ring, l-little) F. Pairwise 420 
frequencies between each finger D.  Average observed correlations between fingers at the end of 421 
training collapsed across subjects. E. The MSE between the pairwise frequencies (panel F) and 422 
observed correlation matrix computed separately for each subject. Smaller numbers indicate 423 
increased similarity to the expected pairwise frequencies (F). Shaded regions show standard 424 
error.  425 
 426 
 427 
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Stable motor representations after training.  428 

In order to directly measure multivariate cortical representations of the individual cued 429 

movements, we used a rapid-event-related fMRI design consisting of presentations of each cued 430 

finger press followed by a period of fixation (Figure 5A). An ROI analysis was performed on the 431 

cortical motor network including primary motor cortex, M1; primary somatosensory cortex, S1; 432 

dorsal premotor cortex, PMd; ventral premotor cortex, PMv; supplementary motor area, SMA; 433 

and the superior parietal lobule, SPL. These regions were anatomically localized using 434 

Brodmann areas extracted from Freesurfer (see Materials and Methods). These regions are 435 

shown on the group average surface (Figure 5C).  In each of the cortical motor ROIs, we 436 

quantified the activity pattern related to each cued finger movement and then calculated a cross-437 

validated Mahalanobis (crossnobis) distance between the activity patterns for each cued finger 438 

pair (Figure 5B). If two cued fingers generate the same cortical activity patterns, then the 439 

corresponding distance between them will be 0. However, if two finger movements consistently 440 

generate dissimilar finger patterns, then the corresponding distance will be positive. Cross-441 

validation allows us to test the value of the distance estimates directly against zero (Diedrichsen 442 

and Kriegeskorte 2017, Walther et. al. 2016, Diedrichsen et. al. 2016). The distances between 443 

every possible pair of fingers is summarized in a representational dissimilarity matrix (RDM) for 444 

each ROI (Figure 5D).  445 

While the magnitude of the representational distances is slightly smaller than distances 446 

reported in previous studies (Ejaz et. al. 2015), likely due to the use of an event-related design in 447 

our study, the relative representational patterns that we observed in primary motor and primary 448 

somatosensory cortex qualitatively matches previous reports. Specifically  the index finger is 449 

furthest from the little finger, while the middle and ring fingers are close together. This pattern of 450 
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representational distances is also similar to what is observed in the other cortical motor regions, 451 

although the overall between effector distances are smaller in these premotor regions (Figure 452 

5D). To confirm that each region has reliably different representations for the fingers, we 453 

computed the average cross-validated pairwise distance between all finger movements (Figure 454 

5B see Materials and Methods). Average distance (H) greater than 0 indicate above-chance 455 

encoding (Diedrichsen and Kriegeskorte 2017). In order to estimate the reliability of this 456 

encoding across subjects, we extracted the median distance across voxels within each searchlight 457 

for each subject and ROI. The median was chosen in order to account for the fact that the 458 

distribution of H values within a region is highly skewed. A one-sample t-test on those median 459 

values (one median per subject), after adjusting for multiple comparisons using a Bonferonni 460 

correction, found significant separation of cued finger representations (i.e., positive average 461 

distances) in the cortical sensorimotor areas, but not the A1 control region nor the putamen 462 

(Table 1). A follow up paired samples t-test (within subject) showed that H was greater in M1, 463 

S1, PMd, PMv, and SPL, but not in SMA, when compared against A1 (Table 1). 464 

Along with the cortical regions, we also examined the distances between finger 465 

representations within the caudate and the putamen (inset of Figure 4E). Overall the distances 466 

within the striatum were significantly separable within the caudate but not the putamen. 467 

However, the magnitude of the representational distances was very weak in these subcortical 468 

regions, with distances several orders of magnitude smaller than in any cortical regions.  469 

Overall, the analysis of cortical representations of individual fingers is consistent with 470 

previous studies (Ejaz et. al. 2015), confirming that the patterns of activity in the motor network 471 

can reliably discriminate individual effectors. This effect is substantially weaker in subcortical 472 

regions, likely having to do with the lower signal-to-noise of the BOLD signal in the striatum 473 
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and other regions of the basal ganglia. Therefore, these regions of interest were excluded from 474 

further analysis.  475 

 476 
<INSERT FIGURE 5 HERE> 477 

Figure 5: Multivariate activity patterns during cued finger movements. A. fMRI task schematic. 478 
Participants executed single finger movements on the button glove following a variable period of 479 
fixation. The cue-finger mapping was identical to that used during the training. B. Example of a 480 
representational dissimilarity matrix showing similar finger patterns that result in small 481 
distances and dissimilar finger patterns that result in large distances. The average crossnobis 482 
similarity (i.e., H) was used as a test statistic for assessing decoding in each ROI and for 483 
assessing representational plasticity. C. Regions of interest masks overlaid in blue on the group 484 
average surface.  D. Average representational dissimilarity matrices for each region. Each 485 
colored square within the RDM indicates the distance between those two fingers (i=index, 486 
m=middle, r=ring, l=little) E,F. Violin plots show the distributions of median H values in 487 
cortical motor areas (E) and the striatum (F) across subjects. Black circles inside plots show 488 
individual data. Asterisks indicate significance at  = 0.05 after correcting for multiple 489 
comparisons (Bonferonni). Primary motor cortex (M1), primary somatosensory cortex (S1), 490 
premotor dorsal cortex (PMd), premotor ventral cortex (PMv), superior parietal lobule (SPL), 491 
supplementary motor area (SMA), and primary auditory cortex (A1), caudate (Cau), putamen 492 
(Put).   493 
 494 
 To determine whether the emergence of binding in the behavioral responses coincides 495 

with alterations of these representational distances of individual cued actions, we measured how 496 

average distances changed for each cortical motor ROI before and after training. The simple 497 

form of the binding hypothesis is that the representations of frequently paired actions will 498 

become more similar (Figure 1D) after training, predicting that the distances between frequently 499 

paired movements will decrease after practice only in the Trained group. When looking at all 500 

pairwise distances (Figure 6A) we were unable to find a reliable influence of sequence training 501 

on the average pattern distances in any cortical motor region. In most areas, the distances 502 

decreased only marginally for both Trained and Control groups together, but the finger patterns 503 

remained largely separable, with patterns exhibiting a high degree of stability. Across all regions, 504 

we failed to detect a reliable interaction between group and time that would be indicative of a 505 
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training effect in representational distances (all p>0.26, full statistics reported in Table 2). In 506 

order to evaluate the evidence in support of the null hypothesis that the interaction is not present, 507 

we conducted a JZS Bayes Factor (BF) ANOVA with uniform prior across all models and found 508 

evidence in support of the null model that training does not influence distances. The BF’s ranged 509 

from 0.099-0.658 (Table 2), which can be considered positive anecdotal evidence in support of 510 

the Null hypothesis (Kass & Raftery, 1995).  511 

 512 

<INSERT FIGURE 6 HERE> 513 
Figure 6: Stable representational distances after training. A. Pairwise finger distances included 514 
in overall distance analysis. B. Bar plots show mean ROI H values in the pre- and post-training 515 
scans separately for each group. Error bars show standard error. Gray circles are individual 516 
data points. C. Finger pair frequencies were asymmetrically distributed in the trained sequence 517 
(see Figure 4D). Some finger pairs, e.g. index and little were infrequently paired, whereas other 518 
finger pairs e.g. index and middle were frequently paired. D,E. Bar plots show mean H for 519 
frequent pairs B (D) and infrequent pairs (E) in the pre- and post-training scans separately for 520 
each group. Error bars show standard error. Circles are individual data points. No comparison 521 
was found to be statistically significant at =0.05.  522 
  523 
 524 

Of course, looking at changes in overall representational distances may not be sensitive 525 

enough to pick up changes in the representational distances of only a few finger pairs. The 526 

simple plasticity model we proposed in the Introduction predicts that the greatest plasticity 527 

should be observed in the finger pairs most often executed together in the sequence. If the 528 

distances decreased for the more frequently paired effectors, but increased for the less frequently 529 

paired effectors this may result in a net change for the overall average distance near 0. To 530 

explore this possibility, we re-analyzed the distance changes by looking at the frequently and 531 

infrequently occurring finger pairs in the sequence structure itself (Figure 4C). Based on the 532 

pairing frequencies, we identified four frequently used finger pairs (index-middle, index-ring, 533 

middle-little, ring-little) and two infrequently used pairs (Figure 6C) (middle-ring and index-534 
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little). Qualitatively, the pattern of distances for each pair type appeared to match what was 535 

observed in the overall distance patterns, with higher distances in M1 and S1, and lower 536 

distances in the premotor and parietal regions.  Thus, much like the overall distance patterns, we 537 

were unable to resolve focal changes in representational distances in either of the most frequently 538 

(Figure 6D) or infrequently (Figure 6E) paired effectors. Across all regions, two-way repeated 539 

measures ANOVA indicated no significant group-by-time interaction for either frequently paired 540 

(all p > 0.26, full statistics provided in Table 3) or infrequently paired fingers (all p > 0.13, full 541 

statistics provided in Table 4). The Bayesian ANOVA revealed anecdotal evidence in favor of 542 

the null hypothesis for both the frequently (BFs: 0.108-0.631, Table 3) and infrequently (BFs: 543 

0.108-0.391, Table 4) paired fingers.  544 

 545 
 546 
DISCUSSION  547 

Here we examined whether the binding of serial actions during long-term sequence learning 548 

alters the cortical representations of individual cue-response pairings. We found that during 549 

sequence production, temporally adjacent responses develop a high degree of correlation in their 550 

response speeds, consistent with participants binding multiple responses together under a unified 551 

command so as to reduce computational complexity (see also Verstynen et. al. 2012, Ramkumar 552 

et. al. 2016, Lynch et. al. 2017). Using a multivariate pattern analysis approach, based on the 553 

cross-validated Mahalanobis estimator, we also replicated previous studies showing that cortical 554 

motor areas reliably distinguish between activation patterns of individually cued finger responses 555 

(Ejaz et. al. 2015). We were, however, unable to find evidence for learning-related changes in 556 

this representational structure of cued finger responses in any of the cortical regions tested. 557 

Taken together, these findings show that the process of binding actions into chunked sets during 558 
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long-term skill learning does not impact the representation of individual cued actions, suggesting 559 

that binding relies on changing more complex levels of representation beyond individual 560 

movements.  561 

At first glance, the absence of plasticity in population level representations of individual 562 

actions that we observed appears to be incompatible with previous reports of plasticity in 563 

sensorimotor cortex. Kolansinki and colleagues (2016) found that the representational distances 564 

of individual fingers shifted in S1 after physically yoking two fingers together for a period of 24 565 

hours. In their study, the sensory representations of the two yoked fingers remained spatially and 566 

temporally identical, however the unyoked fingers altered their distances, suggesting a possible 567 

compensatory effect in the sensory representations themselves. In contrast to this observation, 568 

other papers have shown that finger representations in S1 are still robust and distinct even 569 

decades after amputation (Kikkert et al., 2016), suggesting that the sensory representations of 570 

digits have some a degree of robustness. In contrast to these sensory representation studies, our 571 

task here relied on training associations between temporally independent movements in a 572 

specific context. It is possible that, had we trained on chord-like movements, where multiple 573 

fingers are simultaneously engaged (Verstynen et. al. 2005), for a longer period of time, we 574 

might have observed similar changes in cortical sensorimotor representations, a hypothesis that 575 

is left open to future studies.  576 

Alternatively, there is a strong rationale for why single effector representations would 577 

remain stable in cortical sensorimotor networks, particularly motor execution areas like M1, after 578 

long-term sequence learning. First, binding responses at the execution level may be a 579 

maladaptive strategy for maintaining a flexible movement repertoire (Lashley, 1951). For 580 

example, if index finger movements were consistently bound with middle finger movements 581 
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because a single daily task required them to work together in sequential fashion, then they might 582 

exhibit a prepotent response in inappropriate contexts. In order to maximize flexibility, it would 583 

be beneficial for the movements to be bound at a more abstract motor planning stage, upstream 584 

from execution processes. Second, practice may involve refining the control of execution-level 585 

representations without necessarily impacting the representations themselves. This would 586 

suggest that the process of binding during the consolidation of complex movement sequences is 587 

dependent on plasticity mechanisms at hierarchically higher level of processing (Wong et. al. 588 

2015).  589 

Of course, it is possible that there is plasticity in the representations of individual 590 

sensorimotor effectors during long-term sequence learning, but limitations in our experimental 591 

design may preclude identifying those changes. First, while the duration of training we used was 592 

longer than many classic sequence learning experiments in humans, five weeks may still not be 593 

enough time to lead to measurable representational changes in primary motor cortex. This 594 

concern is tempered by the fact that we were able to show strong evidence of action binding in 595 

the behavioral responses. A second methodological limitation is the lack of power to observe 596 

what is likely a relatively modest effect size. Previous studies of sensory representational 597 

plasticity provide a reasonable measure of the true effect size, suggesting we are reasonably 598 

powered (Kolasinski, 2016). While, it is true that the number of samples was comparatively low 599 

for a typical univariate functional imaging study (at 9 participants per group), several design 600 

choices alleviate this concern. We collected a substantial amount of data per subject. Each 601 

subject was scanned for approximately 2 hours before training, and 2 hours after training, with 6 602 

identical and independent imaging sessions per run. This relatively large volume of data per 603 

subject enabled us to obtain robust estimates of the population patterns of interest.  Thus, while 604 
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the number of subjects was modest, we do not believe that our results are simply the result of 605 

insufficient power. 606 

Despite these limitations, our experiment clearly shows that five weeks of training on a 607 

complex unimanual sequence task does not alter the sensorimotor representations of individual 608 

effectors despite clear evidence of binding in the motoric actions. This suggests that execution 609 

level representations remain stable during learning and that proficiency is likely controlled by a 610 

higher level within the motor hierarchy.   611 

  612 
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 613 
Region Mean t(17) H>0 p-value H>0 95% CI (low, high) t(17) H>HA1 p-value H>HA1 

M1 4.92 7.91 *2.11 x 10-7 3.61, 6.23 7.10 
 

*8.89 x 10-7 

S1 5.23 10.13 *6.42 x 10-9 4.14, 6.32 9.40 *1.90 x 10-8 

PMd 1.07 5.30 *2.91 x 10-5 0.64, 1.49 3.02 *0.0037 

PMv 1.66 12.06 *4.60 x 10-10 1.37, 1.95 4.80 *8.29 x 10-5 

SMA 0.57 4.08 *3.87 x 10-4 0.28, 0.87 -0.006 0.49 

SPL 1.57 8.44 *8.71 x 10-4 1.18, 1.97 5.13 *4.13 x 10-5 

CAU 0.005 3.46 0.0014 0.002, 0.008 -2.75 0.0067 

PUT 0.003 1.98 0.031 -0.0002, 0.007 -2.77 0.0065 

A1 0.57 2.78 6.45 x 10-3 0.14, 1.01 n.a. n.a. 

Table 1: T-statistics, and associated p-values testing whether H is significantly greater than 0 614 

(H>0) and whether H is significantly greater than in the control region (H>HA1). * indicates 615 

significance based on a Bonferroni corrected threshold (0.05/9) in order to control the family 616 

wise error rate.   617 

  618 
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 619 

Region F(1,16) p-value Inclusion BF 
M1 1.820 0.214 0.161 
S1 0.069 0.800 0.141 
PMd 0.492 0.503 0.099 
PMv 1.673 0.232 0.658 
SMA 5.092 0.054 0.182 
SPL 0.004 0.950 0.145 

Table 2: F-statistics and p-values for testing significance of interaction effect (group x time) 620 

from repeated measures ANOVA for mean distances. Inclusion Bayes Factor (BF) is the ratio of 621 

the posterior over the prior probability of the model including the interaction term. 622 

  623 
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 624 

Region F(1,16) p-value Inclusion BF 
M1 1.585 0.243 0.196 
S1 0.030 0.867 0.208 

PMd 0.089 0.773 0.108 
PMv 1.914 0.204 0.631 
SMA 6.440 0.035 0.309 
SPL 0.001 0.971 0.125 

Table 3: F statistics and p-values for testing significance of interaction effect (group x time) 625 
from repeated measures ANOVA for frequently paired fingers. Inclusion Bayes Factor (BF) is 626 
the ratio of the posterior over the prior probability of the model including the interaction term.  627 

 628 
  629 
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 630 
Region F(1,16) p-value Inclusion BF 

M1 1.744 0.223 0.135 
S1 1.265 0.293 0.218 

PMd 1.718 0.226 0.108 
PMv 0.708 0.425 0.391 
SMA 0.309 0.593 0.149 
SPL 0.036 0.854 0.183 

Table 4: F statistics and p-values for testing significance of interaction effect (group x time) 631 
from repeated measures ANOVA for the infrequently paired fingers. Inclusion Bayes Factor 632 
(BF) is the ratio of the posterior over the prior probability of the model including the interaction 633 
term.  634 
 635 
 636 

637 
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