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Significance

 Recent studies have claimed that 
motor memory consolidation can 
occur within seconds of rest 
interspersed with practice 
periods, during early skill 
training. Our findings call for a 
reconsideration of the idea of 
micro-offline consolidation and 
the role of short rest during early 
motor sequence learning. We 
show that short breaks lead to 
transient performance 
improvements, and not true 
offline learning. Furthermore, 
these gains also occur with 
random sequences, which cannot 
be learned, and they are partially 
driven by preplanning. Given the 
attractiveness of “learning while 
resting,” these findings 
demonstrate that micro-offline 
gains are not a valid indicator of 
offline consolidation, with 
important implications for how 
early skill acquisition is 
conceptualized.
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While practicing a new motor skill, resting for a few seconds can improve perfor-
mance immediately after the rest. This improvement, referred to as “micro-offline 
gains” (MOGs), has been interpreted as rapid offline learning and is thought to be 
supported by neural replay of the trained movement sequence during rest. Here, we 
provide evidence that MOGs reflect only transient performance benefits, partially 
mediated by motor planning, and not offline learning. In five experiments, partici-
pants trained to produce a sequence of finger movements as many times as possible. 
When participants trained during 10-s practice periods, interleaved with 10-s rest 
periods, they produced more correct keypresses during training than participants who 
trained continuously without taking breaks. However, this benefit vanished within 
seconds after training, when both groups performed under comparable conditions, 
revealing similar levels of skill acquisition. This challenges the idea that MOGs reflect 
offline learning, which, if present, should result in sustained performance benefits, 
compared to training without breaks. Furthermore, we observed persistent MOGs 
even when participants produced random, nonrepeating sequences, indicating that 
MOGs do not relate to the offline consolidation of a sequence-specific memory. 
Rather, sequence-specific learning was only evident online, during practice. Finally, 
MOGs were diminished when participants could not preplan the first few move-
ments of an upcoming practice period. Our results suggest that MOG are simply an 
effect of slowing during practice, combined with the possibility of preplanning the 
initial movements after rest, and therefore do not serve as a reliable metric for offline 
learning or skill-related consolidation.

micro-offline gains | motor sequence learning | offline learning | micro-consolidation |  
early motor learning

 It has long been acknowledged that breaks between training sessions can enhance learning 
in cognitive tasks ( 1   – 3 ). However, while there is extensive research on spacing effects on 
the acquisition of declarative knowledge ( 4 ), from vocabulary learning ( 5 ) to mathematics 
( 6 ) (for a review, see ref.  7 ), the effects of spacing on motor skill acquisition ( 8       – 12 ), par-
ticularly on motor sequence learning ( 11 ), has received comparatively little attention. 
Recent findings, however, suggest a beneficial effect of short breaks, in the order of a few 
seconds, on early motor skill acquisition. Specifically, when humans train to repeat a 
sequence of finger movements as often and as accurately as possible during repeated 10-s 
practice periods, alternating with 10-s rest periods, they often execute the first correct 
sequence in a practice period faster than the last correct sequence in the preceding practice 
period. Previous studies ( 13   – 15 ) have interpreted these so-called “micro-offline gains 
(MOGs)” as a behavioral readout of sequence-specific offline learning and claimed that 
offline learning almost entirely accounts for early skill acquisition, with negligible contri-
bution from online processes during active practice. This assumption has shaped the 
dominant interpretation of MOGs in the recent literature ( 16   – 18 ).

 Widely used in studies ( 16               – 24 ) nowadays, as a measure of rapid offline learning, this 
counterintuitive idea has also inspired investigations into the neural processes that occur 
during rest and might drive MOGs. Studies in humans ( 15 ,  19 ,  22 ) and nonhuman 
primates ( 17 ) have reported that sequence-specific neural activity patterns observed during 
practice re-emerge during rest. These neural events during rest have been interpreted as 
replay ( 15 ), or reactivation ( 17 ,  22 ), of the trained movement sequence, driving offline 
learning, and have been linked to MOGs. Crucially, this interpretation rests on the 
assumption that MOGs reflect sequence-specific offline learning.

 However, learning is but one of several factors that jointly influence the dynamics of 
motor performance over time ( 10 ,  25 ). An intuitive effect of taking a break is recovery 
from fatigue ( 26 ), or reactive inhibition ( 27 ,  28 )—a transient, task-induced suppression 
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of motor output that accumulates during repetitive motor tasks 
and reduces performance independently of learning. Once the 
task stops, suppression dissipates, and performance recovers. For 
rapid, repetitive finger movements, fatigue starts to slow down 
motor performance after as little practice time as 10-s ( 29 ,  30 ). 
Thus, fatigue as well as reactive inhibition can mask the true skill 
level acquired by the end of a practice period ( 25 ,  29 ,  31 ,  32 ). 
Therefore, MOGs may simply reflect the dissipation of fatigue 
( 29 ,  30 ) following a break, unmasking the skill level already 
reached at the end of the preceding practice period. In fact, recent 
literature has already provided evidence that dissipation of reactive 
inhibition contributes to MOGs ( 32 ).

 Besides recovery from fatigue and reactive inhibition, rest pro-
vides an opportunity for planning. When people prepare to restart 
a motor sequence following rest, they typically preplan several 
movements in advance ( 33   – 35 ). Preplanning enhances initial 
motor performance. Thus, when training with breaks, the dynam-
ics of motor performance over time reflect the net effect of learn-
ing, recovery of reactive inhibition, and planning.

 Despite these well-established effects, previous investigations 
into MOGs have largely ignored the influence of fatigue and pre-
planning. Instead, they have hypothesized MOGs to be a form of 
microconsolidation, based on processes ( 15 ,  17 ,  22 ) that operate 
entirely during the rest. This is surprising because MOGs—defined 
as the performance improvement from the last correct sequence 
before rest to the first correct sequence after rest—are computed 
from performance data generated entirely during practice, not rest. 
Moreover, there is no compelling evidence for the proposed pro-
cesses of neural replay or reactivation ( 15 ,  17 ,  22 ) to have any 
causal effect on MOGs, under controlled conditions. Given the 
absence of a baseline for performance that is uncontaminated by 
fatigue or reactive inhibition, and matched for preplanning, the 
assumption that any postrest performance improvement is due to 
microconsolidation, is problematic.

 If MOGs reflect offline learning, i.e., learning that occurs only 
during breaks, then training with breaks should result in a higher 
skill level than training without breaks. Furthermore, if offline learn-
ing is sequence-specific, as suggested by the idea of sequence-specific 
replay ( 15 ) or reactivation ( 17 ,  22 ), offline learning should not 
transfer to novel sequences which were never trained before.

 Here, we tested these critical predictions in six behavioral exper-
iments. We provide evidence that MOGs are neither sequence- 
specific, nor associated with enhanced skill acquisition. Within a 
practice period, true online learning is masked by fatigue ( 29   – 31 ) 
and reactive inhibition ( 32 ), leading to slowing of performance. 
When given a break, there is a chance for recovery as well as the 
possibility to preplan the first few keypresses, upon task reinitia-
tion right after the break. Therefore, the postbreak performance 
gains, i.e., MOGs, likely reflect true online learning after recovery 
from fatigue and reactive inhibition, combined with preplanning. 
This has crucial implications for interpreting physiological signals 
that occur during rest. 

Results

Experiments 1 and 2 (and S1): MOGs Do Not Reflect Offline 
Learning. We tested whether people reach higher skill levels 
when training with breaks, compared to training without breaks, 
in an in-lab study (Experiment 1, N = 85 across two groups), 
and confirmed results in a larger cohort via an online study 
(Experiment 2, N = 358 across two groups). Since MOGs are 
predominantly observed during early learning, defined in previous 
studies as the first trial to the 11th trial of training (13–15), our 
study specifically targeted this early learning phase.

 As in previous MOGs studies ( 13   – 15 ), right-handed partici-
pants trained to produce a sequence of five finger movements as 
often and as accurately as possible throughout fixed-duration 
practice periods, using their left hand (“4-1-3-2-4,” where “1” 
represents the little finger and “4” the index finger). We divided 
participants into two groups with different training schedules. 
One group trained with interleaved 10-s rest periods, while the 
other group trained without interleaved rest ( Fig. 1A  ). We evalu-
ated skill level at five time points during the experiment (T1–T5) 
via 20-s test sessions. Note that test sessions were essentially con-
tinuous 20-s practice periods in which participants performed the 
same 4-1-3-2-4 sequence as frequently and accurately as possible, 
just as during training. In addition, to ensure identical test con-
ditions across groups, each of the five test sessions (T1–T5) was 
preceded by a 3-s countdown on the screen.        

 The procedure for both groups began with a baseline test (T1) 
lasting 20-s, followed by the first block of training (Training 1). 
In the group with breaks, training consisted of three 10-s practice 
periods, each preceded by a 10-s rest period. In contrast, the 
no-break group transitioned directly from the baseline test to a 
continuous 30-s practice period without rest. In both groups, 
training concluded with a 3-s countdown displayed on the screen, 
signaling participants to stop their movements and prepare for 
the upcoming 20-s test session (T2). This ensured that both groups 
started the test session under comparable conditions. After T2, 
participants took a 5-min break before completing a 20-s retention 
test (T3). To assess group differences arising at a slightly later stage 
of skill acquisition, participants completed a second training 
block, designed similarly to the first. For the group with breaks, 
the second training block consisted of three 10-s practice periods, 
each preceded by a 10-s rest period. For the group without breaks, 
T3 transitioned directly to a continuous 30-s practice period with-
out rest. In both groups, the second training concluded with a 3-s 
countdown, followed by a 20-s test session (T4), a 5-min break, 
and a final 20-s retention test (T5).

 We first confirmed that the group who trained with breaks 
exhibited MOGs, defined identically to previous studies, i.e., 
greater tapping speed for the first correct sequence in a 10-s prac-
tice period than for the last correct sequence of the preceding 
practice period. We observed significant MOGs, during training 
blocks, both in the in-lab study (t(43) = 3.92, P  < 0.001, d = 0.59, 
BF10  = 84.73;  Fig. 1B  ), and in the online study (t(178) = 3.53, P  
< 0.001, d = 0.26, BF10  = 30.99;  Fig. 1D  ; one-sample t  tests against 
zero; See SI Appendix, Fig. S1 F  and L and Table S2  for results on 
separate training blocks). Additionally, we calculated micro-online 
gains, defined in prior studies as the difference between the first 
and last correct sequence of a 10-s practice period. These were not 
statistically significant (all P  ≧ 0.165; SI Appendix, Table S2 ).

 To compare training performance between groups, we binned the 
continuous 30-s practice periods in the group without breaks into 10-s 
bins ( Fig. 1 C  and E  ). Training performance—measured as the number 
of correct keypresses during training—improved more in the group 
with breaks than in the group without breaks. For Training 1, a 2 × 4 
ANOVA (group: with breaks vs. no breaks; time points: T1 baseline 
(averaged over two 10-s bins) and three training bins) revealed a main 
effect of time point (in-lab: F(2.4,199.8) = 78.54, P  < 0.001, η2﻿partial  
= 0.49; online: F(2.9,1036.9) = 189.82, P  < 0.001, η2﻿partial  = 0.35).  
A significant group by time point interaction was also observed (in-lab: 
F(2.4,199.8) = 7.60, P  < 0.001, η2﻿partial  = 0.08; online: F(2.9,1036.9) 
= 27.19, P  < 0.001, η2﻿partial  = 0.07). This indicates that performance 
improved during training in both groups, but to a greater extent, in 
the group with breaks. Performance during the second training block 
showed a similar pattern (SI Appendix, Table S1 ). For t  test compari-
sons across groups at each time point, refer to SI Appendix, Table S1 .D
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Fig. 1.   MOGs do not reflect offline learning: Experiment 1 (in-lab study) and Experiment 2 (online study). (A) Experimental design. Both groups trained to produce the 
sequence 4-1-3-2-4 as accurately and as often as possible throughout fixed-duration practice periods, distributed across two training blocks (Training 1 and Training 
2). One group of participants (“No Breaks”) trained to produce the sequence via continuous practice periods of 30 s each, whereas the other group (“With Breaks”) 
trained for the same total amount of time broken into three 10-s practice periods, interleaved with 10-s rest periods. In both groups, we assessed skill level at five 
time points during the experiment, via test sessions of 20-s each (T1–T5). The task was identical for practice periods and test sessions. Panels B and C show data from 
the in-lab study (Experiment 1), while (D and E) show data from the online study (Experiment 2). In the group with breaks, we computed micro-online and MOG as 
defined in previous studies (13–15). Micro-online gains are the difference in tapping speed between the last and first correct sequence within a practice period. MOG 
are the difference in tapping speed between the last correct sequence of one practice period and the first correct sequence of the next practice period. Summing 
these changes across 6 trials of two training blocks, yields the total online gains and total offline gains per participant, respectively. We obtained similar results when 
computing micro-online gains and MOG separately for each training block (SI Appendix, Fig. S1 F and L). To allow for between-group comparison (panels C and E), we 
binned performance during the 30-s practice periods of the group without breaks into 10-s bins. For illustration purposes and baseline (T1 and T2) for each training, 
the 20-s test sessions were split into 10-s bins and averaged. Error bars represent SEM. Asterisks indicate levels of statistical significance: *** p <0.001, ** p<0.01,  
* p<0.05. See also SI Appendix, Fig. S1 for additional analyses, and SI Appendix, Fig. S2 for an additional experiment.
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 Despite the performance difference during training and the 
presence of MOGs in the group with breaks, both groups ulti-
mately reached a similar skill level: The number of correct key-
presses in all 20-s test sessions was comparable between groups 
( Fig. 1C  ). A 2 × 5 ANOVA (group: with breaks vs. no breaks; test 
sessions: T1–T5) showed significant improvements across test 
sessions in both the in-lab study (F(2.9, 238.3) = 250.08, P  < 
0.001, η2﻿partial  = 0.75) and the online study (F(3.2, 1141.4) = 
591.54, P  < 0.001, η2﻿partial  = 0.62), but no significant main effect 
of group (in-lab: F(1,83) = 0.09, P  = 0.761, η2﻿partial  < 0.01; online 
study: F(1, 356) = 0.30, P  = 0.584, η2﻿partial  < 0.01). A small, but 
significant group × test session interaction was observed in the 
online study (F(3.21, 1141.36) = 2.92, P  = 0.030, η2﻿partial  < 0.01), 
but not the in-lab study (F(2.9, 238.3) = 0.78, P  = 0.504, η2﻿partial  
< 0.01). Critically, independent-samples t  tests revealed no signif-
icant performance differences between groups for any test session 
in either study (all pcorr  > 0.2, all BF10  ≤ 0.97; independent-samples 
﻿t  tests; detailed results in SI Appendix, Table S1 ).

 To corroborate that the absence of group differences was not 
due to differences in the design of our experiments and previous 
MOGs studies, specifically the inclusion of 20-s test sessions 
before and during learning, we performed a replication of the 
original paradigm by Bönstrup et al. ( 13 ) (SI Appendix, Fig. S2 ), 
testing the first seven trials. One group trained in 10-s practice 
periods, interleaved with 10-s rest periods (n = 31), while the other 
group trained continuously for 70 s (n = 31). Again, we observed 
no group differences in performance (i.e., number of correct 
 keypresses) following a 3 min rest after training, despite the 
 presence of MOGs in the group with breaks (SI Appendix, 
Table S3 ). In addition, across Experiments 1, 2, and S1, we found 
no group differences in number of correct sequences, tapping 
speed, or percentage of correct keypresses during the test phases 
(SI Appendix, Figs. S1 and S2 and Tables S2, S3 and Accuracy 
metrics ). This consistency, along with the fixed 10-s trial duration 
and explicit instructions to maximize correct sequences, limits the 
possibility of hidden speed–accuracy trade-offs. Moreover, no per-
formance difference was found between participants tested with 
or without performance-related monetary incentive (SI Appendix ). 
This suggests that the observed absence of group differences after 
training, are not in any way related to the fact that participants in 
Experiments 1, 2, and S1 received bonus payment based on their 
performance.

 In summary, taking short breaks resulted in immediate perfor-
mance benefits during training ( Fig. 1 B –E  ), as reflected in a larger 
number of correct keypresses produced at the end of training. 
However, this benefit disappeared within seconds after training, with 
comparable skill levels across groups both in the test sessions com-
pleted after the 3-s countdown (T2 and T4), and in the retention 
tests conducted after 5-min breaks (T3 and T5;  Fig. 1 C  and D  ). 
Importantly, in spite of MOGs exhibited by the group who trained 
with breaks, their skill level was comparable to the group that did 
not have the chance to exhibit MOGs, due to training without breaks.  

Experiment 3: MOGs Do Not Reflect Sequence-Specific Learning 
or Consolidation. We next tested whether MOGs reflect sequence-
specific learning, as predicted by the idea of replay, or reactivation, of 
the trained sequence during rest (15, 17). To test this, Experiment 3 
compared MOGs in participants who practiced a single, repeating 
sequence 4-1-3-2-4 (Repeating group, N = 24 participants) with 
participants who produced five-element sequences that never 
repeated (Nonrepeating group; N = 19 participants; Fig.  2A). 
Both groups alternated between 10-s practice periods and 10-s 
rest periods for 10 trials. To ensure equivalent advance information 
about the upcoming sequence, the first sequence of the upcoming 

practice period was displayed on the screen throughout the 
preceding rest period for both groups.

 As expected, we observed sequence-specific learning in the 
Repeating group, but not in the Nonrepeating group, as shown 
by a significant group × trial (10 trials) interaction effect on the 
number of correct keypresses (F(3.6, 146.9) = 13.75, P  < 0.001, 
η2﻿partial  = 0.25; SI Appendix, Fig. S4 ). Importantly, we found sig-
nificant MOGs ( Fig. 2 C  , Left ) in both groups (Repeating group: 
t(23) = 3.53, P  = 0.002, d = 0.72, BF10  = 21.22, Nonrepeating 
group: t(18) = 4.52, P  < 0.001, d = 1.04, BF10  = 117.14; 
one-sample t  tests against zero). Furthermore, the magnitude of 
MOGs was similar in the two groups (t(41) = −1.90, P  = 0.968, 
d = −0.58; independent-samples t  test, one-sided, i.e., H1 : 
Repeating Group > Nonrepeating group), and Bayesian analysis 
provided moderate evidence in favour of the null hypothesis (BF10  
= 0.12). Instead, the difference between the Repeating and 
Nonrepeating groups arose during ongoing practice, i.e., in 
“micro-online gains” ( Fig. 2 C  , Left , t(41) = 3.00, P  = 0.005, d = 
0.92, BF10  = 9.08; independent-samples t  test two-sided).

 A closer examination of this effect is presented in  Fig. 2 B  , Left , 
which displays the speed of the first and last correct sequences used 
to calculate the MOGs. MOGs are represented by dotted lines, and 
micro-online gains are shown by shaded lines, for each trial. In the 
Nonrepeating group, tapping speed declined during the course of 
each 10-s practice period. This slowing during practice was followed 
by an initial postrest performance boost, giving rise to the observed 
MOGs. In the Repeating group, the decline in tapping speed during 
practice was less pronounced, likely because it was balanced by 
sequence-specific learning during practice.

 In summary, the results of Experiment 3 reveal that MOGs do 
not reflect sequence-specific learning, because MOGs are equally 
present when training to produce novel, nonrepeating sequences. 
Instead, sequence-specific learning occurs during practice, not 
rest, as indicated by group differences in the dynamics of tapping 
speed across practice. While the Nonrepeating group revealed 
pronounced motor slowing during practice, the Repeating group 
could balance motor slowing with online learning. This contrasts 
with the idea that, when training with breaks, early learning occurs 
exclusively during rest, as has been explicitly proposed in previous 
studies ( 13         – 18 ).  

Experiments 4 and 5: MOGs Partially Reflect Motor Preplanning. 
Breaks provide an opportunity for planning (33, 34). In 
Experiment 3, both groups were cued with the upcoming sequence 
during the preceding rest period, allowing them to preplan the 
first few elements of the sequence before initiating the first 
movement in each practice period. For the Repeating group, the 
cue served primarily as a reminder, as they could already anticipate 
the fixed sequence. Given that preplanning accelerates the first 
three to four keypresses, after which execution slows as remaining 
elements are planned online (33–35), this likely contributed to 
the observed MOGs.

 Experiment 4 tested the role of preplanning in MOGs by 
removing any advance cueing of the upcoming sequence, thus 
reducing the opportunity for extended preplanning during the 
rest period (N = 18 for the Repeating group and N = 17 for the 
Nonrepeating group). Removing this opportunity was expected 
to reduce the MOGs for the Nonrepeating group, which could 
not rely on the advance information to be able to plan ahead (as 
in Experiment 3). However, even for this group some MOGs may 
remain, as participants can still preplan the initial elements of a 
sequence during the brief interval between the presentation of the 
sequence cues on the screen (which signals the start of the practice 
period) and movement initiation (i.e., the reaction time) ( 34 ).D
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 As in Experiment 3, performance improved more in the 
Repeating group than the Nonrepeating group, as shown by a 
significant group × trial (10 trials) interaction on the number of 
correct keypresses (F(4.7, 155.3) = 12.06,  P   < 0.001, η2﻿partial  = 
0.27, SI Appendix, Fig. S4 ). Both groups again showed significant 
MOGs (Repeating: t(17) = 2.85, P  = 0.011, d = 0.67, BF10  = 4.84; 
Nonrepeating: t(16) = 4.02, P  < 0.001, d = 0.98, BF10  = 38.26; 
one-sample t  tests against zero), and the magnitude of MOGs did 
not differ between them (t(33) = 0.15, P  = 0.885, d = 0.05, BF10  
= 0.33; independent-samples t  test), replicating the finding that 
MOGs also occur for nonrepeating sequences.

 Critically, MOGs in the Nonrepeating group were reduced rel-
ative to the same group in Experiment 3, where preplanning during 
rest was possible ( Fig. 2C  , t(22.4) = 2 .91, P  = 0.008, d = 0.95, BF10  
= 11.20, Welch’s t  test, Bayesian Welch’s t  test, to account for une-
qual variances across groups). This suggests that the measure of 
MOGs is sensitive to explicit cueing of upcoming movements dur-
ing rest and may partially reflect motor preplanning.

 Although Experiment 4 eliminated the possibility of preplanning 
in the rest-periods, preplanning during the reaction time remained 
possible ( 34 ). In fact, in the Nonrepeating group in Experiment 4, 
initiation time was significantly delayed (884 ± 188 ms, mean ± SD), 
compared to the Nonrepeating group in Experiment 3 (585 ± 172 
ms; t(34) = 5.00, P  < 0.001, d = 1.67, BF10  = 970.77; independent- 
samples t  test), based on practice periods that began with a fully 

correct sequence (90.49% of practice periods). This reaction time 
cost likely reflects planning at the onset of the practice period, poten-
tially contributing to the persistent—though reduced—MOGs. 
Nonetheless, one should note that such cross-experiment 
between-subject comparison limits interpretation.

 To directly assess the contribution of preplanning to MOGs, 
we conducted a final, within-subject experiment that systemati-
cally manipulated the planning horizon (Experiment 5, N = 35, 
 Fig. 3A  ). Participants produced nonrepeating sequences in two 
conditions. In one condition, we cued only one key (number) at 
a time, so that participants could not preplan beyond the single 
next movement (“Window size 1”, W1). In the other condition, 
we simultaneously cued the next five keys (numbers), so that par-
ticipants could preplan up to five movements at a time (“Window 
size 5”, W5). Participants received no advance information during 
rest, so that any preplanning was restricted to the reaction time 
interval, i.e., the time interval between the start of the practice 
period and the first keypress.        

 Consistent with preplanning, initiation of the first movement 
after a break were significantly slower in W5 trials (796 ± 126 ms, 
mean ± SD) compared to W1 trials (728 ± 122 ms; t(34) = 4.34, 
﻿P  < 0.001, d = 0.73, BF10  = 212.87, considering only those prac-
tice periods that started with a fully correct sequence (87.21% 
and 83% of W5 and W1 trials respectively). This delay allowed 
participants to be faster in executing the first correct sequence 

A B

C

Fig. 2.   MOGs do not reflect sequence-specific learning: Experiment 3 (advance information) and Experiment 4 (no advance information). (A) Experimental design: 
In 10-s practice periods, participants saw a string of five numbers, cueing a sequence of five keypresses. A rectangle surrounded the leftmost number, cueing 
the next movement, similar to a Discrete Sequence Production (DSP) task. Each keypress shifted the numbers leftward, revealing a new number in the fifth 
position. The Repeating group saw the same five-element sequence repeatedly (4-1-3-2-4), which allowed for sequence-specific learning, while the Nonrepeating 
group performed novel, nonrepeating five-element sequences, thereby preventing sequence-specific learning. The colored or white boxes shown in panel A to 
separate consecutive five-element sequences are for illustration purposes and were not shown to participants. A 10-s rest preceded every practice, displaying 
either the next five-element sequence (advance information, Experiment 3), or “XXXXX” (no advance information, Experiment 4). (B) Tapping speed across the ten 
trials (10-s practice periods) of each experiment. For each trial, we show the speed for the first and last correct sequence. Dotted lines indicate MOG, whereas 
solid lines indicate micro-online gains. (C) In both experiments, Repeating and Nonrepeating groups showed MOGs of comparable size. For the Nonrepeating 
group, MOGs were significantly larger in Experiment 3 advance information), compared to Experiment 4, where advance planning of upcoming sequence was 
prevented. All error bars represent the SEM. Asterisks indicate levels of statistical significance: *** p <0.001, ** p<0.01, * p<0.05.
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(t(34) = 3.66, pcorr  < 0.001, d = 0.62, BF10  = 36.87, comparing 
W5 and W1), giving rise to a significant interaction between con-
dition (W5 vs. W1) and position (first vs. last correct sequence; 
F(1,34) = 12.11, P  = 0.001, η2﻿partial  = 0.26;  Fig. 3B  ). This was also 
supported by a significant correlation between costs in initiation 
time and benefit in the tapping speed of the first sequence (r = 
0.39, P  = 0.022;  Fig. 3C  ), in the two conditions.

 As a consequence of the larger window size, MOGs were sig-
nificantly larger in the W5 condition than in the W1 condition 
(t(34) = 3.69, P  < 0.001, d = 0.62, BF10  = 39.25;  Fig. 3D  ). 
However, preventing preplanning did not completely abolish the 
slowing during the 10-s practice period. Significant MOGs were 
still present in both conditions when tested against zero (t(34) = 
8.24, P  < 0.001, d = 1.39, BF10  = 8.876 × 106 , W5 condition; 
t(34) = 7.85, P  < 0.001, d = 1.33, BF10  = 3.16 × 106 , W1 condi-
tion). This indicates that although preplanning contributes to 
MOGs, other processes such as release from reactive inhibition 
( 32 ) or fatigue ( 29   – 31 ) likely also play a role.   

Discussion

﻿Our results challenge the prevailing view that MOG reflect offline 
learning or consolidation ( 13     – 16 ,  19 ,  20 ). We found that training 
with breaks gives rise to MOG, but conveys no lasting learning 
 benefit over training without breaks, casting doubt on the idea that 
MOG result from additional (offline) learning during breaks  
( 13   – 15 ). Furthermore, we found equivalent MOG during the pro-
duction of random, nonrepeating sequences. This challenges the idea 
that MOG reflect sequence-specific learning, and casts doubt on 
previous proposals that MOG are driven by neural events during rest 
interpreted as replay or reactivation of a trained sequence ( 15 ,  17 ).

 Instead, our data indicate that the most parsimonious explana-
tion for MOGs is that they reflect transient dynamics in skill 
expression around the time of a break, rather than offline skill 
acquisition. Studies that interpret MOGs as a behavioral marker 
of offline learning assume that performance remains stable 
throughout the practice period. However, at any given skill level, 

Fig. 3.   MOGs partially reflect motor preplanning: Experiment 5. (A) Experimental design. In this within-subject experiment, two conditions [Window size 5 (W5) 
and Window size 1 (W1)] alternated every four trials, where a trial was defined as a 10-s practice period, together with the preceding 10-s rest period. During 
practice, the screen displayed a string of five numbers (W5 condition), or a string consisting of a single number followed by four X’s (W1 condition). A rectangle 
highlighted the leftmost number in the string (i.e., the single number in the W1 condition) as the cue for the next movement, similar to a DSP task. Across 
practice, participants had to perform nonrepeating five-element sequences of movements, similar to the Nonrepeating group in Experiments 3 and 4. Because 
the string consisted of five numbers shown simultaneously in the W5 condition, participants could preplan up to five finger movements. This preplanning could 
only occur at the start of the 10-s practice period, as each practice period was preceded by a 10-s rest period showing “XXXXX.” In the W1 condition, on the 
other hand, only the single next number was shown (and updated with every new keypress), followed by four X’s. This prevented planning of more than a single 
finger movement at a time. (B) Tapping speed of the first and last correct sequences for both conditions in each block. Dotted lines indicate MOG, whereas solid 
lines indicate micro-online gains. Increasing the window size (from the W1 condition to the W5 condition) resulted in performance benefits that were stronger 
for the first correct sequence than for the last correct sequence. (C) Difference in tapping speed between the two conditions (W5 minus W1) plotted against the 
difference in time to initiate the first sequence after a rest (W5 minus W1), for each participant. Consistent with preplanning, participants traded-off the speed 
of initiating the first movement in a practice period, and the tapping speed of the first correct sequence. Participants with slower movement initiation in the W5 
condition, compared to the W1 condition, were faster in executing the first correct sequence in the W5 condition, compared to the W1 condition, and vice versa. 
(D) We found significant MOGs in both conditions, however, MOGs were significantly smaller in the W1 condition. This confirms that preplanning contributes to 
MOGs. Asterisks indicate levels of statistical significance: *** p <0.001, ** p<0.01, * p<0.05.
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performance varies over time, owing to systematic task-related 
factors, such as fatigue, reactive inhibition or planning, the latter 
of which was directly demonstrated in Experiment 5. When per-
formance declines across the practice period, the definition of 
MOGs underestimates online learning while inflating the appar-
ent benefits of rest. Indeed, across Experiments 3, 4, and 5, the 
groups performing nonrepeating sequences exhibited slowing of 
motor performance during practice ( Figs. 2B   and  3B  ). Such slow-
ing could arise due to a switch from fast preplanned movements 
to slower online planning ( 33 ), or due to fatigue ( 29 ,  30 ,  36 ) or 
reactive inhibition ( 32 ). In line with our results, motor slowing 
has been observed within the first 10-s of practice before ( 29 ). 
When viewed through the lens of online- and offline-gains, motor 
slowing leads to negative “micro-online gains,” as observed for the 
Nonrepeating groups in our experiments. There is no reason to 
assume that the factors that drive such slowing during practice, 
should not also be present for the Repeating group. Therefore, it 
is likely that the “zero micro-online gains” observed when people 
train to produce a single, repeating sequence ( 13 ,  14 ), reflect a net 
effect of slowing plus concurrent, sequence-specific online learn-
ing. As a result, micro-online gains observed for the Repeating 
group in Experiment 3 were close to zero. Similarly, previous 
studies have found no net change in performance during 10-s 
practice periods ( 13 ,  15 ,  19 ), or a net slowing of performance ( 19 , 
 20 ,  22 ,  37 ) (as in our conceptual replication of the Bönstrup et al. 
( 13 ) paradigm, see SI Appendix, Fig. S3 ).

 In the presence of factors that deteriorate performance within a 
practice period, the standard definition of MOGs (i.e., the improve-
ment in performance, from the last correct sequence before rest to 
the first correct sequence after rest) cannot differentiate offline 
learning from online learning whose effect on performance becomes 
evident only after a break. Our findings indicate that MOGs are 
primarily driven by processes occurring during practice, rather than 
rest. Sequence-specific learning, as measured by the difference 
between Repeating and Nonrepeating groups, only occurred during 
practice. However, after rest, when preplanning becomes possible 
again and fatigue ( 29 ,  30 ,  36 ) as well as reactive inhibition ( 32 ,  38 ) 
have dissipated, these latent learning effects manifest as a temporary 
performance boost. Thus, sequence-specific learning occurred dur-
ing practice but became apparent only after rest, giving rise to 
MOGs. We observed higher MOGs for the Nonrepeating group 
of Experiment 3 compared to Experiment 4, hinting toward the 
role of planning during rest periods. However, baseline perfor-
mance (SI Appendix, Fig. S4 ) differed between the two Nonrepeating 
groups, perhaps owing to sampling bias.

 In summary, while breaks induce MOGs, they do not provide 
evidence of offline learning. Recognizing the limitation of this 
measure is therefore crucial for interpreting performance changes 
in motor learning tasks.

 This is especially important given the growing body of research 
linking MOGs, interpreted as a measure of wakeful consolidation, 
to neural events during rest ( 15 ,  17 ,  19 ,  22 ). For instance, Buch 
et al. ( 15 ) found that MOGs correlated with events in magneto-
encephalography (MEG) data during rest, which they interpreted 
as rapid replay of the trained sequence (see also refs.  17  and  22 ). 
If neural replay of the trained sequence were the primary driver 
of MOGs, one would expect MOGs would at least be smaller 
when the sequences never repeat during training. However, our 
findings from Experiments 3 and 4 revealed that MOGs were of 
similar magnitude, even for novel sequences that never repeated. 
While our findings do not rule out the possibility of neural replay 
during rest, they demonstrate that sequence-specific replay is not 
necessary for MOGs to occur. This highlights the lack of specificity 
of MOGs as a measure, which is likely a consequence of a general 

slowing during motor execution, rather than constituting a behav-
ioral index of replay-mediated microconsolidation, as extensively 
discussed in the literature ( 13       – 17 ,  19 ,  22 ,  39 )–and should there-
fore be considered with caution.

 Two recent studies by Gupta et al. ( 32 ,  38 ) indicate that reactive 
inhibition occurs even within 10-s of practice, and that the dissipa-
tion of reactive inhibition contributes to postrest performance 
improvements. This aligns with our conclusion that MOGs are not 
a specific readout of microconsolidation. Our results extend this 
view by several critical findings. “Massed” training in Gupta et al.’s 
studies still included breaks, complicating the interpretation of dif-
ferences to “spaced” training, while our Experiments 1, 2, and S1 
provide an unambiguous test of spacing effects during early motor 
sequence learning. Furthermore, results from our Experiments 3 
and 4 show that MOGs exist even for random sequences. Finally, 
in Experiment 5, we provide evidence that MOGs are at least partly 
driven by preplanning. Importantly, Gupta et al. ( 38 ) excluded the 
first completed sequence of each practice period as a “warm-up 
sequence.” Given that this sequence, together with the last correct 
sequence in the preceding practice period, defines MOGs, Gupta 
et al.’s results, although critical for identifying the role of reactive 
inhibition, do not put MOGs directly to the test.

 In functional MRI (fMRI), Blood-Oxygenation-Level-Dependent 
signals in the hippocampus and precuneus during rest, have been 
shown to correlate with MOGs ( 19 ). Additionally, learning-related 
patterns in fMRI due to training persist and extend into short 
interpractice rests ( 20 ). While these findings have been interpreted 
as indicative of a memory reactivation of the sequence trained in 
the past, they may alternatively reflect planning of future sequence 
production. Kornysheva et al. ( 40 ) identified in MEG, a neural 
signature of motor sequence planning that involved medial tem-
poral lobe, and that linked practice-related information with the 
preceding planning stage, broadly consistent with this fMRI find-
ings. They found that several finger movements in an upcoming 
sequence could be decoded in parallel during preparation. This 
parallel planning signature has been source-localized to the para-
hippocampus and cerebellum, and predicted motor sequence per-
formance ( 35 ,  40 ).

 Rest interspersed with training could thus provide an oppor-
tunity to plan the first elements of the upcoming sequence before 
restarting training. In that regard, the disruptive impact of theta 
burst stimulation of the dorsolateral prefrontal cortex (DLPFC) 
on the extent of MOGs ( 41 ) may potentially be attributed to the 
DLPFC’s critical role in sequential event planning ( 42 ,  43 ). 
Building on this, in Experiment 5 we observed significantly less 
MOGs when the preceding rest period, as well as the time before 
first movement initiation, could not be used for planning several 
upcoming finger movements, compared to conditions allowing 
for preplanning. These findings strongly suggest that preplanning 
contributes to the transient boost in performance after rest, which 
are reflected as MOGs.

 Finally, while spaced training is widely recognized to enhance 
long-term learning in various domains, including declarative 
knowledge ( 4 ), its effects on motor sequence learning remain insuf-
ficiently characterized ( 8       – 12 ). In our study, spacing improved 
performance during training, but this improvement vanished at 
subsequent test sessions, within seconds after training. These test 
sessions allowed for an unbiased comparison of skill levels, and 
revealed that people acquire similar skill levels whether, or not, 
they train with breaks. Our findings, therefore, do not support a 
spacing effect in early motor sequence learning on a short time 
scale in the order of seconds, at least during the first few trials. 
Instead, they emphasize an important distinction in motor skill 
learning, as described by Kantak et al. ( 25 ), between motor D
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performance, i.e., observable changes during training, such as 
MOGs, and motor learning, defined as the longer-term retention 
and stability of skills developed through training ( 25 ,  44 ,  45 ).

 In conclusion, we propose that the improved performance 
observed after a short break is short-lived and does not reflect 
microconsolidation during breaks. The cause of the postrest per-
formance improvements is likely multifactorial, with the ability 
to preplan movements, playing an important role. Other contrib-
uting factors could include the dissipation of reactive inhibition 
or fatigue during rest. Moreover, attentional recovery facilitated 
by context switching ( 46 ), in conjunction with preplanning, may 
explain why a pause of only 3 s is sufficient to unveil true perfor-
mance levels. Our findings highlight the need for researchers to 
exercise caution when interpreting MOGs. As our work demon-
strates, MOGs is not a valid indicator of micro-offline learning 
and may not be suitable as a proxy for linking behavioral data to 
neurophysiological processes, particularly in the context of wakeful 
consolidation during rest.  

Methods

Across the five experiments, a total of 631 participants (270 females) took part in 
this study. 89 (31 females, mean age = 25.9 y, SD = 3.2 y) took part in Experiment 
1 and 413 (175 females, mean age = 27.9 y, SD = 7.7 y) took part in Experiment 
2, 49 (29 females, mean age = 39.9 y, SD = 15.8 y) in Experiment 3, 37 (20 
females, mean age = 39 y, SD = 13.5 y) in Experiment 4 and 43 (15 females, 
mean age = 27.3 y, SD = 3.2 y) took part in Experiment 5. For Experiment 1, we 
calculated the sample size sufficient to detect a difference in the number of correct 
keypresses between two groups of participants (with and without breaks) that is 
at least medium-sized (Cohen’s d ≥ 0.6) with at least 80% power [independent-
samples t test; the pooled SD was estimated from our Experiment S1, tested 
previously (n = 62 participants; SI Appendix, Fig. S2)]. In Experiment 2, our goal 
was to achieve ≥80% power to observe an effect of group on number of correct 
keypresses of d ≥ 0.3. Experiments 3 and 4 were crowdsourcing studies during a 
science communication event at the Leibniz Institute for Neurobiology, Germany 
(the Magdeburg Long Night of Science), during which we collected data from as 
many volunteers during the 6 h of the event as possible (total of 86 adult datasets 
collected). Cohort size for Experiment 5 was determined by our goal to observe 
any effect of preplanning on MOG of size d ≥ 0.5 with ≥80% power.

Participants in Experiments 1 and 5 were recruited based on the following exclu-
sion criteria. They had to be right-handed, between 18 and 40 y of age, could 
not be professional typists or skilled musicians (i.e., recruited participants did not 
play any musical instrument requiring skilled finger movements for consecutive 
4 y at any point in their life), did not have any prior or existing neurological or 
psychiatric conditions, and were naïve to the task. Participants for Experiment 2 
(online, crowdsourced) were recruited via the following criteria: they had to be right-
handed, between 18 to 40 y of age, and without prior neurological or psychiatric 
condition. There were no criteria applied for participation in Experiments 3 and 4, 
but we performed analysis only on the data of participants who were right-handed 
and 18 y of age and above. Participants for the in-lab studies were recruited via 
local participant databases (Sona systems, https://magdeburg.sona-systems.com/) 
whose members are mostly students and staff of Otto-von-Guericke University in 
Magdeburg, whereas participants for the online study (Experiment 2) were recruited 
via the Prolific database (www.prolific.com). Participants for Experiments 3 and 4 
were volunteers during a science communication event, as described above.

Handedness was determined by the Edinburgh Handedness Inventory 
assessment (Oldfield et al. (47)) in all experiments except Experiment 2, in which 
right-handedness was self-reported via Prolific. The study was approved by the 
ethics committee of the Otto-von-Guericke University Magdeburg, Germany, 
and conducted in accordance with the Declaration of Helsinki. All participants, 
except for visitors of the Long Night of Science taking part in Experiments 3 & 4,  
received financial reimbursement for their time of participation, and were 
additionally rewarded with bonus money based on their performance in the 
task. All participants provided written informed consent prior to participation 
and all data were collected and processed in accordance with the General Data 
Protection Regulation (GDPR).

Apparatus. All experiments except the online crowdsourced study were con-
ducted in a behavioral laboratory (a room with four computers on desks, and 
chairs arranged in the form of cubicles, for participants to sit and perform the task 
in privacy without distraction) using LCD displays, PC keyboards, and headphones. 
Stimuli for Experiments 1 and 3-5 were presented using MATLAB (R2021b, The 
MathWorks, Inc., Natick, Massachusetts, United States) and Psychtoolbox (48), 
whereas Experiment 2 (the online study) was programmed in PscyhoPy (49) and 
conducted on Pavlovia (www.pavlovia.org), with participants recruited via Prolific 
(www.prolific.com). In the laboratory, we tested either single participants, or up 
to four participants at a time simultaneously.

General Task Design. Participants were asked to sit in front of an LCD monitor 
(60 Hz) and place the little finger, ring finger, middle finger, and index finger of 
their left hand on four keys of the keyboard. Throughout all experiments except 
Experiment 2, we used the keys F, T, Z, and J (on a German-layout QWERTZ 
keyboard). In the (online) Experiment 2, participants were instructed to use 
the numbered keys 1, 2, 3, 4 located on top of the keyboard. These keys were 
uniquely associated with the numbers 1 to 4 displayed on the monitor, so that 
the number 1 (or key F) corresponded to the little finger, 2 (or key T) corresponded 
to the ring finger, 3 (or key Z) corresponded to the middle finger, and 4 (or key J) 
corresponded to the index finger. In Experiments 1 and 2, the screen displayed 
a static string of five numbers (4–1-3–2-4), for a certain duration depending on 
the experiment design. The task was to produce that sequence using the corre-
sponding fingers as fast and accurately and as many times as possible throughout 
the practice period, i.e., as long as the sequence stayed on the screen. The string 
of numbers was displayed in white on a black background, surrounded by the 
outline of a rectangle, whose color changed with every keypress, from white to 
gray, or back from gray to white, as feedback that the keypresses were being 
registered. In Experiments 3, 4, and 5, only the first number of the sequence was 
surrounded by a white square, and the display of the five numbers changed with 
every keypress, replacing the first number with the second, the second with the 
third, and so on, and adding a new number as the fifth. This was done to accommo-
date nonrepeating finger sequences, as described in detail in the corresponding 
section below. In the different experiments, the durations of the practice periods 
changed depending on the experimental manipulation, but the task instruction 
for practice periods remained the same throughout.

The practice periods were interleaved with rest periods of 10-s in some 
experiments. In Experiments 1, 2, 4, and 5, the screen displayed a static string 
consisting of five times the letter X (i.e., “XXXXX”) during rest periods, replacing 
the numbers. Participants were asked to fixate on the X’s while resting, and not 
move their fingers or any other body part. In the rest periods of Experiment 3, 
participants were shown the first sequence of the upcoming practice period, in 
red font (see details below).
Experiments 1 and 2 (with vs. without breaks, in-lab, and online study). In 
order to test if offline periods during training resulted in additional learning, i.e., 
overall, more skill acquisition, Experiments 1 and 2 followed a between-subject 
design with two groups of participants: one group trained with interspersed 
breaks (With Breaks) whereas another group trained continuously for the same 
duration without interspersed breaks (No Breaks). We analyzed data from 85 in-
lab participants (Experiment 1) and 358 online participants (Experiment 2; see 
Dataset Exclusion Criteria below for details on excluded datasets). During train-
ing, participants in the With Breaks group had to learn the sequence 4-1-3-2-4 
via 10-s practice periods, interspersed with 10-s rest. Participants in the other 
group (No Breaks) had to learn the same sequence via continuous practice with-
out breaks. The total practice duration was matched between groups. Following 
training, both groups took a break of 5 min, which allowed for washout of fatigue. 
Test sessions of 20-s each were introduced before the beginning of training, at 
end of training, and at the end of washout (Fig. 1A). The task during these test 
sessions was identical to the practice periods during which participants repeatedly 
performed the 4-1-3-2-4 sequence as frequently and accurately as possible. To 
ensure consistent test conditions across groups, each test session was preceded 
by a 3-s on-screen countdown, where participants were asked not to press any 
key. In order to explore potential group differences across longer training, a 
second block of training, washout, and tests was added. Experiment 2 (online) 
had the identical task design, with the exception that two attention checks were 
introduced during each of the 5-min washout periods, in order to ensure that 
participants did not move away from the keyboard. Each attention check required D
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participants to press a key within the number of seconds shown on the screen. 
Participants in both experiments were motivated to perform to the best of their 
capacity by rewarding them bonus money based on the total number of correct 
sequences they performed throughout the experiment.
Experiments 3 and 4 (repeating vs. nonrepeating sequences, with and 
without advance information). Experiments 3 and 4 tested whether the 
performance improvement across rest requires replay. To this end, one group 
each (“Nonrepeating”) in Experiments 3 and 4 performed sequences of finger 
movements which never repeated, neither within a given practice period, nor 
across the entire experiment. If MOGs are due to replay, they should vanish 
when sequences never repeat. This is because replay of any sequences that 
were previously encountered can only improve future performance of that same 
sequence, i.e., benefits mediated by this type of specific replay effects would 
require that sequences repeat across practice periods. To accommodate never-
repeating sequences, we modified the practice periods to closely mimic a DSP (33) 
(discrete sequence production) task. Every practice period was 10-s in duration. 
During that time, participants always saw five numbers at a time on the screen 
(in white on a black background). The first number was surrounded by a square 
frame and cued the next required movement. Participants were instructed to 
press the key corresponding to that number as accurately and fast as possible. 
As soon as they pressed, the sequence of numbers moved to the left by one 
position, such that the number within the square disappeared, and the second 
number from the left moved into its position, while a new number appeared 
in the fifth position. Practice periods lasted 10 s, so that the participants paced  
the rate of cue presentation. The “Repeating” group of participants performed the 
same five-element sequence of numbers (4–1-3–2-4) repeatedly, whereas the 
Nonrepeating group of participants were presented with a set of five-element 
sequences that never repeated. Both groups completed 10 trials of alternating 
practice and 10-s rest periods. To mimic the 4-1-3-2-4 structure of the repeating 
sequence, the nonrepeating sequences were generated with some constraints: 
all four possible numbers (1-4) had to be present, with any one of these numbers 
presented twice in a sequence of five-elements, and consecutive repetitions of 
a single number or of a pair of numbers within the sequence were not allowed. 
These unique five-element sequences were organized into a long string such 
that the last number of a sequence was the same as the first number of the next 
sequence (e.g., “2-4-2-3-1-1-2-4-1-3...”), in order to match the Repeating group 
(“4-1-3-2-4-4-1-3-2-4...”). Participants of neither group were explicitly aware 
of the sequence demarcations.

In Experiment 3, both groups received advance information about the first 
sequence of an upcoming practice period, keeping it similar to the original stud-
ies (13–15), in which participants knew throughout rest periods which sequence 
they would have to perform next. Therefore, the 10-s rest periods displayed the 
first five cues of the upcoming practice period, in the form of a five-element 
sequence displayed in red. For the Repeating group, this sequence was always 
4-1-3-2-4, and for the Nonrepeating group, it was the first sequence of the 
upcoming practice period.

In Experiment 4, on the other hand, the 10-s rest period preceding every 
practice period displayed “XXXXX” in red at the center of the black screen. This 
restricted participants from preplanning the first sequence during rest.
Experiment 5 (preplanning). In this within-subject study, we tested if prevent-
ing planning of more than the next finger movement diminishes MOGs. All the 
sequences in all trials were nonrepeating. There were 40 trials, each having a 
10-s rest period and a 10-s practice period, with two interleaved conditions: 
Window size 5 and Window size 1, which allowed to preplan up to five upcoming 
movements or only the single next movement, respectively. The two conditions 
switched every four trials. In the Window size 5 condition, the practice period 
showed a sequence of five numbers in white, with the leftmost number being 
surrounded by a white rectangle. Thus, participants were able to know the full 
sequence and preplan up to five finger movements before initiating the first finger 
movement at the start of each practice period, as well as plan online. Participants 
were instructed to respond as correctly and as quickly as they could, by pressing 
the key corresponding to the number within the rectangle, using their left hand’s 
corresponding finger. As soon as they pressed, the sequence shifted one number 
to the left, as described for Experiments 3 and 4. Participants were instructed 
to respond to the number within the rectangle at all times. In the Window size 
1 condition, the practice period showed a single number within the white rec-
tangle, followed by four X’s to its right (for example, “3 X X X X”), thus removing 

the possibility for planning any movement beyond the single next movement. 
Participants were instructed to respond as correctly and immediately as possible. 
As soon as they pressed a key, the white rectangle showed the next number to 
be pressed, while the X’s stayed in the same position. All presented numbers in 
both conditions belonged to five-element sequences, unknown to participants. 
All practice periods were timed to 10-s, so the number of sequences that each 
participant encountered depended on their speed of responses. Sequences were 
generated in a way that there was no single number, or pair of numbers, that 
appeared consecutively within the same sequence. We also ensured that all four 
fingers were represented in each sequence at least once, and that any one finger 
number appeared twice in the combination in order to obtain a five-element 
sequence. Each 10-s practice period was preceded by a 10-s rest period. During 
rest, participants saw “XXXXX” in white on a black background, and were asked 
to fixate on the “XXXXX” without making any movement, and rest their fingers on 
the keys. Thus, any preplanning in the Window size 5 condition could only occur 
once the practice period began and the five numbers were displayed.

Data analysis.
Dataset exclusion criteria. Out of the complete datasets collected for each exper-
iment, the following number of datasets were discarded from analysis for the 
respective experiments (see Exclusion Criteria table below): 4 from Experiment 
1, 55 from Experiment 2, 8 from Experiments 3 & 4, and 8 from Experiment 5.

In Experiment 2, all participants’ data were screened to check for completion, 
attention tests and time of initiation after the 5-min washout break periods. Fully 
complete datasets which passed both attention tests for both washout periods, 
and showed initiation times less than 2.5 s from the start of the postwashout test, 
were included for analysis.

Experiment
Reason for exclusion (No. of  

participants excluded)

 Experiment 1 
(Breaks vs. No 
Breaks): in-lab 
study

Anomalous performance–zero correct 
keypresses after baseline and 1st 
training (1)

Anomalous performance–zero correct 
keypresses in the last test T5,  
although they performed well 
throughout (1)

Problems during data acquisition–in-
correct keyboard layout (English 
instead of German), failure to follow 
instructions (2)

 Experiment 2 
(Breaks vs. No 
Breaks): online 
study

Failed attention checks during 5-min 
breaks (5)

Poor task commitment–took more than 
2.5 s to make first response after task 
started post-5 min breaks (38)

Unable to follow task instructions–
pressed wrong keys in a pattern 
throughout the experiment (12)

 Experiments 3 & 4 
(Repeating vs. 
Nonrepeating 
sequences, with & 
without advance 
information)

Due to poor commitment to the task–
zero correct sequence performed in 
multiple trials (6 & 2)

 Experiment 5 
(preplanning)

Due to technical issues during data ac-
quisition leading to invalid datasets (7)

Due to poor performance, pressing 
wrong keys on the keyboard (1)

All recorded data were stored anonymously and with the consent of partic-
ipants under GDPR regulations. Information about identity and timings of the 
keypresses were recorded, for every practice and rest period in all the experiments. 
Most of the data analyses were done with the same methods as used by previous 
studies (13–15).
Number of correct keypresses. While the task required producing as many fully 
correct sequences as possible during each practice period, errors likely resulted in D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 W

E
ST

E
R

N
 U

N
IV

E
R

SI
T

Y
 o

n 
O

ct
ob

er
 3

0,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

12
9.

10
0.

11
8.

22
7.



10 of 11   https://doi.org/10.1073/pnas.2509233122� pnas.org

sequences that were only partially correct (for example, four of the five required 
keypresses correct). Quantifying performance purely as the number of fully correct 
sequences would therefore disregard part of the task-appropriate performance, 
i.e., sequences that were only partially correct. To avoid this, we computed the 
number of correct keypresses per practice period, rather than the number of fully 
correct sequences (13). Our approach to calculate the number of correct key-
presses differed between Experiments 1 and 2 on the one hand, and Experiments 
3-5 on the other hand. In Experiments 1 and 2, the same sequence was required 
throughout the entire experiment, and we did not cue single keypresses, one at 
a time. As a result, when they made an error, participants were free to complete 
the current sequence despite the error, or restart. To accommodate this, we used 
a sliding window approach. We first calculated keypresses that were part of fully 
correct sequences in a given 20-s test period. For calculating the number of 
keypresses which were not part of a fully correct sequence, the positions of all 
keypresses in fully correct sequences were replaced by NaN (as a placeholder), and 
we then moved a five-element sliding window to match keypresses in the current 
window with the required sequence position-wise, according to the following 
criterion. If at least three keypresses in the current five-element window matched 
the required sequence by position, these keypresses were counted as correct 
keypresses, and they were replaced by NaN before the sliding window moved 
on. The reason why we set the threshold to at least three correct keypresses was 
to only count correct attempts to perform a fully correct sequence, and disregard 
instances when participants repeated, e.g., the first one or two elements of the 
sequence. In the case of Experiments 3, 4, and 5, in which keypresses were cued 
individually, one at a time, all correct responses to the currently valid cue were 
counted as correct keypresses.

In Experiments 1 and 2, the continuous training durations of the group with 
no breaks were binned into three 10-s bins, for comparison with the group with 
breaks. The number of correct keypresses was calculated in the same manner 
as for the 20-s test bins, as explained above. Thus, the sliding window used 
for detecting correct keypresses matched keys to the sequence based on their 
position. As a result, it could miss detecting the first keypresses of a bin, if the 
bin did not start with a correct “4-1-3-..” initiation, due to the artificial binning.

In the SI Appendix, we present an alternative binning method, referred to 
as the “credit system” (outlined in SI Appendix, Fig. S1 E and K and Table S2, 
subheading 3), where credits are allocated for extra keypresses at the end of a bin 
(for both groups), and at the beginning (only for the group with no breaks). This 
method offered an adjustment for the group with no breaks, whose sequences 
might have been interrupted by the artificial binning. The method yielded very 
similar results, as shown in SI Appendix, Table S2, subheading 3.

In Fig. 1 C and E, all 20-s test periods were divided into two 10-s bins, with the 
average number of correct keypresses across the two bins representing a single 
value for each 20-s period. This binning was also applied for statistical purposes, 
specifically to T1 and T2 when examining practice effects, where they serve as 
baselines for comparison with the binned training periods. This approach ensured 
consistency in keypress counting and accounted for any variations that could arise 
from the binning process. However, the primary statistical comparisons between 
groups at each of the five test periods are based on the total number of correct 
keypresses across the full 20-s test durations, without artificial binning.
Tapping speed of a sequence. Tapping speed of a completely correct sequence 
was evaluated as the inverse of the mean of the four interpress intervals sepa-
rating the five keypresses that constituted a fully correct sequence (keypresses 
per second).
Micro-online and micro-offline gains. Using the same method as Bönstrup et al. 
(13, 14), the difference in tapping speed between the first and the last correct 
sequence within a practice period was evaluated as “micro-online gains,” and 
the difference in tapping speed between the last correct sequence of a practice 
period and the first correct sequence of the next practice period was evaluated as 

“micro-offline gains,” i.e., MOGs. The sum of these performance changes across 
all trials, results in the “online gain” or “offline gain” for each participant.

In Experiments 3, 4, and 5, we averaged the time between five consecutive 
responses that corresponded to a sequence (predefined by us as described 
above, but unknown to the participants), and obtained tapping speed for correct 
sequences by taking the inverse. The last five correct keypresses which were a 
part of a complete sequence were considered to be the last correct sequence of a 
practice period. For evaluation of the sum of offline performance improvements in 
both conditions of Experiment 5 (“Window size 5” or “Window size 1”), no MOGs 
were computed for the rest periods for which the condition changed (i.e., every 
fourth rest period was omitted). In Experiments 3 and 4, the sum of performance 
improvements across 10 trials was used, whereas for Experiment 5, the sum across 
15 trials were used, after discarding the transition trials.
Movement initiation time. This was evaluated as the time from the start of the 
practice period until the first response was made. Therefore, initiation times were 
evaluated only for the trials in which the first response was part of a fully correct 
sequence. The median across all trials of a condition, was used for analyses.
Statistical analysis. For statistical testing of online and offline performance 
changes, i.e. MOGs, we computed one-sample t tests against zero in all experi-
ments. In Experiments 1 and 2, we compared learning between groups via 2 × 
5 repeated measures ANOVA (two groups, five test sessions). For the two training 
blocks, we computed two 2 × 4 repeated measures ANOVA (two groups, four time 
points: baseline test and three training bins), one for each training block. The 
baseline for each training block was the average of performance in the two 10-s 
bins which were a part of the test session that preceded the respective training 
block (i.e., first test session for the first training block, and third test session for 
the second training block). The Greenhouse–Geisser correction was used for all 
instances where the assumption of sphericity was violated. Interaction effects were 
followed up by t tests. We corrected all P-values in these cases for multiple com-
parisons using the Holm–Bonferroni method. For statistical comparison of MOGs 
between the Nonrepeating groups of Experiments 3 and 4, a Mann–Whitney  
U test was used to account for unequal variances between the groups of the two 
experiments, whereas an independent samples t test was used for comparison of 
groups within each experiment. In Experiment 5, we used Pearson’s correlation to 
correlate interindividual differences in tapping speed with differences in move-
ment initiation times between conditions (“Window size 5” and “Window size 1”).  
All statistical analyses were conducted in JASP (Version 0.17.1.0, jasp-stats.org) 
and MATLAB (MathWorks).

Data, Materials, and Software Availability. Human behavioral experimental data 
have been deposited in OSF (https://osf.io/5d6ew/?view_only=bae01453135847bbb-
3526b731271f86a) (50).
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