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The production of skilled finger movements in humans relies on the  
activity of neurons in the hand area of primary motor cortex (M1)1. In con-
trast with the neighboring somatosensory cortex (S1), M1 lacks a strong 
somatotopic organization of finger representations2,3. We found that  
finger-specific patterns of activation, although stable in each individual, 
were highly variable across subjects. Does this apparent lack of organiza-
tion reflect random variation or is there a common underlying principle 
that shapes the fine-grained patterns associated with each movement?

Previous results have suggested that neurons in M1 encode coordi-
nated, rather than individual, finger movements. First, the areas in M1 
that innervate each hand muscle are not segregated4. Second, neurons 
in M1 are not tuned to individual finger movements, but show broad 
tuning for movements of all five fingers and wrist2,3. Furthermore, activ-
ity patterns observed in fMRI for single finger movements are highly 
overlapping5,6. Finally, cortical stimulation of both humans7,8 and mon-
keys9 evokes simultaneous movements of multiple fingers, resembling 
the multi-joint movements observed during natural hand use.

We tested the hypothesis that the organization of cortical finger 
representations is determined by natural hand use. Given that hand 
usage patterns are relatively invariant across individuals10, cortical  
finger representations should also be organized in an invariant fash-
ion, even though they may show considerable spatial variability. 
We used fMRI and representational similarity analysis11 to uncover 
this invariant organization and found that the fine-grained spatial  
activation patterns in M1 and S1 can be quantitatively predicted by 
the natural statistics of hand use.

RESULTS
Activity patterns for single-finger movements are variable across 
individuals
Using high-resolution functional imaging, we measured the activity 
patterns in six healthy participants during key presses of individual 

fingers of the right and left hands12. We analyzed the activity pat-
terns for contralateral finger movements in the hand area of M1 and 
S1 for all available 12 hemispheres. Figure 1 shows a surface rep-
resentation of activity patterns in M1 for three individual subjects 
(see Supplementary Fig. 1 for equivalent maps in S1). As reported 
earlier5,6, there was no clear spatial segregation of finger activation 
patches. Instead, individual voxels were activated to varying degrees 
by all fingers, consistent with previous electrophysiological record-
ings that found that individual neurons have similarly broad tuning 
functions for finger movements2,3.

The activity patterns were replicable and stable in each participant 
and hemisphere: split-half correlations of the patterns in participants 
were r = 0.643 (95% confidence interval, 0.558–0.715) for M1 and  
r = 0.735 (0.677–0.784) for S1. We also tested the long-term stability 
of digit representations in a different set of nine participants. Activity 
patterns were measured four times over a period of 6 months (Online 
Methods). If finger-specific patterns were perfectly stable, then the 
inter-session correlation should be as high as the within-session  
split-half correlations (Fig. 2). Even after 6 months, correlations  
were only 13.0 ± 5.3% for M1 and 14.6 ± 3.8% for S1 below the  
theoretical maximum.

In contrast to this within-subject stability, the size, shape and exact 
location of the activated areas varied considerably across individuals 
and hemispheres (Fig. 1). There was some consistency: when averaging  
activity patterns across participants (Fig. 1), a blurry somatotopic 
arrangement became visible with the thumb activating more ven-
tral and the other fingers more dorsal areas of the motor strip. 
However, this organization only accounted for part of the replicable 
activity pattern; the correlation between the finger-specific activity 
patterns across all possible pairs of participants and hemispheres 
(Online Methods) was r = 0.103 (0.005–0.20) for M1 and r = 0.235  
(0.148–0.317) for S1. This was the case, even though the inter-subject 
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Fine finger movements are controlled by the population activity of neurons in the hand area of primary motor cortex. Experiments 
using microstimulation and single-neuron electrophysiology suggest that this area represents coordinated multi-joint, rather than 
single-finger movements. However, the principle by which these representations are organized remains unclear. We analyzed 
activity patterns during individuated finger movements using functional magnetic resonance imaging (fMRI). Although the spatial 
layout of finger-specific activity patterns was variable across participants, the relative similarity between any pair of activity patterns 
was well preserved. This invariant organization was better explained by the correlation structure of everyday hand movements 
than by correlated muscle activity. This also generalized to an experiment using complex multi-finger movements. Finally, the 
organizational structure correlated with patterns of involuntary co-contracted finger movements for high-force presses. Together,  
our results suggest that hand use shapes the relative arrangement of finger-specific activity patterns in sensory-motor cortex.
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normalization led to a relatively precise alignment of the hand knob 
area of the primary motor cortex (Supplementary Fig. 2a). When we 
also drove the normalization by functional criteria (Supplementary 
Fig. 2b and Online Methods), the inter-subject correlations increased 
to r = 0.244 (0.180–0.307) for M1 and r = 0.343 (0.279–0.404) for S1. 
Thus, even with additional functional alignment, only 38% (M1; S1, 
46%) of the reliable pattern variance across voxels could be accounted 
for by a systematic somatotopic arrangement shared across partici-
pants. The majority of the replicable pattern variance (M1, 62%; S1, 
54%) was a result of a stable, but subject-specific, organization.

Representational structure is invariant across subjects
We then asked whether these idiosyncratic patterns reflect random  
variation or whether their organization follows a common  
principle. Close inspection of Figure 1 reveals some common  
features: for example, in all participants, the patterns for ring and 
little fingers were more similar to each other than to the thumb  
pattern. Thus, an invariant organization may be found in the relative  
similarities between activity patterns of each pair of fingers, rather 
than in their exact spatial distribution. We quantified these similari-
ties using a cross-validated Mahalanobis distance (Online Methods)13, 
which calculates the sum of squared voxel-by-voxel differences 
in activation, with each voxel weighted by the multivariate noise  
structure. A small pattern distance between two fingers implies 
that voxels that are activated for one finger are also activated for the 
other. Note that this measure considers the activation patterns as an  
unordered vector of voxel activities (Fig. 3a) and therefore disregards 
the location of voxels on the cortical sheet.

The distances between the ten possible pairs of fingers per hand 
were then arranged into a dissimilarity matrix (Fig. 3b)11, which 
revealed a robust organization across individuals (see Supplementary 
Fig. 3 for equivalent dissimilarity matrix for S1). The distances 
between the thumb and the remaining fingers were large, indicating 
a distinct activity pattern for this digit. In contrast, distances between 
middle and ring fingers were generally small, reflecting large overlaps  

of activity patterns. Across subjects and hemispheres (Fig. 3c), the 
relationship between these ten possible finger distances was well pre-
served. The average pairwise correlation, excluding the diagonal, was 
r = 0.914 (0.873–0.943) for M1 and r = 0.924 (0.892–0.947) for S1. 
This invariance was not solely a result of the thumb; the inter-subject  
correlation remained high even when the thumb was excluded  
(average pairwise correlation r = 0.876 (0.819–0.916) for M1 and  
r = 0.904 (0.841–0.943) for S1).

To what degree is this invariance caused by the blurred somatotopic 
arrangement visible in the average activity pattern (Fig. 1)? To test 
this, we removed the finger-specific mean pattern (calculated after 
functional alignment) from each individual map and recalculated the 
distances using only the subject-specific component. The resulting 
distance structure remained nearly unchanged and the inter-subject  
correlation remained high (r = 0.894 (0.834–0.933) for M1 and  
r = 0.863 (0.810–0.902) for S1), indicating that even the subject- 
specific patterns exhibited a common organization. This organization 
can be visualized in two dimensions using multidimensional scaling 
(Fig. 3d and Online Methods), reflecting the uniqueness of the thumb 
pattern, the orderly arrangement of the other fingers, and the fact that 
first digit is closer to the fifth than the third and fourth digits.

Together, these results reveal an invariant representational  
structure11,14 for cortical finger representations. Specifically, the 
similarity between activation patterns for all possible finger pairs 
was highly preserved across individuals. This invariance was even 
present in the individual fine-grained patterns of activity and could 
not be explained by the common somatotopic arrangement of finger 
activation patches.
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Figure 1  Evoked activity patterns during single finger presses of the left 
hand in the hand area of the right primary motor cortex, recorded from 
three different participants at 3T. Results were normalized to a surface-
based atlas. The dotted line indicates the fundus of the central sulcus. 
The upper inset shows the average sulcal depth. The last row shows the 
activity patterns averaged across all six participants. The hand knob1 is 
located at the M1 label.

0.6

0.5

0.4

0.3

0.2

P
at

te
rn

 c
or

re
la

tio
n

0.1

0
0 4 12

M1 S1

24

Weeks since first session

0 4 12 24

Figure 2  Pattern stability across a period of 6 months in a group of nine 
separate participants. The correlation for week 0 is the split-half reliability 
of finger-specific patterns in the first testing session. Subsequent weeks 
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first session with patterns recording 4–24 weeks later. To make these 
values comparable to the split-half correlations, we based between-
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patterns remained perfectly stable. Error bars (and shaded areas) indicate 
between-subjects s.e.m.
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Representational structure at a higher spatial resolution
To ensure that the measured representational structure is not an artifact 
of the spatial averaging induced by the relatively low spatial fMRI resolu-
tion (3T scanner, 2.3-mm isotropic), we replicated the experiment using 
a higher resolution in a separate group of seven subjects (7T scanner,  
1.4 mm isotropic). As in the 3T experiment, the representational struc-
ture of finger movements was characterized by similar patterns for the 
ring and little finger movements, with the thumb patterns being clearly 
distinct (Supplementary Fig. 4). This representational structure was 
again stable across individuals (r = 0.803 (0.753–0.843) for M1 and  
r = 0.846 (0.797–0.884) for S1) and was highly correlated across the  
3T and 7T experiments (r = 0.964 for M1, r = 0.950 for S1).

Natural statistics of hand use predicts single-finger pattern distances
Thus far, we have shown that the relative similarities (or overlap) 
between activity maps associated with single finger movements is 
highly preserved across individuals, even though the maps them-
selves exhibit large inter-individual variability. This suggests that the 
development of individual maps is guided by some factor that ensures 
that they all arrive at the same representational structure, without 
dictating their exact spatial layout. What is this factor?

We considered the idea that the structure of activation patterns 
is determined by the way we use our hands in everyday life15. Our 
everyday activities and interactions with objects impose a strong  
correlation structure on our finger movements16,17. For example, the 
middle and the ring fingers often move together to facilitate grasping, 
whereas the thumb typically moves independently10.

We predicted that frequently co-occurring finger movements 
would lead to strong associations between the cortical modules that 
encode them. When an individual finger is moved, activation would 
automatically spread to these associated circuits. Thus, the hand-
usage model predicts that fingers that often move together would 
also be associated with similar activation patterns. It should be  
noted that the measured activation does not necessarily imply that 
associated muscle activity is evoked, given that the BOLD signal 
mainly reflects synaptic processes, rather than spiking of output 
neurons18–20. Furthermore, pyramidal tract neurons can show  
substantial increases in firing without measurable changes in muscle  
activity21. Indeed, although the middle and ring fingers were  
associated with overlapping patterns of cortical activity, participants 
were able to individuate the two fingers well, with minimal force 
produced by the neighboring finger (right hand, 0.031 ± 0.02 N;  
left hand, 0.076 ± 0.0257 N).

To quantify predictions for the hand-usage model, we used an  
existing data set10 in which six participants went about their daily 
activities while movements around 19 finger joints of the right hand 
were measured for 2–4 h per subject. Given that our task mainly 
required flexion of the metacarpal (MCP) joints, only movements 
around these five joints (Fig. 4a) were considered. We then calculated 
the Euclidean distances (Fig. 4b) between the standardized absolute 
joint velocities for each pair of fingers, with small distances reflecting 
highly correlated movements.

The hand-usage model explained the observed pattern distances 
quite well (Fig. 4c–f), with correlations reaching r = 0.897 (0.848–
0.931) for S1 in the 7T data set. The maximum achievable correlation 
is bounded by the measurement noise on the distance structure of 
each individual; this noise ceiling can be estimated on the basis of the 
inter-subject reliability of the distance structures (Fig. 4e,f and Online 
Methods). Although the correlation was clearly below its theoretical 
maximum for the 3T data, it fell close to the estimated bounds for the 
7T data. This is largely because the distance between thumb and index 
patterns (distance 1–2) was estimated to be larger using higher resolu-
tion imaging (Fig. 4c,d), suggesting that these neighboring activation 
patches were better resolved at 7T. Overall, the data suggests that the 
similarity structure of cortical activation patterns closely reflect the 
co-occurrence of movements made in everyday life.

No differences between dominant and non-dominant hands
We found no differences in the representational structure between 
right (dominant) and left (non-dominant) hands (ANOVA on hand 
differences; M1, F9,50 = 0.33, P = 0.962; S1, F9,50 = 0.39, P = 0.936). This 
lack of a difference raises the question of whether everyday usage pat-
terns differed between hands. To investigate this, we used an unpub-
lished data set22 in which kinematic data was recorded for both hands 
while eight healthy right-handed participants performed everyday 
tasks. Although the predicted distance structure for the right hand 
correlated highly (r = 0.936) with the one derived from the older data 
set10, there were no significant differences between the structure of 
distances for the dominant and non-dominant hands (F9,70 = 1.71, P = 
0.105; Supplementary Fig. 5b,c). Thus, although the dominant hand 
generally showed more activity, the correlation structure between fin-
gers was not appreciably different from the non-dominant hand.

Alternative models for single-finger pattern distances
Even though the hand usage model predicted the single-finger  
pattern distances well, the fit needs to be evaluated against other  
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Figure 3  Representational structure of finger 
movements in M1. (a) Activity patterns were 
concatenated into vectors of activations  
across voxels. Each row of the matrix constitutes 
the tuning function of a voxel over the five 
fingers, and each column represents the  
activity pattern for one of the fingers.  
(b) Cross-validated Mahalanobis distances 
between patterns for all digits in right M1 for 
the three participants depicted in Figure 1.  
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by the alignment. See Supplementary Figure 3 
for equivalent analysis for S1.
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competing models. We first considered how well an orderly soma-
totopic arrangement of digits along the cortical strip could explain 
the representational structure. For this model, finger activations 
patches were assumed to be overlapping Gaussian kernels sequentially 
arranged along the cortical strip (Fig. 5a). From these activation pat-
terns, a predicted distance structure was calculated (Fig. 5b). The spa-
tial width of the kernels (in arbitrary units with an inter-digit spacing  
of 1) was estimated to best fit the distance structure for each  
individual subject (1.55 ± 0.21 for M1 and 1.20 ± 0.41 for S1). The 
somatotopic model did not correlate with the cortical distances as 
well as the hand-usage model (Fig. 4e,f). Combined over the 3T 
(six participants × two hemispheres) and 7T (seven participants), 
this difference was significant for M1 (two-sided t test, t18 = 3.083,  
P = 0.006) and for S1 (t18 = 3.843, P = 0.001).

Alternatively, we considered that the representational structure 
reflects the patterns of muscular activation associated with each 
movement, independent of natural use. The cortical activity pat-
terns for the middle and ring fingers may have been similar because 
similar muscles are activated for movements of these two fingers. 
If M1 is assumed to represent hand muscles in an overlapping, yet 
independent, fashion (Online Methods), then the similarity of cortical 
activity patterns can be directly predicted from the similarity of the 
corresponding muscular activity patterns.

To test this idea, we recorded electromyogram (EMG) signals from 
14 surface electrodes (Fig. 5c) while a separate set of seven subjects 
performed single-finger movements outside of the scanner. The dis-
tinct patterns of activity for each of the five individuated finger presses 
(Fig. 5d) were used to estimate the distance structure for the muscle 
model (Fig. 5e). Although this model correlated relatively well with 
the measured fMRI distances (Fig. 4e,f), the hand-usage model pre-
dicted the observed cortical activation pattern distances significantly 
better. This was the case for 15 of 19 measured hemispheres in M1  
(t18 = 3.236, P = 0.005) and in 16 of 19 in S1 (t18 = 3.642, P = 0.002).

To summarize, our data suggest that the similarity structure of 
cortical activation patterns more closely reflects the co-occurrence 
of hand movements in everyday life than the similarity of muscle 
activations. The relatively good prediction by both models, however, 
also indicates that there is a tight correspondence between how we 
use our hands and the structure of muscle activity patterns necessary 
to generate these movements.

Natural statistics predicts multi-finger distances
Although the agreement between natural movement statistics and the 
cortical activity patterns for single-finger movements is suggestive, 
real tasks typically require the coordinated movements of multiple 
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at 3T (e) and 7T (f). Error bars indicate s.e.m. and gray region indicates 
estimate of the best possible model fit (Online Methods).
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fingers10. The hand-usage model should therefore be able to predict 
the representational structure for complex multi-finger movements.

To test this idea, we asked eight participants to perform multi- 
finger presses with their right hand while we measured corresponding  
activity patterns using fMRI at 3T. Participants were trained to  
produce a series of finger configurations (Fig. 6a), each involving 
simultaneously pressing down with the instructed fingers while  
maintaining a baseline force with the others23. The entire set of 31 
configurations resulted in a total of 465 pairwise distances. As with 
the single-finger task, the representational structure for the multi-
finger task was notably stable across individuals, with an average 
inter-subject reliability of r = 0.681 (0.646-0.713) in M1 and r = 0.765 
(0.735-0.792) in S1.

To evaluate whether this invariant representational structure could 
also be predicted by hand use, we averaged the angular velocities of 
the active fingers in the natural statistics data set. As for the single-
finger task, we then determined the Euclidean distance between the 
standardized time series. If two different configurations were both 
similar to a frequently occurring joint-velocity combination, then 
their resultant distance would be small (Fig. 6b). If, however, each 
configuration was similar to independently occurring movements 
(Fig. 6c), then their distance would be large. As predicted, the hand-
usage model correlated highly with the cortical distances (r = 0.667 
(0.596–0.727) for M1 and r = 0.738 (0.683–0.784) for S1; Fig. 6d,e).

Alternative models for multi-finger pattern distances
As with the single-finger experiment, we explored a range of  
competing models for explaining the multi-finger pattern distances 
(Fig. 6d,e). First, we considered the muscle model. EMG activity was 
recorded in a separate group of seven participants who performed  
the multi-finger task and the distances between all possible pairs  
of 31 muscle activation patterns were calculated. The correlations  
of the muscle model with the cortical distances were lower than 
those for the hand-usage model for all eight subjects, with the  
difference being highly significant (t7 = 7.015, P = 0.0002.1 in M1 and 

t7 = 4.227, P = 0.0039 in S1). This result cannot be explained by  
differences in reliability of the measures underlying each model 
(Online Methods).

We then considered the possibility that the predictions of the hand-
usage model are simply a result of the physical similarity of joint  
movements for two configurations (the distance between C1 and C2; 
Fig. 5b,c) rather than the probability density of natural movements. 
We therefore correlated the cortical distances with the Euclidian 
distance between the normalized movement vectors for each con-
figuration, without taking the natural statistics data in account. The 
correlations were lower than for the hand-usage model (Fig. 6d,e), 
indicating that the statistics of natural movement rather than the 
physical similarity of the configurations are critical for the model’s 
goodness of fit.

We also investigated whether the representation of finger movements 
is shaped by a combination of both hand usage and muscle activity.  
Cross-validation was used to prevent over-fitting in this combined 
model, with the mixture proportion for the two models estimated on 
seven participants and the fit evaluated on the eighth. Including muscle 
activity distances into the predictions of the hand-usage model did not 
significantly improve the fit in M1 (t7 = 1.405, P = 0.203), but did lead 
to significant improvements in S1 (t7 = 4.787, P = 0.002).

Finally, we determined whether the observed distance structure for 
multi-finger movements could be predicted by a linear combination of 
the single-finger representations. When the measured distances from 
the single-finger task were used to predict the structure in the multi- 
finger experiment, low correlations were obtained (Fig. 6d,e), indicating  
that nonlinear interactions between different fingers need to be taken 
into account. In sum, these results strongly suggest that hand usage, 
rather than anatomical constraints, shape the reliable cortical repre-
sentations for both simple and complex finger movements.

Pattern distances correlates with structure of finger enslaving
What are the behavioral consequences of this representation?  
We hypothesized that, through intra-cortical connections, activity  
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Figure 6  Multi-finger configuration task. 
(a) The side panels show the tested 31 
configurations, with white squares indicating 
that the corresponding finger had to exert a 
force of >2.6 N and black squares indicating 
that the finger had to stay relaxed on the 
keyboard. Middle, average pattern distances 
between the 31 configurations for primary 
motor cortex. (b,c) For the hand usage model, 
the distance between two configurations C1 and 
C2 will be small if they are similar to the same 
synergy (b), and large if they associated with 
different independent features of the underlying 
joint movement distribution (c). (d,e) Correlation 
between predicted and measured distances for 
the multi-finger configuration task in M1 and 
S1. Error bars indicate s.e.m. and gray region 
indicates the estimated range of the noise ceiling.
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Figure 7  Enslaving during single finger movements. (a) Averaged co-
contraction (r.m.s. relative to baseline) in the un-instructed fingers when 
seven participants produced a 75% of maximal force with the instructed 
finger. The matrix was symmetrized. The average inter-subject reliability 
of the enslaving pattern was r = 0.620 (0.457–0.742). (b) Spearman rank 
correlation between the structure of force enslaving and the hand-usage 
and muscle models. Error bars indicate s.e.m. and gray region indicates 
estimates of the upper and lower bounds of the best possible model fit.
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associated with an isolated finger movement spreads to circuits 
associated with normally co-occurring movements. As pointed out 
above, this overflow did not lead to substantial force production in the 
uninstructed fingers for the low force levels required during imaging.  
However, during near-maximal or maximal voluntary contrac-
tions (MVCs), neighboring fingers often show co-contraction, or  
‘enslaving’24. We therefore predicted that enslaving would be stronger 
for finger pairs with similar activity patterns and weaker for pairs 
with distinct patterns.

To test this idea, we asked seven participants to perform individu-
ated finger presses at 75% of MVC (Online Methods). The result  
(Fig. 7a) shows the well-known co-contraction of neighboring  
fingers24. Enslaving was also found between the thumb and little  
finger, reminiscent of the smaller distance between thumb and little 
finger pattern in the cortical representation. Indeed, the enslaving 
structure correlated more negatively (that is, better, as small distances 
predict stronger enslaving; Fig. 7b) with the cortical than with the 
muscular distances (t6 = 4.903, P = 0.003). This result is consistent 
with the notion that enslaving has, in part, a cortical origin25–27.

DISCUSSION
Our results uncover an invariant representational structure for simple 
and complex hand movements in M1 and S1. The relative similarities  
between activity patterns11,14 were preserved across individuals, 
despite the substantial spatial inter-subject variability of the activity 
patterns themselves. The representational structure remained invar-
iant even when the shared somatotopic arrangement of the digits 
was removed from the data. This suggests an organizing mechanism 
that shapes the overlap between patterns without enforcing a regular  
spatial layout.

The representational structure could be predicted by the natural 
statistics of hand use. Especially for complex multi-finger movements, 
the usage model outperformed a muscle model, which tested the 
idea that two cortical activity patterns are similar simply because the 
associated movements require similar muscles. This model assumes 
that the activity patterns associated with each muscle movement are 
uncorrelated in M1, ignoring the natural statistics of muscle activity. 
Thus, the inferior fit of the muscle model does not necessarily indicate 
that M1 represents movements rather than muscles28, but that such 
muscle representations must be highly structured. Indeed, our results 
are compatible with the idea that representations of single muscles 
are predictable from the correlations between muscle activities during 
everyday movements9. However, because humans cannot voluntarily 
activate individual hand muscles, we needed to base our predictions 
on correlations between individual finger movements rather than 
between individual muscles activations.

Two studies have shown that the movements elicited by cortical  
stimulation resemble the main elements of everyday action7,9. 
However, the fact that M1 output reflects the structure of natural 
hand use does not necessarily imply that fMRI activity patterns should 
do so as well, as these mostly reflect excitatory synaptic activity20. On 
the contrary, if the cortex had simply evolved to optimally activate 
neural synergies that are encoded in the spinal cord, then M1 would 
have to produce two very different activity patterns to individuate two 
fingers that normally move together29. We found that the correlation 
structure of everyday hand use also dictates the similarity structure of 
cortical activity patterns. The overlap of these patterns is most likely 
determined by the strength of intra-cortical connections within M1. 
The spread of activation along these connections could also explain 
the patterns of muscle activity elicited by cortical stimulation9,30, as 
well as the pattern of finger-enslaving at high force levels.

As a result of the inherently limited spatial resolution, the similarity  
between fMRI patterns can only measure the similarity of the under-
lying neural population activities if functionally similar circuits are 
sufficiently clustered. The higher spatial resolution at 7T allowed us to 
resolve thumb and index finger representations better and improved 
the fit of the hand-usage model. Nonetheless, many important  
aspects of the spatial activity structure may remain invisible to  
fMRI investigations.

A second limitation of our study was that the hand-usage model was 
based only on movement kinematics and did not take into account 
contact forces or sensory input. However, the similar representational 
structures in M1 and S1 raise the possibility that the observed patterns 
reflect, to a large degree, how sensory information from the skin,  
muscles and tendons is represented on the cortical sheet. Because  
sensory input it most often caused by movement, it is likely that 
the statistical structure of sensory input is tightly related to that of 
movement. Furthermore, sensory information from each part of 
the hand projects to the circuits involved in making the associated 
movements31,32. In fact, we observed high correlations in activity  
patterns between movements and sensory stimulation5. This tight 
correspondence makes it difficult to experimentally dissociate  
sensation and movement.

Overall, our data provide a quantitative evaluation of the idea that 
hand usage shape cortical representations15 and is consistent with the 
idea that the invariant representational structure is the result of an 
unsupervised learning process that arranges finger representations 
on a two-dimensional cortical sheet. Through this learning process,  
movements that frequently occur together are mapped together  
following a ‘like attracts like’ principle33. For example, under a general-
ized Hebbian learning rule, the synaptic weights of a cortical network 
would represent the principal components of the natural statistics 
data34. The resulting activity patterns associated with independent 
finger movements should therefore exhibit a correlational structure 
that matches that of the correlations occurring during everyday use. 
Given that the statistics of natural hand movements are very similar  
across individuals10, this learning rule will tightly determine the  
relationships between activity patches for different movements.

In contrast, the spatial arrangement of maps resulting from such a 
learning process can be much more variable15. This is because many 
different spatial arrangements satisfy the same representational struc-
ture, and the choice between these possible solutions will be determined 
only by slight differences in initial conditions. Thus, invariances in the 
spatial arrangement, such as the consistent ventral-dorsal somatotopic 
organization of the digits must be determined by alternative mecha-
nisms, such as molecular gradients during development35,36.

Our results suggest that the intrinsic connectivity of motor cor-
tex is shaped the probability distribution of its activation states37. 
Quantifying this invariant representational structure constitutes a 
crucial first step toward understanding cortical changes associated 
with learning, aging or disease.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
All experimental procedures were approved by the research ethics committees at  
University College London, Johns Hopkins University, Columbia University and 
University of Zurich. No power calculation was used to pre-determine sample sizes 
but our sample sizes are similar to those reported in previous publications12.

fMRI single-finger experiment at 3T. The empirical data are drawn from a 
published paper12. Six healthy right-handed participants (two females, four males, 
mean age = 25.9 years, s.d. = 5.1) performed individuated finger movements using 
both their left and right hands. Participants placed their fingers on a custom-built 
keyboard device with ten piano-like keys. Each key was equipped with a force 
transducer (Honeywell FS series) that measured the applied force with a repeat-
ability of <0.02 N. Visual feedback was provided via a back projection screen.

Each trial started with the presentation of a keyboard outline with the target 
key highlighted in green for 1.36 s. The instruction was then removed and a go-
cue signaled participants to make a short isometric force press with the instructed 
finger. The finger press needed to exceed 2.3 N, in which case the cue turned blue. 
After 1.36 s, the cue turned white again, signaling the next finger press. After five 
finger presses, the trial (total length of 8.16 s) ended.

During task performance, functional images were acquired using a 3T Siemens 
TRIO scanner with a 32-channel head coil. For each participant, eight runs were 
conducted, using a two-dimensional echo-planar imaging sequence (TR = 2.72 s,  
32 slices, 126 volumes per run, slice thickness 2.15 mm, 0.15-mm gap, in-plane 
resolution 2.3 × 2.3 mm2). Each run consisted of three repetitions of each of the 
ten fingers in random order, plus five randomly interspersed rest phases last-
ing 13.6–16.3s. A T1-weighted anatomical scan (3D MPRAGE sequence, 1-mm 
isotropic, 240 × 256 × 176 mm FOV) was also acquired.

fMRI experiment to assess stability across sessions. In a separate study, we estab-
lished the stability of digit representations in M1 and S1. Nine healthy control 
participants were scanned four times over the course of a 6-month period, at 
weeks 0, 4, 12 and 24, performing the single finger task with their left and right 
hands. Functional scan were obtained on two different 3T Achieva Philips systems 
(Johns Hopkins University and University of Zürich). Otherwise, the protocol was 
identical to the one described above, although only four fingers (excluding the 
ring finger) were tested. All functional scans were aligned to the anatomical image 
obtained in the first testing session and re-sliced into the same voxel space.

fMRI single-finger experiment at 7T. Seven subjects (four females, three 
males, mean age = 25.6 years, s.d. = 2.6) were placed inside a Siemens 7T scan-
ner (FMRIB). Functional images were acquired at a 1.4-mm isotropic resolution 
(TR = 3.0 s, 47 slices, 107 volumes per run). The design was identical to the one 
employed in the 3T study, although only the activity patterns associated with the 
five digits of the right hand were measured.

fMRI multi-finger experiment at 3T. The multi-finger experiment was similar in 
structure to the 3T single-finger experiment and consisted of eight healthy right-
handed participants (four male, four female, mean age = 23.3 years, s.d. = 2.8). 
Participants were first trained to produce each of the 31 possible combinations 
of finger presses with the right hand over a period of 3 d (1.5 h d−1). Following 
training, participants then performed the multi-finger task inside the scanner 
while functional imaging data was collected.

Following the presentation of the instruction cue, which showed the target 
finger highlighted in green (2 s), participants made three short isometric presses 
of the instructed finger configuration. Participants were required to maintain a 
baseline force of 0.6 N with the passive while reaching a force of 2.6 N on each of 
the instructed fingers. Each trial lasted 13.5 s and each of the 31 possible finger 
configurations was tested once per imaging run. Each participant was scanned 
over three sessions (1.5 h per session) for a total of 24 imaging runs.

Imaging analysis. Functional data was realigned for motion across runs and sessions, 
co-registered to the individual anatomical scan, and then analyzed with a generalized 
linear model using a separate regressor for each finger/configuration and run. The acti-
vation of each trial was modeled using a boxcar function (duration: 8 s for single-finger, 
10.8 s for multi-finger task) and convolved with a standard hemodynamic response 
function. The regression parameter estimates and residuals from this analysis were 
then used to calculate the distance measures and pattern correlations (see below).

Anatomical T1 images were used to reconstruct the pial and white-gray mat-
ter surfaces using Freesurfer38. Surfaces were registered across participants and 
hemispheres using spherical alignment. Individual surfaces were morphed to 
match a template, first in terms of the sulcal depth map, and in a second step in 
terms of the local curvature, resulting in a nearly perfect overlap of the fundus of 
the central sulcus across participants39 (Supplementary Fig. 2a).

The anatomical regions of interest (ROIs) were defined on the group surface 
using probabilistic cytoarchitectonic maps aligned to the average surface40. These 
regions were then projected into the individual brains via the reconstructed indi-
vidual anatomical surfaces. This approach ensures a precise definition of ROIs, 
respecting the individual’s folding anatomy. To analyze the hand representation in 
M1, all surface nodes with the highest probability for Brodmann area (BA 4) 2 cm 
above and below the hand knob1 were selected. Similarly, the hand region in S1 
was isolated using BA 3a, 3b, 1 and 2 (combined), again 2 cm above and below the 
hand knob. To avoid possible contamination of signals across the central sulcus, 
all voxels that had more than 25% of their volume located on the opposite side 
of the sulcus were excluded.

Evaluation of activity patterns. For the visual display of finger representations 
in M1 (Fig. 1) and S1 (Supplementary Fig. 1), t values (each finger > rest) were 
projected onto a flattened version of each individual surface. As in the ROI  
definition, a 25% exclusion criterion was used to avoid artificial mirroring of 
signals across the sulcus.

To evaluate the within-subject reliability of activation maps, we split the 
functional data into two halves (odd and even runs) and subtracted the 
mean activity pattern (averaged across fingers) from each half. The average  
correlation between patterns for the same finger across the two halves was 
then calculated.

To evaluate the consistency of activation maps across participants, we cal-
culated the average correlation between all possible aligned functional maps 
of the same finger. To make the correlations comparable to the within-person 
correlations, each map was based on half the data and each pairing of halves 
was used. If the activity patterns are assumed to be composed of a pattern com-
ponent that is shared across participants (α), a component that is systematic, 
but idiosyncratic to each participant (β), and a noise component (ε), then 
we can determine the amount of shared variance (sa

2 ) as a proportion of the 
total explainable variance (s sa b

2 2+ )41 from the average within- and between- 
subject correlations. Under above assumption the within-subject correlation  
is r = + + +( )/( )s s s s sa b a b e

2 2 2 2 2 , and the average between-subject correlation 
is r = + +s s s sa a b e

2 2 2 2/( ).
For inter-subject alignment, we initially relied on anatomically driven  

normalization (see above), which superimposed the hand knob area well across 
participants (Supplementary Fig. 2a). We also judged the functional alignment, 
by mapping the average pattern distance (see distance measures), averaged over 
all 10 digit pairs, onto the flat-map (Supplementary Fig. 2b). Areas with large 
distance indicate regions in which movements of single fingers evoked signifi-
cantly different activity patterns. To further improve the inter-subject alignment, 
we started from the solution found by anatomical normalization and then locally 
optimized (on 5 × 5-cm large sheet around the hand area) the correlation between 
functional distance maps of each participant/hemisphere and a group-averaged 
functional map. The shifts of the maps required for the improved functional 
alignment were on average 0.63 mm (s.d. = 0.67 mm) in each of the spatial direc-
tions. Even though these shifts were rather small, they led to some increases in the 
correlation between the finger-specific patterns across participants.

Stability of finger representations. The stability of the digit-specific activity 
patterns was also estimated by dividing the data from each session into odd 
and even runs. The mean activation pattern was then subtracted for each 
half separately. For each ROI, we then calculated the voxel-by-voxel correla-
tion between patterns associated with the same finger, either between the two 
halves in a single session (within-session correlation) or between any of the 
halves of two different sessions (between-session correlation). If the activity 
patterns did not change at all, the correlation between session i and j should be 
as high as the within-session correlations for each session, or, more precisely, 
equal to the geometric mean of the split-half correlations for session i and j, 
r r ri j i i j j, , ,= . This value therefore constitutes a reference value for absolutely 
stable activity patterns (Fig. 2).
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Distance measure. The dissimilarity between the activation patterns was  
measured for each finger pair (xi, xj) within each hand using the cross-validated 
Mahalanobis distance13 

di j i j A
T

i jB BA,
//( ) ( )2 1 21 2= − −−− ∑∑x x x x  

where A and B signify data from independent crossvalidation folds. Here we 
calculated the distances using each possible pair of imaging runs and then aver-
aged the resulting distances. Crossvalidation has the advantage of ensuring that 
the expected value of d is zero if two patterns are not statistically different from 
each other. Therefore, the average inter-digit distance can be taken as a functional 
criterion to detect regions that differentiate between the finger movements of 
a hand. The PxP noise covariance between voxels (Σ) was estimated from the 
first-level regression model of the original time series for each run separately 
and regularized to ensure invertibility42.

Similar results were also obtained when using correlations between activity 
patterns as a distance measure, with large correlations corresponding to small 
distances. We used here Mahalanobis distances, as they take into account the 
multivariate noise structure and do not dependent on the activity baseline.

Inter-subject invariance of the distance structure was quantified by calculating 
the correlation of the ten distances (for each digit pair) across all possible pairs of 
participants. The calculation excluded the diagonal of the dissimilarity matrix.

To visualize the distances between all possible finger pairs, we used classical 
multidimensional scaling (MDS). MDS projects the N-dimensional dissimilarity 
matrix into a lower-dimensional space such that the distances between finger pairs 
are preserved as well as possible43. MDS was performed on data from individual 
participants, and the projections averaged after Procrustes alignment. Because 
Procrustes alignment does not only remove the arbitrary rotation induced by 
MDS, but also some of the true inter-subject differences, the standard error-
ellipses in all MDS plots were inflated by 1.9, a factor estimated in Monte-Carlo 
studies using the structure and noise level found in this data set.

Statistical analysis of correlations. Correlations between activity patterns (across 
voxels) or correlations between distances (across finger pairs) were calculated for 
each participant/hemisphere separately. We Fisher Z-transformed these values and 
then calculated the mean and standard error. Assuming normality, we could then 
determine the lower and upper bounds of the 95% confidence interval. The mean 
and the bounds were transformed back into correlations and reported as such in 
the text. All statistical tests were performed on Fisher Z-transformed values.

Estimating the noise ceiling for model fits. Given that the cortical pattern dis-
tances were estimated in the presence of measurement noise, even a perfect model 
would not result in a correlation of 1 with the distance estimates from each sub-
ject. To estimate a noise ceiling for the fits, we calculated the average correlation 
of each individual distance structure with the group mean13, where the group 
mean serves as a surrogate for the perfect model. Because the individual distance 
structure is also averaged into this group mean, this value slightly overestimates 
the true ceiling. As a lower bound, each individual distance structure was also 
correlated with the group mean in which this individual was removed.

Natural movement statistics recording. The statistics for naturalistic hand 
movements in humans were taken from two independent studies. All reported 
model fits were based on a first study10, in which six healthy male subjects  
(ages 31–43) wore a cloth glove with imbedded motion sensors (CyberGlove, 
Virtual Technologies) while they pursued everyday activities. Hand movement 
statistics were collected for each participant across multiple sessions, on average 
for 2.8 h per participant. The sensors measured the angular positions across the 
19 degrees of freedom of the hand continuously at 83 Hz. Because our finger 
presses were mostly generated using the MCP joints, only data from these five 
channels were used.

The second study22 was used to assess differences of natural statistics across 
hands. Eight healthy right-handed participants performed everyday tasks within 
a bedroom, kitchen and office environment, while kinematic data was recorded 
simultaneously from both hands. As with the previous study, only data from the 
five channels corresponding to the MCP joints was used.

(1)(1)

Natural movement statistic model. For the single finger-experiment, we used 
the velocity time series corresponding to the MCP joints of the five fingers.  
To account for differences in scaling, each vector was normalized to a length  
of 1. The predicted distances were the Euclidian distances between these normal-
ized velocity vectors 

di j i j
T

i j, ( ) ( )= − −v v v v

Because of the normalization, this distance will be small if vi and vj are highly 
correlated and large when they are uncorrelated. For the multi-finger experiment, 
MCP velocities were first averaged for all instructed fingers for each configu-
ration, and then the distances between these 31 normalized time series were 
calculated as for the single-finger model.

Somatotopic model. For this model, we assumed that the finger activation 
patches were arranged linearly and equidistant along the cortical sheet and had 
the shape of a Gaussian kernel with the same width. The degree of overlap was 
estimated to best fit the pattern distances from each participant. We then calcu-
lated the Euclidean distance between the Gaussian finger activation patterns, as 
for the experimental data.

Instead of assuming an equidistant arrangement, we also attempted to estimate 
the centers of the kernels by determining the center-of-gravity for each finger on 
the two-dimensional surface from the actual data. The resulting correlations of 
this model with the real cortical pattern distances, however, were lower than for 
the equidistant arrangement.

Muscle activity recording. Seven healthy volunteers (different from the imaging 
participants, one male, six female, mean age = 23.1 years, s.d. = 3.8) performed 
the single- and multi-finger tasks with the right hand while EMG activity was 
recorded from 14 locations along the dorsal and palmar surfaces of the hand and 
the forearm (Fig. 2a). Similar to the imaging task, participants were required to 
produce isometric forces, with either individual or multiple fingers, at a level 
specified by 25% of MVC for each finger (average finger forces, 4.8 ± 1.0 N). Each 
trial consisted of a short announce phase (2–3 s) following which the subject had 
to press and maintain force on the instructed finger(s) for approximately 3–4 s.  
A total of 15 blocks were measured per participant, each block containing a single 
repetition per trial type (participant 6 had only ten blocks).

Muscle activity was recorded using 14 high-density Ag/AgCl electrodes in 
a belly-tendon montage while the participant performed the task. The signal 
from each electrode was sampled at 1,000 Hz, de-meaned, rectified and low-pass 
filtered (fourth order butterworth filter, fc = 40 Hz). Finally, the processed EMG 
signals were averaged across each trial over a 3.5-s time window starting from 
the time when the instructed finger(s) first moved.

Muscle model. As for the fMRI analysis, cross-validated Mahalanobis distances 
(equation (1)) were used to determine the similarity of movements in muscle 
space. This distance metric is robust against changes in the scaling of the raw 
EMG signals in each channel, and in how signals from different muscles mix in 
the measurement electrodes.

The only assumption that needs to be made is that the measured signals  
(y, a 14x1 vector) reflect an arbitrary linear mixture of activity of a set of muscles 
or muscle groups (x), y = Ax. If the trial-by-trial variability on y is assumed to 
be mostly caused by variability in the underlying muscle activity (x), then the  
variance-covariance matrix of the sensor signals (y) depends only on the variance-
covariance matrix of the muscles (Σx) and the mixing matrix A A A: Σ Σy x

T= .  
Thus the squared Mahalanobis distance between two actions i and j in  
sensor-space (y) is equal to the Mahalanobis distance between the two actions 
in muscle space 

d i j
T

i jy

i j
T T T

x i j

i j

2 1

1

= − −

= − ( ) −

= −

−

−

∑

∑

( ) ( )

( ) ( )
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y y y y
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This holds for any arbitrary A, as long as it is invertible (that is, as long as we 
measure with as many electrodes as muscle groups of interest). The average inter-
subject reliability of the distance measure for the multi-finger experiment was  
r = 0.707 (0.668–0.742), providing evidence that a reasonable degree of invari-
ance was indeed achieved.

Production of individuated finger movements requires the co-activation of 
specific combinations of muscles. The muscle model tested whether the rep-
resentational structure can be explained by the correlation structure of muscle 
activity alone, without assuming any special correlation structure that is imposed 
by usage. Because both EMG signals and fMRI signals are weighted by their 
reliability (implicit in the Mahalanobis distance), this model also assumes that a 
muscle or muscle group that is reliably activated during the task would also have 
a reliable cortical representation.

Equating model predictions for reliability. One concern in the comparison 
of hand usage and muscle and models is that their predictions are derived from 
measured and therefore potentially noisy data. The predicted distances based  
on the data from a single participant will consist of a variance component  
that is shared across participants (sa

2 ), and one that is that is unique to that 
participant or due to noise (se

2). Because the EMG and hand kinematics are 
measured from a separate set of participants, only the shared component can  
correlate with the fMRI distances. The average inter-subject correlation of  
predicted distances provides us with an estimate of the proportion of the shared 
component relative to the total variance, with r = +s s sa a e

2 2 2/( ). This is a con-
cern as the inter-subject reliability was r = 0.681 (0.646–0.713), for the muscle 
model and 0.972 (0.966–0.977) for the hand usage model.

To equate the proportion of systematic variance across hand-usage and muscle 
model, we compared the mean prediction averaged over all seven participants 
for the muscle model with the prediction based on the data from single subjects 
for the hand usage model. Given the independence of different participants, the 
reliability of the averaged muscle model can be estimated to be r = 0.942, roughly 
matching the reliability of a single subject for the natural statistics data.

Despite nearly equated reliability, the cortical distances correlated signifi-
cantly better with prediction of the hand usage model (averaged over individual  
subjects from the natural statistics data set) than with the average prediction  
from the muscle model, both for M1, t7 = 7.015, P = 0.0002.1, and for S1,  
t7 = 4.227, P = 0.0039.

Estimating finger independence during movement. To estimate the degree of 
co-contraction of adjacent fingers, the participants of the muscle recording study 
performed the same task at 75% MVC. Averaged across fingers, participants 
produced forces of 14.5 ± 2.9 N. The r.m.s. force deviation for each uninstructed 
finger from the pre-trial baseline was calculated. These values were then arranged 
in an enslaving matrix that shows the involuntary force change across passive 
fingers for presses of the instructed finger. Given the symmetry of the hand-
usage and muscle models, this matrix was symmetrized for model comparison 
purposes. Spearman-rank correlations were used for model evaluation, as a linear 
relationship could not be assumed.

A Supplementary Methods Checklist is available.
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