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Temporal Evolution of Spatial Computations for Visuomotor
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Goal-directed reaching movements are guided by visual feedback from both target and hand. The classical view is that the brain extracts
information about target and hand positions from a visual scene, calculates a difference vector between them, and uses this estimate to
control the movement. Here we show that during fast feedback control, this computation is not immediate, but evolves dynamically over
time. Immediately after a change in the visual scene, the motor system generates independent responses to the errors in hand and target
location. Only about 200 ms later, the changes in target and hand positions are combined appropriately in the response, slowly converging
to the true difference vector. Therefore, our results provide evidence for the temporal evolution of spatial computations in the human
visuomotor system, in which the accurate difference vector computation is first estimated by a fast approximation.
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Introduction
Reaching for a glass of water, playing badminton, or shaking
someone’s hand— goal-directed movements are a critical part of
everyday life. The sensorimotor control system continuously uses
visual information about both target and hand to successfully
achieve the movement goal (Georgopoulos et al., 1981; Saunders

and Knill, 2003, 2004; Dimitriou et al., 2013). According to the
classical view, the brain extracts estimates of target and hand
positions from a visual scene, calculates a difference vector be-
tween them, and uses this signal to compute the required motor
commands (Cisek et al., 1998). Given that online motor correc-
tions respond to changing visual information at time lags in the
range of 100 –120 ms (Day and Lyon, 2000; Franklin and Wolp-
ert, 2008; Reichenbach et al., 2014), these computations have to
be executed very quickly.

A complex network of parietal regions contains distinct neural
populations encoding target position (Batista et al., 1999), hand
position, or velocity (Ashe and Georgopoulos, 1994; Averbeck et
al., 2005), as well as their mixture (Buneo et al., 2002), in both
eye-centered and hand-centered coordinates (Buneo and Ander-
sen, 2006). Neurophysiological recordings suggest that the two
spatial positions are encoded in a neural population code with
neurons possessing spatially receptive fields (Duhamel et al.,
1997). From this representation, the calculation of a difference
vector requires an intermediate layer of neurons with nonlinear
gain field combinations between these two inputs (Pouget and
Sejnowski, 1997). This problem is structurally equivalent to the
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Significance Statement

The dominant view regarding the neural control of reaching is that the visuomotor system controls movement based on the
difference vector—the difference between the positions of the hand and target. We directly test this theory by measuring the
responses to visual perturbations over a large range of possible variations in both target and hand displacements. By modeling
the nonlinearity of the feedback response, we were able to reveal the temporal evolution of the underlying computations. The
visuomotor system first uses an approximation to the difference vector computation, simply combining the nonlinear responses
to cursor and target displacements, only arriving at the correct difference vector calculation 200 ms later.
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exclusive-or problem, which cannot be solved in a single-layer
neuronal network (Minsky and Papert, 1987). The computation
of a motor response is additionally complicated by the necessity
to integrate signals in retinal, proprioceptive, and motor refer-
ence frames (Buneo et al., 2002). Therefore, the network may
require some time to converge on the correct difference vector
calculation. Hence, we hypothesize that the brain initially uses an
approximate computation to generate fast feedback responses when
the task goal seems compromised during an ongoing movement.
Specifically, we propose that it initially generates corrective re-
sponses to hand and target information independently, without in-
tegrating them before the output stage (multichannel model).

We use rapid feedback responses as a window into the tempo-
ral evolution of the computations integrating the visual signals
(Franklin and Wolpert, 2011a; Pruszynski et al., 2011). While
participants executed planar reaching movements to a visual tar-
get, we displaced the cursor that symbolized the hand, and the
target laterally, and measured the fast corrective feedback re-
sponses (Fig. 1A,B). All possible combinations of target and cur-
sor displacements were tested (Fig. 1C). According to the
difference vector model (Fig. 2A), the corrective response should
be a function of the difference between the target and the cursor
displacements (Cisek et al., 1998). However, visual target and
cursor estimates might be updated with different speeds (Brenner
and Smeets, 2003), or might be weighted differently because the
hand estimate is additionally informed by proprioception and
efferent signals (van Beers et al., 1999; Sarlegna et al., 2003).
Therefore, we additionally tested a more general version of the
difference vector model, the weighted difference vector model
(Fig. 2B). In contrast, the multichannel model proposes that
these visual signals are only integrated at a later stage (Fig. 2C).
Because the corrective response to an isolated target or cursor
displacement shows a nonlinear saturation with the size of dis-
placement (Fig. 1D,E), all three models make different predic-
tions for the response to a combined displacement (Fig. 2D).
These differences allowed us to track the temporal evolution of
the corrective response from an approximate response to the fully
integrated solution.

Materials and Methods
Subjects
Twenty neurologically healthy, right-handed (Oldfield, 1971) human
subjects (15 females) took part in the experiment (mean age, 24.2 � 5.7
years). All subjects were naive as to the purpose of the study and gave
their informed consent before participating. Each subject participated in
four identical experimental sessions of �2 h each. The institutional ethics
committee at the University of Cambridge approved the study.

Experimental apparatus and setup
Subjects performed reaching movements to a target while grasping a
robotic manipulandum (Fig. 1A). Subjects were seated and restrained in
an adjustable chair in front of a robotic rig. The subjects’ right arm rested
on an air sled and they grasped the handle of a vBOT robotic interface
with the right hand (Fig. 1A). The vBOT manipulandum is a custom-
built planar robotic interface that can measure the position of the handle
and generates forces on the hand (Howard et al., 2009). A six-axis
force transducer (ATI Nano 25; ATI Industrial Automation) measured
the end-point forces applied by the subject at the handle. The position of
the vBOT handle was calculated from joint-position sensors (58SA; In-
dustrial Encoders Direct) on the motor axes. Position and force data were
sampled at 1 kHz. Visual feedback was provided using a computer
monitor mounted above the vBOT and projected into the plane of the
movement via a mirror. This virtual reality system, covering the manipu-
landum, arm, and hand, prevented direct visual feedback of the arm. The
exact onset time of any visual stimulus presented to the subject was

determined using the video card refresh signal and confirmed using an
optical sensor.

Experimental paradigm
Trials were self-paced: the subject initiated each trial by moving the cur-
sor (yellow circle of 1.0 cm diameter representing the subject’s hand
position) into the start circle (gray circle of 1.6 cm diameter, which
became white once subjects had moved the cursor into the start) located
�20 cm in front of their chest. Subjects were instructed to maintain their
gaze throughout the entire movement on a thin (two point) fixation
cross (1 � 1 cm) located at �5.0 lateral and 18.75 cm anterior relative to
the start position (Fig. 1B). This position was located exactly at the mid-
point between the location of the target and cursor displacements and
ensured that both occurred at the same retinal eccentricity. The side of
the fixation cross (left or right) was switched every block of trials. The
movement initiation cue was a slight change in the color of the fixation
cross (white to yellow). Once this color change had occurred, subjects
were required to initiate their reach within 1000 ms. Subjects made
forward-reaching movements from the start circle to a target (yellow
circle of 1.0cm diameter) located 25.0 cm in front of the start position.
The movement was considered to have terminated when subjects had
maintained the cursor within 1.0 cm of the target for 600 ms. Subjects
were then free to return to the start point to initiate the next trial while
feedback was provided about the success of the previous trial.

Ideal trials were defined as trials in which the peak speed was between
42 and 58 cm/s, and subjects did not overshoot the target. On these trials,
the subjects received positive feedback (e.g., “great” for peak speeds with
46 –54 cm/s or “good” for peak speeds between 42 and 46 or 54 and 58
cm/s), and a counter increased by one point. Other messages were pro-
vided visually at the end of each trial to inform the subjects of their
performance (either “too fast,” “too slow,” or “overshot target”). Over-
shooting the target was defined as the position of the cursor exceeding the
target in the y-direction by 1.8 cm or more. All trials were included in the
analysis. This feedback was only provided to encourage subjects to pro-
duce consistent movements.

To probe corrective responses to changes in the visual feedback of
target or hand position, both the target and the cursor were displaced
laterally by one of seven possible distances, [�3, �2, �1, 0, 1, 2, 3] cm,
when the cursor reached the middle of the movement (12.5 cm from the
start). Because target and cursor displacements were independent, this
produced a total of 49 different perturbation conditions (Fig. 1C). The
zero value indicates that the cursor and/or target was not displaced. Half
of the trials were probe trials, in which the visual perturbations were
momentary (lasting 250 ms) and the handle of the manipulandum was
constrained along a straight line to the target by a physical channel gen-
erated by the vBOT. After the perturbation, the displacement of the
cursor/target was reversed. Therefore, to reach the target, a response to
the perturbation was not needed. The mechanical channel was imple-
mented as a one-dimensional spring with a stiffness of 4000 N � m �1 and
damping of 2 N � m �1 � s acting lateral to the line from the start to the
target (Scheidt et al., 2000; Milner and Franklin, 2005). This allowed us to
use the force transducer to measure any lateral forces produced against
the channel wall in response to a shift in the target or cursor position.
This technique is now commonly used to quantify the gain of the visuo-
motor feedback responses (Franklin and Wolpert, 2008; Dimitriou et al.,
2013; Reichenbach et al., 2013, 2014; Franklin et al., 2014), as the size of
the restorative force provides a more reliable measure of the early re-
sponse than the changes in the lateral velocity of the arm movement.

On the other half of the trials, the perturbations were maintained
throughout the rest of the trial, and subjects were required to adjust the
movement such that the cursor finished in the target. These trials were
included to prevent a decrease of the response over the course of the
experiment, as found in previous studies (Franklin and Wolpert, 2008;
Franklin et al., 2012; Dimitriou et al., 2013). Indeed, the visual feedback
responses were maintained throughout the experiments. The average
decrease from the first two blocks in the first session to the final five
blocks in the fourth session was only 18.9 � 10.7%, as opposed to a nearly
75% reduction observed when real corrections were never required
(Franklin et al., 2012).
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Figure 1. Methods and responses to isolated target or cursor perturbations. A, Subjects made reaching movements while grasping a planar robotic manipulandum. Visual feedback of targets and
hand position (cursor) were provided in the plane of the reach via a mirror. B, On random probe trials, the cursor, the target, or both were perturbed laterally by one of seven distances for 250 ms while
the physical hand position was constrained by a mechanical channel to the straight line between the start and final target. Subjects fixated visual gaze to the fixation cross (yellow), which signaled
the start of movement cue by changing color. The presentation side (right or left) for the fixation cross varied from block to block in the experiment. C, The combination of seven possible target
perturbations (green) and seven possible cursor perturbations (red) gave rise to 49 separate conditions where the diagonals had identical difference vectors. D, Left, Mean force responses (solid line)
and SEM (shaded region) across all subjects to isolated target displacements plotted with respect to the time of displacement onset. The vertical dotted line indicates the mean (�1 SD) of the
response onset time. The mean force responses were averaged over an early interval (170 –230 ms, dark gray bar, middle) and a late interval (370 – 430 ms, light gray bar, right) for comparison
across conditions. Error bars indicate �1 SEM. The mean force responses were fit with a logistic function to the target responses of each time interval separately. E, Mean force responses to isolated
cursor displacements analog to D.
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The force response against the channel wall to visual perturbations has
now been used in many studies (Franklin and Wolpert, 2008; Dimitriou
et al., 2013; Reichenbach et al., 2014). Instead of measuring the lateral
deviations in the arm trajectory, this technique quantifies the restorative
force that participants apply to the handle directly and has several
advantages. First, this technique has a better signal-to-noise ratio, be-
cause the trial-by-trial variability is lower for force measurements than

acceleration of the arm. One of the main reasons is that force can be
measured directly, whereas acceleration is normally estimated as the sec-
ond derivative of position. Second, this normally leads to earlier detec-
tion of the corrective response and hence a better characterization of the
gain of the fast response mechanisms. Finally, on these channel trials, the
reaction of the participant does not change the trajectory of the cursor.
Thus, the size of the visual error on the screen is always the same and not
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Figure 2. Models and exemplary predictions. A, The difference vector model combines estimates of target and hand positions into a single difference vector, which is sent to the motor system for
corrective responses. B, The weighted difference vector allows different weightings between target and hand estimate. C, The multichannel model considers two separate feedback pathways
through the visual and motor systems. The force response produced by each model depends on any nonlinearity in the motor system that can be estimated using the isolated target and cursor
responses. D, The theoretical output of each of the models for a simple logistic function representing the relationship between displacement size and corrective response. The colors indicate the size
and direction of the corrective forces. The black dashed line indicates the diagonal in which the difference vector is �1 cm. E, Theoretical predicted force responses for the �1 cm difference vector
diagonal for the difference vector (blue), weighted difference vector (green), and multichannel (red) model.
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influenced by the strength of the early response. Thus, even the late
response can be quantified directly, because the visual error signal the
person sees is constant.

Each experimental block consisted of 100 randomized trials. Half of
the trials were probe trials, and each perturbation condition (seven tar-
get � seven cursor displacements) occurred once plus one extra zero
perturbation condition. Within each of the four sessions, subjects per-
formed 10 blocks of trials. This resulted in 40 repetitions of each
perturbation condition for each subject (80 for the zero perturbation
condition) and a total of 4000 trials per participant.

Data analysis
The data were analyzed using Matlab R14. Force and kinematic time
series were low-pass filtered with a fifth-order, zero-phase-lag Butter-
worth filter with 40 Hz cutoff and aligned to the onset of the visual
perturbation (or where this would have occurred). The primary data set
for analyzing the corrective motor response consisted of the force data in
the channel trials due to the high sensitivity of these data. In a supple-
mentary analysis, we also used the lateral velocity in the nonchannel trials
to validate and replicate the findings in an independent data set across
experimental methods. The final response profile for each condition was
determined relative to the mean response in the zero-cursor/zero-target
perturbation condition.

Onset time. Individual onset times of the responses to the visual per-
turbations were determined only for the conditions with isolated target
or cursor perturbations (Fig. 1). The correction onsets were assessed
based on the force data for each perturbation type (target or cursor) and
perturbation level (1, 2, or 3 cm) separately. For each subject and condi-
tion, we applied t tests between the force traces of all leftward and right-
ward corrections until at least 20 consecutive tests (20 ms) revealed
differences at a significance level of p � 0.05. The time stamp of the first
of those consecutive tests was taken as the response onset time (Reichen-
bach et al., 2013).

Models. We tested three different models of how the corrective motor
response was generated. In general, the nonlinear mapping between vi-
sual input and motor output was expressed with a logistic function (Fig.
1) of the general form y � �[�0.5 � 1/(1 � e � �x)], where x is the size of
the visual signal (dependent on the model; see below), and the parame-
ters � and � denote the asymptote and the slope of the underlying non-
linear function, respectively. To rigorously evaluate the model
performance, we did not fit the models to the whole data set and then
evaluate the goodness of fit. Instead, we built the models based only on
the conditions with pure target or cursor displacements, and then eval-
uated how well these models predicted the conditions in which target and
cursor displacements were combined. This means that for each model,
we first estimated the parameters by fitting the model to the corrective
response to isolated target or cursor displacements (12 conditions in
total, 0/0 baseline condition subtracted). Subsequently, we predicted,
based on the parameters obtained from the fits to the isolated displa-
cements, the responses for the remaining 36 conditions of combined
displacements.

The difference vector model (Fig. 2A) assumes that the force response
is based on the difference between visual cursor and target displacement.
In this model, the input to the nonlinear function is therefore x � (vt �
vc), where vt and vc denote the displacements of the target and cursor,
respectively. The two free parameters, � and �, were fitted to the isolated
displacements and then used to predict the response to the combined
displacements.

With the weighted difference vector model (Fig. 2B), we considered
the possibility that the target and cursor displacement are differently
weighted before the computation of their difference. For this weighting,
we introduced an additional parameter, w, and thus obtained the visual
input x � (1 � w)vt � wvc. Values between 0 and 0.5 indicate that target
information is more quickly updated than the cursor information; values
between 0.5 and 1 indicate the opposite. This model therefore had three
free parameters (w, �, and �).

Finally, the multichannel model postulates separate nonlinear re-
sponses to target and cursor perturbations, which then combine addi-
tively to generate the response to a combined displacement (Fig. 2C).

Therefore, we fitted separate logistic function to the target displacement
with x � vt, and to the cursor displacement, x � vc. This resulted in four
free parameters: separate sets of parameters � and � for each visual input.
For prediction of the combined displacements, the output of these two
functions was simply added.

We fitted each model to the data from isolated target and cursor dis-
placements (12 conditions) for each participant and time window inde-
pendently by adjusting the parameters to minimizing the residual sum of
squares. Based on these parameter estimates, we calculated the model
output for the trials with combined displacements (36 conditions). For
model evaluation, we then calculated for each participant and time win-
dow the proportion of predicted variance as 1 minus the error sum of
squares divided by the total sum of squares, using only the 36 predicted
values. This generalization procedure allowed us to compare how well
the models extrapolated to independent data. Therefore, we can directly
compare models with different numbers of free parameters, as overfitting
of more complex models on the training data automatically leads to
poorer predictive performance on the independent test data (Murphy,
2012). Note that the percentage variance predicted (as opposed to the
percentage variance explained in model fitting) can become negative, as
the model’s prediction can be anticorrelated with the data.

Analysis of the equal difference vector conditions. The analysis illustrated
in Figure 3 provides a first intuitive view on the data. We compared
conditions that yielded the same visual difference vector, and thus would
require the same amount of correction. The patterns within these condi-
tions were a first indicator of whether any difference vector model is
adequately describing the data. In the “zero difference vector diagonal,”
we compared the conditions where target and cursor perturbations are
directed in the same direction with the same amplitude, i.e., cancel each
other out and do not require any corrective movement. Additionally, we
considered the next two subdiagonals and superdiagonals with the dif-
ference vectors [�2, �1, 1, 2] cm.

To obtain stable values for the early (rising phase) and late (plateau
phase) corrective movements, we averaged for each condition and par-
ticipant all force responses within the time windows 170 –230 ms and
370 – 430 ms, respectively.

Analysis over the time course of a reaching movement. For evaluation of
the model performances, we assessed how the computation of target and
cursor information evolved over the time course of the reach in time
windows of 20 ms. Data were averaged over time windows from 180 � 10
to 420 � 10 ms after perturbation to cover the whole time interval of the
corrective response. For each participant and time window, we assessed
the ability of each model to predict the response to combined displace-
ments when the parameters were fitted to the isolated displacements
only. The proportion of variance predicted by models with different
numbers of parameters can therefore be directly compared (see above,
Models). We then conducted a repeated-measures ANOVA for the pre-
dicted variance with the factors model by time window over the whole
computed time period. Additionally, we conducted two-sided paired t
tests for each time window to assess when the multichannel model ex-
plained the data significantly better than the difference vector and
weighted difference vector models, and vice versa.

While the model predictions can be readily compared for each time
point, interpreting the predicted variance across different time points
disadvantages the early, more variable times. We therefore calculated, for
illustrative purposes, a noise ceiling for each time point, which signifies
the maximal variance a model can explain given the noise in the data.
This ceiling value was calculated for each subject and time point as 1
minus the noise sum of squares divided by the total sum of squares, with
the noise sum of squares determined by the average within-condition
variance across the 36 prediction condition.

Exemplary model predictions. The exemplary model predictions de-
picted in Figure 2 were produced using the model parameters � � 1.7
and � � 1.4, which are in the order of the parameters obtained for the real
data. The predicted response for the DV model was calculated by using
the real difference between target and cursor displacements as input x.
The weighted difference vector model was estimated by applying a weight
of w � 0.45 before subtraction, which slightly down-weighted the cursor
perturbation. The predictions of the multichannel model were calculated
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by adding two logistic functions, both having the same parameters, � �
1.7 and � � 1.4.

Results
While participants performed reaching movements to a target,
we unpredictably shifted the visual target and hand positions
during the movement by varying amplitudes and directions (Fig.
1B,C). Isolated target and cursor perturbations elicited rapid
corrections (onset time force response, 147.4 � 13.1 ms) in the
direction of the displacement for target displacements and in
the opposite direction for cursor displacements (Fig. 1D,E).
There were no significant differences between the onset times to
target and cursor perturbations (F(1,19) � 1.612; p � 0.218). Im-
portantly, the strength of the response showed a nonlinear satu-
ration for large displacements, an effect that was especially
apparent but not exclusively present during the early response
intervals (Fig. 1D,E, middle and right columns).

This nonlinearity allowed us to distinguish three models of
how the nervous system may combine simultaneously occurring
target and cursor displacements. The difference vector model
(Fig. 2A) proposes that the brain calculates the difference be-
tween a visual estimate of the hand and target location. This
difference vector is then sent to the motor system to generate any
necessary corrective response. Given the measured response non-
linearity for isolated target and cursor displacements, we can pre-
dict the response to any combination of the two factors. While
showing an overall nonlinear shape, the response is identical for
any combination of perturbations that results in the same differ-
ence vector (Fig. 2D). Given that the overall goal is for the hand to
reach the target, the final response should indeed resemble this
calculation (Cisek et al., 1998; Gritsenko et al., 2009).

However, visual target and cursor estimates might be updated
with different speeds (Brenner and Smeets, 2003). This may arise
because the hand estimate is additionally informed by proprio-
ception and efferent signals (van Beers et al., 1999; Sarlegna et al.,
2003). Although our data showed comparable onset times across
both cursor and target perturbations, it is still possible that the
relative speed of updating differs between the two situations.
Therefore, we also included a more general version of the differ-
ence vector model, the weighted difference vector model, which
integrates the visual position of the cursor with an adjustment
weight (Fig. 2B). This model allows for stronger influence of
either cursor or target estimate onto the difference vector esti-
mate, where the weighing parameter may change over the course
of the response. This model can account for motor responses to
simultaneous cursor and target displacements with a zero differ-
ence vector (Brenner and Smeets, 2003).

Finally, the multichannel model (Fig. 2C) postulates motor
responses equal to the sum of the individual responses to the
visual target and cursor perturbations, after they have been trans-
formed by the response nonlinearity. It is important to note that
this model could also calculate a “difference vector,” but this
calculation occurs after the main nonlinearity, for instance, in the
periphery at the levels of muscles or joints. This model simulates

the possibility that the central nervous system estimates and cor-
rects the initial responses to errors in the target location and hand
position independently. As opposed to the two difference vector
models, the multichannel model predicts a complex, nonlinear
response surface (Fig. 2D).

The differences in these predictions are most intuitive
along the diagonals in which the difference vectors are
matched (Fig. 2A–C, dashed lines). The difference vector
model always predicts identical responses along these lines
(Fig. 2 D, E). Importantly, it also makes a strong prediction
that there will be no corrective response when the difference
vector is zero. The weighted difference vector predicts distinct
responses for each condition. However, for any slice through
the conditions (e.g., a matched difference vector diagonal),
the response either increases or decreases monotonically (Fig.
2 D, E). Only the multichannel model predicts nonmonotonic
trends (increases followed by decreases or vice versa) along a
line with matched difference vectors (Fig. 2 D, E). The average
responses along these diagonals during an early (170 –230 ms)
and a late (370 – 430 ms) postperturbation interval provide a
first visual account for model comparison (Fig. 3). The signif-
icant responses in trials in which the target and cursor pertur-
bation canceled each other (Fig. 3C, zero difference vector)
already indicate that the simple difference vector model is not
appropriate for early responses. Furthermore, all other diago-
nals with identical difference vectors (Fig. 3, bar plots) show
significant response differences, violating the predictions of
the difference vector model. Importantly, the responses show
nonmonotonic trends along the diagonals (Fig. 3, middle right
and right columns, arrows indicate direction of significant
difference between conditions), which can qualitatively only
be predicted with the multichannel model.

We also illustrate the predictions for each diagonal based on
the three models (Fig. 3, right two columns, line plots), which
were fitted to the data from isolated cursor and target perturba-
tions (11 conditions). For the early response, the multichannel
model seems to predict the response shape quite accurately. In
the late response window, the situation is less clear. Although the
data conform closely to the magnitude predicted by the differ-
ence vector models, the shape of the responses continues to be
well matched by the multichannel model.

These results were very stable across participants, as can be
seen in individual subject responses. The early and late force
responses to isolated target and cursor perturbations for an ex-
emplar subject feature the same early nonlinearity as the group
average (Fig. 4). Similarly, the force responses along the diagonals
for the same subject demonstrate the same patterns as found for
the group data with responses along the zero diagonal and non-
monotonic responses across all diagonals (Fig. 5).

To evaluate the predictive power of the models continuously over
the temporal evolution of the response, we divided the data into 20
ms time windows and again fitted each model to isolated target and
cursor displacement conditions. We then assessed the quality of the
models by evaluating the predictions on the 36 left-out conditions,
in which the perturbations were combined. The proportion of vari-
ance each model predicted, relative to the overall variance of the
data, is plotted in Figure 6A for the force responses in the channel
trials and in Figure 7A for the lateral velocity in the nonchannel trials.
The proportion of variance predicted developed differentially for the
three models over the time course of movement (interaction model
by time, force data, F(24,456) �9.697, p�0.001; velocity data, F(24,456)

� 29.417, p � .001).

4

(Figure legend continued.) nonmonotonic, and the corresponding arrows indicate the direc-
tion of the difference. Colored lines represent the predicted mean force responses from each of
the three models: difference vector (blue), weighted difference vector (green), and multichan-
nel model (red). Note that these predictions are based only on the responses to the isolated
target and cursor perturbations. Right, The force responses over the later interval (light gray
shaded time interval, 370 – 430 ms). B, Difference vector of�1 cm. C, Difference vector of 0 cm.
D, Difference vector of �1 cm. E, Difference vector of �2 cm.
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During early time points, the multichannel model outper-
formed the two difference vector models. In detail, the multi-
channel model predicted a larger proportion of the variance than
the difference vector model from 180 to 220 ms (force data, t(19)

	 2.33, p � 0.04; velocity data, t(19) 	 2.07, p � 0.05) and the
weighted difference vector model from 180 to 200 ms (force data,
t(19) 	 2.11, p � 0.05) and at 180 ms (velocity data, t(19) � 2.56,
p � 0.02). Although it seems that all models performed more
poorly for this early time period than for the later period, it is
important to consider that the early responses were more vari-
able, which led to a lower maximal predictable proportion of the
variance, as illustrated by the noise ceiling (Figs. 6A, 7A, black
lines). For illustrative purpose, we show the average response
within the early time window and the fit of each of the models to
the average data for isolated cursor and target displacements
(Figs. 6B, 7B). These graphs show clearly the reason for the mul-

tichannel model dominance: the two difference vector models
cannot predict the more complex response surface exhibited by
the actual data. Thus, it appears that the earliest part of the feed-
back response is not driven by a complete difference vector com-
putation, but by a simpler approximation in which the isolated
responses to target and cursor displacements are added.

This pattern is reversed in the late phase of the reach (340 – 420
ms), in which both difference vector models predict the data
significantly better than the multichannel model (force and ve-
locity data, t(19) 	 2.61, p � 0.02). The data in the late time
window present a clear diagonal pattern that is well predicted by
the difference vector models (Figs. 6C, 7C). Although the multi-
channel model also predicts a nearly diagonal pattern for the
force data (Fig. 6C), the variance explained was significantly less
(Fig. 4A). Moreover the late pattern for the velocity data (Fig. 7C)
demonstrates the strong differences between the model predic-
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tions, with only the difference vector models predicting the pat-
tern of responses found in the experimental data. These results
demonstrate that toward the end of the reaching movement, the
motor system indeed arrives at a solution that can be best de-
scribed by the difference vector model.

Discussion
Our results reveal the temporal evolution of the integration of
visual information about the hand and the target for controlling
goal-directed movements. The late motor response to combined
visual changes of the hand and target follows closely the predic-
tion of difference vector models of visually guided reaching, such
as the VITE (vector-integration-to-endpoint) model (Bullock et
al., 1998), which states that the response is determined by the
relative difference between hand and target (Sober and Sabes,
2003). However, the early response exhibits striking differences
from this prediction: it is characterized by nonmonotonic
changes in end-point force across different perturbation combi-
nations with equal difference vectors, a pattern that can only be
predicted by the multichannel model. This indicates that the early
responses to discrepancies between expected and actual positions
are characterized by independent processing of visual hand and
target information, providing a rapid signaling pathway for flex-
ible online control. The motor output only converges to the “cor-
rect response” based on a difference vector 200 ms after the first
feedback correction, i.e., �350 ms after the visual change.

Nonlinearity in visuomotor processing
Our ability to distinguish the models depends on the nonlinearity
observed in the rapid visuomotor feedback response to cursor
and target perturbations. If these responses were linear, all three
models would provide identical predictions. With the nonlinear-
ity, the main difference between models is that the integration of
target and cursor information occurs before the nonlinearity in
the difference vector and after the nonlinearity in the multichan-
nel model. We assumed that the nonlinearity arises later in the
visuomotor processing stream, likely in the translation of visual
error to appropriate motor response, a process for which exten-
sive nonlinearities have been shown (for review, see Franklin and
Wolpert, 2011b). However, it is possible that part of the nonlin-
earity occurs earlier in visual processing. For example, the esti-
mation of new target and cursor positions may be biased in a
nonlinear fashion due to motion signals caused by the displace-
ment. Under that assumption, the initial superior predictions
from the multichannel model would still be compatible with a
relatively early integration of cursor and target information.

We believe this possibility is unlikely. First, early visual pro-
cessing is well understood, with clear evidence that visual signals
represent accurate information about retinal position (Na-
kayama, 1985; Burr and Thompson, 2011). We know no evidence
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4

and 3. The p values above those quantify the comparison difference vector versus the multi-
channel model (two-sided t tests) B, Force responses during the early time window (170 –230
ms after perturbation onset) plotted across all cursor and target displacements. Top left, Exper-
imental data. Top right, Predicted responses of the difference vector model. Bottom left, Pre-
dicted responses from the multichannel model. Bottom right, Predicted responses from the
weighted difference vector model. Note that each participant’s equal-difference vector diago-
nals were monotonously increasing; only their average partially displays a nonmonotonous
trend. Models are fitted to each subject’s average data from isolated target and cursor pertur-
bations, and the extrapolated predictions are shown for combined perturbations. C, Force re-
sponses during the late time window (370 – 430 ms after perturbation onset) and model
predictions.
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indicating that visual motion induces a bias in the perceived po-
sition to overestimate small displacements and underestimate
large displacements. Second, in later time windows, the differ-
ence vector models outperform the multichannel model, indicat-
ing that the visuomotor system exhibits a nonlinearity after the
integration of cursor and target information, i.e., in the motor
response generation. This nonlinearity must also be present in
the motor response generation in the early phase, forcing us to
conclude that the integration of cursor and target responses oc-
curs after the calculation of the motor response for early time
points.

This is not to say that the apparent visual motion induced by
the displacements has no influence on the observed nonlinearity.
Previous studies indicate that both the position and motion di-
rection of the cursor contribute to the early visuomotor feedback
response (Saunders and Knill, 2004). Our results indicate that in
the early phase, the responses to the cursor and target informa-
tion are formed independently and integrated at a later stage,
whereas in later stages of the response, the main nonlinearity
occurs after the integration of the two signals.

Why multichannel processing?
Independent processing of visual hand and target information is
clearly only an approximate solution, but may provide an effi-
cient implementation to ensure the high speed necessary for on-
line control (Day and Lyon, 2000; Day and Brown, 2001; Franklin
and Wolpert, 2008; Reichenbach et al., 2009). At first glance, the
difference vector computation appears simple. However, if one
considers that the visual position and movement direction of
objects are represented in population codes with bell-shaped tun-
ing (Shmuel and Grinvald, 1996; Deneve et al., 1999; Swindale,
2000; Bosking et al., 2002), then subtraction requires an interme-
diate level of nonlinear basis elements (Pouget and Sejnowski,
1997; Pouget et al., 2003) and possibly recurrent activity to con-
verge on the right solution (Makin et al., 2013; Richards et al.,
2014). Therefore, this calculation may be time consuming, a lux-
ury the visuomotor system cannot afford for time-critical online
control. Processing the two visual signals independently avoids
additional costs associated with integration. This temporal ad-
vance may justify a potentially inaccurate approximation that
sometimes leads to unnecessary correction (compare Fig. 3C, the
zero diagonal, where no response is optimal).

Neural representation of the reach vector
Reaching is often considered to result from the specification of
the reach vector, a vector difference between the hand and the
target, for planning the movement (Buneo and Andersen, 2012).
While initial information regarding the location of the target is
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were free to move. A, Predicted variance for the 36 combined conditions for each model as a
function of the time from perturbation onset (�SEM). The black line indicates the noise ceiling,
i.e., the maximal predictable variance given the intrasubject variance throughout the time. The

4

proportion of variance predicted developed differentially for the three models over the time
course of movement (interaction model by time, F(24,456) � 29.417, p � .001). Shaded regions
indicate the early and late time periods. The p values above those quantify the comparison
difference vector versus the multichannel model (two-sided t tests). B, Velocity responses dur-
ing the early time window (170 –230 ms after perturbation onset) plotted across all cursor and
target displacements. Top left, Experimental data. Top right, Predicted responses of the differ-
ence vector model. Bottom left, Predicted responses from the multichannel model. Bottom
right, Predicted responses from the weighted difference vector model. Note that each partici-
pant’s equal-difference vector diagonals were monotonously increasing; only their average
partially displays a nonmonotonous trend. Models are fitted to each subject’s average data from
isolated target and cursor perturbations, and the extrapolated predictions are shown for com-
bined perturbations. C, Velocity responses during the late time window (370 – 430 ms after
perturbation onset) and model predictions.
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acquired in gaze-centered coordinates, this will be transformed
into hand- or body-centered coordinates to calculate the neces-
sary motor commands (Kalaska et al., 1997). Many studies have
examined whether neurons code this information in gaze-
centered reference frames or hand-centered reference frames. Ex-
tensive evidence has found neurons coding in gaze, hand, and
mixed coordinate reference frames in the premotor and parietal
cortices. Most relevant to our study, both neural recordings
(Buneo et al., 2002; Buneo and Andersen, 2006, 2012; Pesaran et
al., 2006; Bremner and Andersen, 2012) and fMRI studies
(Beurze et al., 2007) found neurons tuned only for initial hand
position, gaze position, or target position, even though many
neurons that integrate target and hand information have also
been found in a variety of areas. Importantly, the coexistence of
reference frames appears to be maintained throughout the plan-
ning and movement phases (Buneo et al., 2008), suggesting that
these neurons are not simply part of an initial hierarchy of refer-
ence frames to calculate a final reach vector, but that the reaching
movement is simultaneously expressed in multiple coordinate
reference frames. While these studies focused primarily on the
delay period before the reach and did not examine reference cod-
ing during rapid perturbations, the existence of multiple main-
tained reference frames supports the idea that a mixture of
feedback responses (independent hand and target responses as
well as difference vector responses) could occur with response
timing depending on factors such as computational complexity.

Neural tuning for feedforward control
We propose that the temporal evolution of spatial computations
revealed here for fast feedback responses may also occur in the
calculation of feedforward motor commands before movement
onset. The VITE model (Bullock et al., 1998) proposes that the
difference vector, i.e., required movement, is calculated in the
anterior medial superior parietal lobe (area 5; Bullock et al., 1998;
Cisek et al., 1998) and then signaled to the primary motor cortex
(M1). This processing sequence arises intuitively from the local-
ization of the respective areas in the visuomotor hierarchy, their
connections (Johnson et al., 1996; Kalaska et al., 1997; Rizzolatti
et al., 1998), and the tuning functions of neurons. The neural
populations in M1 are tuned to the direction and dynamics of
reaches (Georgopoulos et al., 1981, 1982, 1986, 1988; Todorov,
2000; Kurtzer et al., 2005), whereas neurons in area 5 are tuned to
invariant spatial movement parameters such as target location
(Kalaska et al., 1990). Interestingly, directionally tuned neurons
in M1 increase their firing rate during the preparatory phase
starting 60 – 80 ms after target presentation. However, even dur-
ing speeded responses, muscle activity is not observed until 100
ms later (Georgopoulos et al., 1982). Indeed, the directional tun-
ing of a larger proportion of M1 neurons is locked to the onset of
target presentation than to movement onset, with a significant
fraction driven by both events (Rao and Donoghue, 2014).
Furthermore, this study demonstrates that the directional popu-
lation code in M1 evolves over time, suggesting that some
sensory-to-motor transformations still must be computed to ini-
tiate movement even though visual target information is present
much earlier in motor structures (Georgopoulos et al., 1989). The
temporal characteristics of these neural populations exhibit a
striking resemblance to the processes observed in our study.
However, whereas the motor system can stall movement initia-
tion until the computation of the difference vector has fully
evolved, it utilizes these initial computations for rapid online
control of movement. This suggests that the spatial computations
underlying feedforward and feedback control might rely on sim-

ilar processes and neuronal substrates (Desmurget and Grafton,
2000; Scott, 2004; Pruszynski et al., 2011). Thus, investigating fast
feedback responses offers a behavioral window into elucidating
the time course of spatial computations underlying sensorimotor
control (Scott, 2004; Kurtzer et al., 2008; Resulaj et al., 2009;
Franklin and Wolpert, 2011b).

The temporal evolution of the feedback response raises the
question of whether a specialized neural pathway provides the
fast approximate response (a mixed model; Buneo et al., 2008), or
both initial and final responses are readouts from the same recur-
rent network providing the best solution at each moment. The
smooth transition between models in our data and the continu-
ous evolution of directional tuning in M1 neurons (Rao and
Donoghue, 2014) seem to promote the latter hypothesis, with the
computations likely occurring either within M1 or further up-
stream in premotor and parietal areas.
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