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Population-wide cerebellar growthmodels of
children and adolescents

Carolin Gaiser 1,2, Rick van der Vliet1,3,4, Augustijn A. A. de Boer5,6,
Opher Donchin7,8, Pierre Berthet9,10, Gabriel A. Devenyi 11,12,
M. Mallar Chakravarty11,12,13, Jörn Diedrichsen 14,15,16, Andre F. Marquand 5,6,
Maarten A. Frens 1 & Ryan L. Muetzel 2,17

In the past, the cerebellum has been best known for its crucial role in motor
function. However, increasingly more findings highlight the importance of
cerebellar contributions in cognitive functions and neurodevelopment. Using
a total of 7240 neuroimaging scans from 4862 individuals, we describe and
provide detailed, openly available models of cerebellar development in
childhood and adolescence (age range: 6–17 years), an important time period
for brain development and onset of neuropsychiatric disorders. Next to a
traditionally used anatomical parcellation of the cerebellum, we generated
growth models based on a recently proposed functional parcellation. In both,
we find an anterior-posterior growth gradient mirroring the age-related
improvements of underlying behavior and function, which is analogous to
cerebral maturation patterns and offers evidence for directly related
cerebello-cortical developmental trajectories. Finally, we illustrate how the
current approach can be used to detect cerebellar abnormalities in clinical
samples.

The cerebellum is known to be engaged in a broad spectrum of func-
tions. While its involvement in motor control is best documented,
recent efforts have made clear that it is also involved in cognitive
function. Given that the cerebellum is strongly interconnectedwith the
cerebral cortex, with cerebellar functional subunits being involved in a
wide array of motor and cognitive tasks1,2, these recent findings come
as no surprise. Yet, despite converging evidence on the importance of

the cerebellum for brain function, limited work has explored how the
cerebellum develops through childhood and adolescence.

The cerebellum is one of the first structures in the brain to start
cellular differentiation, with a rapid growth period in the third trime-
ster of pregnancy and in the first postnatal year, but it is one of the last
to complete maturity3,4. Given this protracted developmental time
course, it is especially vulnerable to genetic and environmental
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stressors disrupting development3,5. It thus could be a key node in
various neurodevelopmental disorders and has the potential to serve
as a crucial biomarker.

In addition to overlooking its role in higher cognitive function in
the past, challenges in in vivo imaging of the cerebellum have likely
hampered the study of this important structure. The anatomical loca-
tion of the cerebellum and its tightly folded cortex havemade it amore
challenging structure to image since the acquisition field of view and
head coils are often optimized for imaging the cerebrum. Additionally,
high resolution images are needed for precise segmentations as well as
anatomical and functional mapping. The adoption of high magnetic
field strengths of 3 T and beyond in tandem with the development of
dedicated automated segmentation and parcellation tools6–9 has made
the analysis of cerebellar imaging data more accessible.

As childhood and adolescence represent a time of increased risk
for psychiatric and developmental problems10, it is crucial to improve
our understanding of cerebellar development during this period. For
this reason, robust and detailed reference models of neurodevelop-
mental trajectories are needed, which recently has become a thriving
area of research11,12. Normative modeling of brain imaging data is par-
ticularly well suited to this task and provides an analysis framework
that is able to model biological heterogeneity at the level of the indi-
vidual while also accommodating site effects13,14. This framework
allows for tracking the development of a given individual against
expected centiles in variation of a referencemodel, without needing to
assume that clinical populations are homogeneous, analogous to
growth charts in pediatric medicine. In the context of psychopathol-
ogy, this approach has recently shown to increase sensitivity and to
better characterize inter-individual heterogeneity in regional brain
volumes compared to case-control studies15,16. By embedding norma-
tive modeling of imaging data within a federated learning framework,
sharing of such models becomes possible without data privacy con-
cerns. This not only means that smaller datasets can benefit from
informative hyperpriors of a reference model based on much larger
datasets, but also that models can be adapted and updated as more
data becomes available14. Using this framework to establish normative
models of the cerebellum will therefore prove particularly useful to
detect deviations in cerebellar development on the level of individuals
and to map these deviations to behavioral and clinical phenotypes.

Traditionally, the cerebellum has been subdivided in the medial-
to-lateral direction into vermis and hemispheres, and in the anterior-
to-posterior direction into lobules. However,more recently, functional
magnetic resonance imaging (fMRI) has shown that functional
boundaries in the cerebellum do not align with classical anatomical

subdivisions17. Instead, an alternative functional parcellation contain-
ing at least 10 regions has been identified, which corresponds well to
earlier proposed cerebro-cerebellar network parcellations1, and that
are characterized by the motor and cognitive features that elicit
activity in the parcels17.

In the current study, we describe and provide openly available
normative models of anatomical and functional subregions of the
cerebellum from a large pediatric population that (1) can be used as
reference models to obtain accurate normative ranges, also in smaller
datasets, by benefitting from informative hyperpriors based on a large
sample, and that (2) can be updated with data from new sites and
extended age ranges without the necessity of sharing sensitive patient
or participant data. We furthermore illustrate the usefulness and
practicality of the current approach by mapping the deviations from
typical cerebellar development at the level of the individual in a sub-
population of children with autistic traits18. These models have the
potential to facilitate and maximize the use of cerebellar outcomes in
neuroimaging research and as a result aid to better understand the role
of the cerebellum in typical as well as atypical neurodevelopment.

Results
Sample characteristics and non-response analysis
A total of 7270 structural neuroimaging scans, stemming from 4862
unique individuals (2392 males, 2470 females) from the Generation R
study, were available for statistical analysis (see Methods: Participants
for details and exclusion criteria). Figure 1 shows the age and scanner
distribution of the current sample. For normativemodeling, the cohort
was split into training (50%) and test (50%) sets (see Methods: Nor-
mative models). An overview of the sample characteristics of the
training and test sets is shown in Supplementary Table 1 and allocation
of the subjects to training and test sets resulted in groups that are
representative of the cohort as a whole, also when considered at the
sub-group level of measurement assessment.

Normative models of the cerebellum
To generate normative models for anatomical and functional sub-
regions of the cerebellum, we made use of the PCNtoolkit12,19. The
PCNtoolkit allows for 1) obtaining normative ranges19, 2) modeling
individual heterogeneity to uncover clinically significant
deviations13,15,19, 3) correcting for batch-effects, such as differences
between scanners14, and 4) data sharing of the models for reuse
without disclosing sensitive patient or participant information14. The
Hierarchical Bayesian Regression (HBR) approach implemented in
PCNtoolkit solves these problems by using shared priors from which
the site-specific parameters and hyperparameters can be learned, and
by providing a framework in which generated hyperparameters from
previous analyses can be made available to new sites without the ori-
ginal data (i.e., a federated approach). Previously, we have shown that
the HBR approach can be used to perform meaningful inferences
across longitudinal time points, even when subsequent MRI assess-
ments are conducted ondifferent scanners20. UsingHBR,we estimated
normative models of the cerebellum using both volumes from an
anatomical parcellation and morphological indicators (i.e., grey and
white matter densities as well as volumes) from a functional parcella-
tion for each region of interest (ROI) separately. Next to age as a pre-
dictor, sex and MRI scanner were modeled as batch-effects (see
Methods: Normative models for further details on modeling para-
meters). A graphical representation of the normative model and its
parameters can be found in Supplementary Fig. 1. Linear but also
b-spline models were generated. Both perform equally well in this age
range based on Leave-one-out cross-validation (LOO) (Supplementary
Table 2). Following the principle of parsimony, the linear models will
be described, however b-spline models are made available as well, as
theymight offermore flexiblemodeling options in future applications.
Posterior distributions of all model parameters and ROIs converged
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Fig. 1 | Histogram of age and scanner distributions in the Generation R cohort.
Mean age visit 1: 7.9 years (range = [6.1–10.7],n = 974 [510male, 464 female]),mean
age visit 2: 10.1 years (range = [8.6–12.0], n = 3785 [1879 male, 1906 female]), and
mean age visit 3: 14.0 years (range = [12.6–17.1], n = 2511 [1202 male, 1309 female]).
2734 (56.2%) individuals were measured once, 1848 (38.0%) individuals twice, and
scans in all three measurement waves were acquired from 280 (5.8%) individuals.
Source data are provided as a Source Data file.
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well (>95% of R̂ below 1.121) and were visually inspected using a built-in
function of the PCNtoolkit. In the following sections, ROIs of the
anatomical and functional parcellations will be described separately.

Anatomical parcellation
The cerebellum was parcellated in the native space into 35 anatomical
subdivisions using the MAGeT pipeline7,22. In short, the MAGeT algo-
rithm creates amulti-atlas based segmentation using a limited number
of manually segmented atlases (here: five), which can be tailored to a
specific cohort using a small set of study-specific template images. The
resulting template-atlas library, allows for improved modeling of
individual differences in morphology by taking advantage of the
morphological variations in the representative template images (see
Methods: Anatomical parcellation for details). Quality of segmentation
was ensured by inspecting each scan visually (see Methods: Image
quality control for details).

We fit a normative model to investigate age-related effects in
volume for each of the 35 anatomical ROIs. Figure 2 illustrates the
growth for each ROI using themean posterior distribution of the age
β coefficient (slope). Standardized coefficients are used to ease the
comparison between outcomes, and results are stratified by sex. As
expected for this age range, we see increasing volumes throughout
all ROIs. The corpus medullare, the white matter of the cerebellum,
shows the most marked increases in volume in both females and
males. Interestingly, we see a growth gradient, starting with smaller
age-related effects on volume in the anterior cerebellum (Lobules III
– V), and increasingly larger age-related effects in the posterior cer-
ebellum (Lobules VI – IX) with the largest effects, besides the corpus
medullare, found in the flocculus (Lobules X). Growth trajectories of
example ROIs in the anterior (left Lobule V) and posterior (left Crus I)
cerebellum, as well as for the left corpus medullare are shown in
Fig. 2B. Figure 2A also depicts sex differences in age β coefficients
(slopes). No significant sex differences were observed, however, age-
related coefficients were slightly higher for females (mean standar-
dized β across ROIs = 0.178; 95% CI mean = [0.153 0.202]) than for
males (mean standardized β across ROIs = 0.149; 95% CI mean =
[0.128 0.170]), with larger effects in lobules VIIIA (left hemisphere:
difference in standardized β = 0.142; and right hemisphere: differ-
ence in standardized β = 0.093), and left lobule X (difference in
standardized β = 0.110). An overview of the age β coefficients for all
ROIs can be found in Supplementary Table 3 as well as visually in
Fig. 2C, and growth trajectories of all ROIs stratified by sex in Sup-
plementary Figs. 2 and 3.

Functional parcellation
As lobular boundaries of the cerebellum have shown limited corre-
spondence with functional demarcations, we also employed the
functional subregions proposed by King and colleagues17 (see Meth-
ods: Functional parcellation for details). Ten functional regions of the
cerebellum were identified using fMRI data from a largemulti-domain
task battery (MDTB) and labelled according to the cognitive and
behavioral features that best described the task conditions (1: Left-
hand (motor) presses, 2: Right-hand (motor) presses, 3: Saccades, 4:
Action observation, 5: Divided attention (left hemisphere), 6: Divided
attention (right hemisphere), 7: Narrative, 8: Word comprehension, 9:
Verbal fluency, 10: Autobiographical recall). This parcellation was
shown to successfully predict functional boundaries in a new set of
motor, cognitive, affective, and social tasks, surpassing existing task-
free and anatomical parcellations17. The 10 regions of the MDTB par-
cellation are illustrated in Fig. 3. Analogous to the anatomical parcel-
lations described above, a normative model for the volume, grey
matter density (GMD), andwhite matter density (WMD) was fit for each
ROI of the functional parcellation. In Fig. 4A, we visualize the devel-
opmental trajectories of these functional parcels using again themean
posterior distribution of the standardized age β coefficient (slope).

Results are shown stratified by sex. Like previously seen in the anato-
mical parcellations, increases in volume are evident throughout all
functional parcellations inmales and females in this age range (Fig. 4A,
a & d). Smaller age-related effects in volumes are present in the ante-
rior parcels, known to be related to motor behavior, compared to
posterior cerebellar regions, which comprise parcels associated with a
range of cognitive processes. This trend can be seen even more
strikingly in the GMD (Fig. 4A, b, e) and WMD (Fig. 4A, c & f) models.
While it is well-documented thatGMDdecreases andWMD increases in
the brain during this age range, we again see a clear distinction
between anteriormotor regions andposterior cognitive regions in 6 to
17 year olds. This is further illustrated by the growth trajectories of an
example anterior motor (1: Left hand presses) and posterior cognitive
(5: Divided attention (left)) ROI. Steeper slopes, and thus more devel-
opmental changes, are observed in posterior cognitive regions com-
pared to anterior motor regions during childhood and adolescence
(Fig. 4B a–c). Slight, albeit non-significant, differences in sex were
observed with slower changes in GMD andWMD in females compared
to males, particularly in the right hemisphere (mean standardized β
across ROIs [95% CI mean]: volume males = 0.277 [0.251 0.304],
volume females = 0.289 [0.256 0.322], GMD males = −0.138 [−0.206
−0.071], GMD females = −0.056 [−0.124 0.012], WMD males = 0.256
[0.1650.347],WMDfemales =0.184 [0.0980.270]). Sex differences per
ROI are illustrated in Fig. 4A g–i). As with the anatomical ROIs, an
overview of the age β coefficients for all functional ROIs can be found
in Supplementary Table 4 as well as visually in Fig. 4C and growth
trajectories stratified by sex in Supplementary Figs. 4 and 5.

Anterior-posterior growth gradient
Since both the anatomical and functional parcellation appeared to
show smaller age-related effects in anterior compared to posterior
parcels (Figs. 2, 4), we contrasted the growth trends in both parcel-
lations by ranking the ROIs in terms of their anterior-to-posterior
spatial position in the cerebellum. While the lobules in the anato-
mical parcellation are named in respect to their anterior-posterior
placement (Lobule I to Lobules X), anterior-posterior positions for
each functional parcel were obtained with a ranking procedure.
Specifically, we ranked the functional parcels by determining the
anatomical lobule in which their centroids (center point of each of
the 10 functional ROIs) are located. In cases where the centroid was
not located within lobular boundaries, but instead in regions of the
corpus medullare, we visually assessed which lobule the centroid is
closest to. In order to quantitatively assess any potential AP devel-
opmental gradient, we fit a linear trend line to the standardized age β
coefficients (slopes) of all ROIs of the anatomical map (divided in
vermal and mean of hemispheric ROIs) and functional map (divided
in volume, GMD, and WMD) separately, as a function of anterior-to-
posterior position (denoted as AP growth coefficient hereafter).
Results are shown stratifiedby sex in Fig. 5A. AnAPgrowth coefficient
differing from zero suggest a statistically significant difference in
growth of the cerebellum from anterior-to-posterior. We report
uncorrected and the false discovery rate (FDR-BH) adjusted p-values
of the AP growth coefficients.

Inmales, AP growth coefficients of the functional parcellationwere
significant in each modality (βvolume_func = 0.011, pvolume_func = 0.019,
pFDRvolume_func = 0.032;βGMD = −0.036,pGMD <0.001,pFDRGMD =0.002;
βWMD=0.044, pWMD=0.003, pFDRWMD=0.010) while the AP growth
coefficients in the anatomical parcellations did not differ significantly
from 0 (βvolume_hemispheres = 0.009, pvolume_hemispheres = 0.060,
pFDRvolume_hemispheres = 0.075; βvolume_vermis = −0.001, pvolume_vermis =
0.569, pFDRvolume_vermis = 0.569). In females, the grey and white matter
density AP growth coefficients of the functional parcellation as well as
the hemispheric volume AP growth coefficients of the anatomical par-
cellation were significant (βGMD = −0.032, pGMD =0.005,
pFDRGMD =0.010; βWMD=0.041, pWMD=0.003, pFDRWMD=0.010;
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βvolume_hemispheres = 0.016, pvolume_hemispheres = 0.004,
pFDRvolume_hemispheres = 0.010). The AP growth coefficient for volumetric
changes in the functional parcellation did not survive multiple testing
correction (βvolume_func = 0.013, pvolume_func = 0.036,

pFDRvolume_func = 0.051) and, as also seen in males, the AP
growth coefficient of the anatomical vermis did not differ
significantly from 0 (βvolume_vermis = −0.002, pvolume_vermis = 0.544,
pFDRvolume_vermis = 0.569).
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Fig. 2 | Effect of age on volume in the anatomical parcellation. AMean posterior
distribution for the standardized age β coefficient (slope) for each anatomical ROI
and absolute differences ineffect sizes (standardizedβ) betweenmales and females
are illustrated. 3D illustrations were generated based on a publically available,
manually segmented MR image (MAGeT atlas, brain5)7. B Trajectories of males (in
yellow) and females (in green) in 3 example ROIs: left Lobule V (anterior cere-
bellum), left Crus II (posterior cerebellum), and left corpusmedullare (whitematter
tract). The bold lines represent the mean trajectories, shaded areas represent what

is within 2 standard deviations of the mean. Volume is shown in cubic centimeters
(ccm). C Bar graphs of all standardized age β coefficients (slopes) of males (in
yellow) and females (in green). Error bars depict +/− 1 standard deviation of stan-
dardized age β samples (n = 12,000). Exact numbers can be found in Supplemen-
tary Table 3 and the percentage change of mean trajectories for each anatomical
ROI is illustrated in Supplementary Fig. 6A. Source data are provided as a Source
Data file.
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Lastly, we compared and visualized the gradients found using
LittleBrain, a gradient-based tool to aid interpretation of topological
neuroimaging findings of the cerebellum23. LittleBrain creates a two-
dimensional representation of all voxels in the cerebellum, with each
axis representing one of the principal functional gradients described
by Guell and colleagues24. Gradient 1 stretches from primary motor to
non-motor areas, such as language and default regions. This is analo-
gous to functional organization principles previously reported in the
cerebral cortex that extend from primary unimodal sensory to trans-
modal regions25. Gradient 2 can be understood as a characterization of
task focus or cognitive load. This gradient ranges from the two
extremes of gradient 1 (motor and default regions) to areas involved in
focused cognitive processing, such as working memory or attention.

Wemapped standardized age coefficient from the anatomical and
functional parcellation using the LittleBrain toolbox and found that
cerebellar growth during childhood and adolescence follows mostly
gradient 2, and might thus be related to cognitive demands during
development (Fig. 5B). Cerebellar regions with small age-related effects
are mainly localized in task unfocused regions with low cognitive
demand (low gradient 2 values), such as motor processing and default
networks. Regions with larger age-effects can be found in task focused
regions (high gradient 2 values), likely to overlap with frontoparietal
networks24. Volumetric patterns, principally from the anatomical par-
cellation, show a more diffuse gradient pattern, possibly due to little
overlap between functional activity and macroscopic anatomy26.

Large normative model deviations and clinical or behavioral
phenotypes
To illustrate the utility of the cerebellar normativemodels, we examine
whether deviations in cerebellar growth are present in children who
are likely to fall on the Autism spectrum according to the Social
Responsiveness Scale (SRS). The SRS has been shown to quantitatively
assess subclinical and clinical autistic traits18. For eachROI, we contrast
the z-scores between children likely to fall on the Autism spectrum
(raw score on SRS >= 90th percentile, n = 198) to the remainder of the
cohort with available SRS information (n = 2,012). The distribution of
SRS scores can be found in Supplementary Fig. 7. Previously, it has
been shown that using normative deviation scores can uncover more
precise case-control effects and characterize clinically relevant differ-
ences in morphology on an individual level13,15. We therefore illustrate
the percentage of children with high SRS scores that have a large
deviation from the normative range (z > 1.96 / z < −1.96, critical z for
95% confidence interval) per ROI (see Methods for details). Using this
definition, we expect roughly 2.5%of a typically developing population
to have a large negative or a large positive z-score, respectively in

essentially all ROIs of the anatomical and functional parcellations.
Indeed, this is what we observe in typically developing participants
(Fig. 6, Supplementary Fig. 8). However, for participants with autistic
traits (high SRS), this was not the case as more individuals than
expected were represented in the extreme ends of the distributions.
Considering the heterogeneity in brain morphology within ASD, it is
important to emphasize that variations in individual deviation patterns
exist among children at risk for Autism. These variations can be
explored at the level of individual subjects using normative models.

In the anatomical parcellation, a higher percentage of participants
with high SRS scores presented with large negative z-scores (smaller
volume than expected) throughout various ROIs (Fig. 6A), specifically
in vermal and hemispheric regions of the anterior and superior pos-
terior cerebellum (significant percentage with large deviations bino-
mial test atp <0.05: Crus I (left), VIIIB (left), vermal region III, Lobule VI
(right)). Large positive deviations (larger volumes than expected) can
be observed in participants with low SRS (significant percentage with
large deviations binomial test at p < 0.05: Left Lobules VI and Crus I,
vermal region VIIA, and right Lobule VIIIB). In participants with high
SRS scores large positive deviations appear to be less prevalent overall
but significant positive deviations can be observed in the left Lobule IV
and vermal region IX (p < 0.05).

Analogous to the anatomical parcellation, we also observe smaller
volumes than expected throughout almost all functional parcels in
participants with high SRS scores (Fig. 6B). But interestingly, subtle
distinctions are revealed in the functional parcellation.While anoverall
trend towards smaller volumes than expected is visible in participants
with high SRS scores (significant percentage with large deviations
binomial test at p <0.05: 1) Left-hand presses and 6) Divided attention
(right)), the functional parcels best characterized by the cognitive
features 7) narrative and 8) word comprehension seem to be exemp-
ted from this. In the GMD maps of large deviations in high SRS parti-
cipants, more negative deviations than expected (lower GMD) in the
left anterior cerebellum and posterior cerebellum, specifically in the
parcellation best characterized by cognitive feature 9) verbal fluency
(p < 0.05), can be observed. Moreover, we observed more positive
deviations than expected (higher GMD) in the anterior motor areas of
the functional atlas (1) Left-hand presses (p <0.05) and 2) Right-hand
presses in high SRS participants, as well as significantly higher GMD
than expected in the functional region 4) Action observation (p < 0.05)
in typical participants (Fig. 6C). Less pronounced differences are
apparent in WMD deviations (Supplementary Fig. 8).

When the effect of SRS scores on normative deviation scores in
both the anatomical and the functional parcellation was tested using
linear regression models, volumes in anatomical lobules Crus II

Fig. 3 | Functional parcellation. Figure adapted with permission from King et al. 201917 (https://www.nature.com/articles/s41593-019-0436-x).Multi-Domain Task Battery
(MDTB) functional atlas regions are shown in color. Dotted black lines represent anatomical boundaries.
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(hemispheric right), VIIB (hemispheric left and right), VIIIA (hemi-
spheric left), and VIIIB (vermal) as well as functional parcels 4) action
observation, 8) word comprehension and 10) autobiographical recall
were associated with SRS scores. However, these associations did not
survive multiple testing correction (Supplementary Table 6).

Discussion
This study describes normative models of typical cerebellar
development in a large pediatric population. Using over 7,000
longitudinal MRI scans, normative estimates of cerebellar growth
from both anatomical and functional parcels were obtained by
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fitting hierarchical Bayesian regression models. Despite its
potential to serve as a biomarker for developmental
disorders5,27,28, the morphology of the cerebellum has never been
studied at this scale and detail using human MRI data before.
Previous projects on normative modeling have demonstrated the
potential impact and demand for large, open-source growth
models11,13. However, presently available models fail to include the
cerebellum. The current models will therefore be critical to
understand the heterogeneity in cerebellar development as well
as deviations from the normative range in disorders. Notably,
these deviations can be investigated on the level of a single indi-
vidual using the current approach.

The anatomical (MAGeT atlas7) and functional regions (MDTB
atlas17) show similar overall growth trends. As expected in this age range
traversing late-childhood into adolescence, we see increasing volumes
throughout all ROIs in both parcellations (Fig. 2A, Fig. 4A a, d). Con-
sistent with previous findings, we observed an anterior-posterior gra-
dient in cerebellar development likely to reflect and mirror the age-
related improvements in underlying functions, with sensorimotor areas
predominantly located anteriorly and cognitive areas posteriorly in the
cerebellum17,29,30. Between ages 6 and 17, anterior sensorimotor areas
show smaller age-related effects compared to posterior cognitive areas,
possibly reflecting protracted growth trajectories for higher-order
cognitive compared to sensorimotor regions in the cerebellum.

Fig. 4 | Effect of age on volume, Grey Matter Density (GMD), and White Matter
Density (WMD) in the functional parcellation. AMean posterior distribution for
the standardized ageβ coefficient (slope) for each functional ROI of theMDTB atlas
(a-f) and absolute differences in effect size (standardized β) between males and
females are illustrated (g–i). B Trajectories of males (in yellow) and females (in
green) for 2 exampleROIs. 1: Left hand presses (anterior cerebellum) and 5: Divided
attention (left) (posterior cerebellum). The bold lines represent the mean

trajectories, shaded areas represent what is within 2 standard deviations of the
mean. C Bar graphs of all standardized age β coefficients (slopes) of males (in
yellow) and females (in green). Error bars depict +/− 1 standard deviation of stan-
dardized age β samples (n = 12,000). Exact numbers can be found in Supplemen-
taryTable4 and thepercentage changeofmean trajectories for each functionalROI
is illustrated in Supplementary Fig. 6B. Source data are provided as a Source
Data file.
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Fig. 5 | Visualizations of growth gradients. A Linear fit lines through the stan-
dardized age β coefficients (shown as dots) of anatomical (vermal in light blue and
mean of both hemispheres in dark blue) and functional (volume in green, Grey
Matter Density (GMD) in orange, andWhiteMatter Density (WMD) in yellow) ROIs in
anterior-to-posterior order. Shaded areas indicate the 95% prediction intervals of
the linearfit lines. Asterisks in the legend indicate significant APgrowth coefficients
(slopes of linear fit lines). Anatomical location of functional parcellation centroids
are indicated by numbers in the first panel and listed in Supplementary Table 5.

B Growth gradients visualized along two functional gradients using the LittleBrain
tool23. Gradient 1 (y-axis) ranges from motor (negative values) to non-motor areas
(positive values); Gradient 2 (x-axis) from low (negative values) to high (positive
values) task focus/cognitive load. Each dot in the scatterplot represents a voxel in
the cerebellum. The color map (scaled per modality to ease comparisons) shows
standardized age β coefficients of the cerebellar parcellation a given voxel belongs
to. Source data are provided as a Source Data file.
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While, upon visual inspection, a growth gradient from anterior to
posterior can be observed in both parcellations, testing this trend
quantitatively is challenging. We tested the growth trend in both par-
cellations and in different morphological indicators by ranking the
standardized age coefficients (slopes) per ROIs in terms of their
anterior-to-posterior position and determined a linear fit line (Fig. 5A).

Resulting slopes of these fit lines (AP growth coefficients) were sig-
nificant, and thereby add additional support to the rationale of a
growth gradient, in the functional parcellation (volumes, GMD, and
WMD) for males and in the functional (GMD and WMD) as well as
anatomical (meanvolumeof hemispheres) parcellation for females. AP
growth coefficients of vermal volumes in the anatomical parcellation
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were not significant. The possible absence of an anterior-posterior
growth gradient in vermal areas is interesting, since functional differ-
ences are also present throughout the vermis. However, these are
functionally distinct from the hemispheres of the cerebellum as the
vermis receives sensorimotor afferents from the spinal cord, and is
predominantly involved in lower-order functions, such as postural
control, locomotion, and gaze31, but also plays an important role in
emotion processing32–34.

Nevertheless, a note of caution is due here since ranking the ROIs
in terms of position is not unambiguous. This is a result of the cere-
bellar geometry; the anterior-posterior axis of the cerebellum resem-
bles a C-shape, rather than a line or a plane, making the ranking more
intricate. While anatomical lobules follow an anterior-posterior order,
correcting for the inter-lobular spacing along this anterior-posterior
axis is equivocal due to differences in lobule sizes. The position of the
functional ROIs on this anterior-posterior axis becomes even more
difficult to distinguish, since functional parcels are not contiguous and
might have anterior and posterior components (e.g. parcels 1: Left-
hand (motor) presses, and 2: Right-hand (motor) presses). By deter-
mining the centroid for each of the 10 functional ROIs, we approxi-
mated the anterior-posterior position. Using this approach, we present
evidence for an anterior-posterior gradient throughout different
morphological indicators (i.e., volumes aswell asGMD, andWMD) that
is observable in both parcellations with the exception of vermal
volumes in the anatomical parcellation. However, results should be
interpreted with caution given the complex geometry of the cere-
bellum and the possibility of non-linear functional gradients1.

Interestingly, the anterior-posterior growth trends in the cere-
bellummirror a previously reported cerebellar functional gradient and
maturation patterns found in the cerebrum. In the cerebral cortex,
similar patterns of earlier maturation of sensorimotor compared to
higher-order cognitive areas can be observed in myelination35,36 and
grey matter maturation37–40, pointing towards directly related growth
trajectories of the cerebellum and the cerebrum. Considering the two
principle functional gradients that have been described by Guell and
colleagues, our reported growth gradientsmight not only be reflective
of motor vs. non-motor involvement but might also pertain to cogni-
tive load. The first gradient extends from motor to non-motor areas,
while the second gradient stretches from areas involved in task
focused to task unfocused processing24. The growth gradients in both
parcellations and over different modalities (volume, GMD,WMD)map
best onto gradient two, although volumetric gradient patterns seem to
be more diffuse (Fig. 5B). This implies earlier maturation of areas
involved in task unfocused cognitive processing, like motor function
and default mode networks, and later or prolonged maturation of
regions likely to share involvement inworkingmemoryprocessing and
frontoparietal networks. In the cerebrum, frontoparietal networks are
known to mature later as, for example, sensorimotor networks. How-
ever, recently age-dependent maturation patterns paralleling the first,
but not the second functional cerebellar gradient have been reported,
with default networks reachingmaturation last in a very similarly aged
cohort41. An alternative explanation for this result could have to do
with the interplay between default mode and frontoparietal networks.
The default mode network has been proposed to serve as a compen-
satory scaffold to support executive functions in children and young

adults with immature frontoparietal network42. Importantly, while
there are suggestions of the growth patterns resembling gradient 2
proposed by Guell and colleagues, the depiction of the gradients using
the LittleBrain toolbox in the current study is inconclusive, mainly due
to divergent patterns in the anatomical parcellations. The issue of age-
related changes in cerebellar functional networks remains to be closely
examined and could be explored in future studies using large-scale,
longitudinal functional neuroimaging data. Together with similar
maturation patterns in myelination and grey matter density, these
findings provide additional support for developmental interactions
between the cerebellum and cerebrum.

Indeed, the cerebellum has been proposed as a crucial node for
optimal structural and functional brain development. Hence, Wang
and colleagues have recently coined the term of a developmental dia-
schisis, suggesting that the cerebellummight have adirect influence on
cortical maturation5. This also accords with earlier findings of volume
decreases in remote but connected cerebral regions after perinatal
cerebellar injury43 and findings of cerebellar tumors resulting in sig-
nificant downstream effects on higher cognition and motor function
which could not be compensated well by other structures44. Further
work, in particular in vivo human research, is required to develop a
more complete understanding of the cerebellar influence on cortical
development.

An increasing amount of literature about the role of the cerebellum
in higher cognitive functions but also in neurodevelopmental disorders,
and in Autism Spectrum Disorder (ASD) specifically, has become avail-
able in recent years. Cerebellar abnormalities are among the most fre-
quently reported in ASD patients5. Intriguing reports from mouse
models show that targeted activation of right Crus I and the posterior
vermis was able to rescue autistic behaviors in TSC1 mutant mice by
modulating activity in the medial prefrontal cortex45. Akin volumetric
changes inCrus I and theposterior vermis havebeen reported in human
studies as well as deviations in total cerebellar size46–51. Recently, how-
ever, no differences in cerebellar anatomy in individuals with autism
were reported when using normative models on cerebellar growth
based on a smaller control sample (n = 219)52. Therefore, looking into
cerebellar deviations of children that are likely to fall on the Autism
spectrum in large, population-based cohorts, lends itself as a prime
example of illustrating the utility of the current normative models.

In accordance with previous research, we find smaller cerebellar
volumes in children with autistic traits. In the anatomical parcellation
smaller volumes can be seen throughout various regions, particularly
in vermal and lobular parts of the anterior and superior posterior
cerebellum (Fig. 6A). This corroborates findings of hypoplasia in pos-
terior vermal and lobular regions, which have been reported con-
sistently before in clinical samples46–48,50,51. While the functional
parcellation also reveals smaller volumes throughout almost all ROIs,
with significant differences in MDTB components 1) Left-hand presses
and 6) Divided attention (right), the MDTB components 7) Narrative
and 8) Word comprehension seem to not follow the same trend
(Fig. 6B). Given the overlap of MDTB components 7 and 8 with the
cerebellar defaultmode regions describedbyBuckner and colleagues1,
a network found to be among the most disrupted in ASD patients, this
might relate to previously reported heterogeneity in default mode
network connectivity in children on the Autism spectrum53.

Fig. 6 | Cerebellar deviations of typically developing children and childrenwith
autism traits. Percentage of individuals with large negative (z-score < −1.96) and
large positive (z-score > 1.96) deviations in typically developing children (n = 2,012)
and children that are likely to fall on the Autism spectrum (high Social Respon-
siveness Scale (SRS) score, n = 198) are shown. Asterisks indicate ROIs in which
children with high SRS and children with typical SRS scores have a significantly
higher percentage of large deviation than expected at the p =0.05 level (typical >
3.13%, high SRS > 5.05%) using Binomial testing (observed vs. expected number of

participants with z > 1.96/z < −1.96 in high SRS and typical children, given a null
hypothesized probability of p0=0.025, one-sided). A Deviations in volume in the
anatomical ROIs. 3D illustrations were generated based on a publically available,
manually segmented MR image (MAGeT atlas, brain5)7. B Deviations in volume in
functionalROIs.CDeviations inGreyMatterDensity (GMD) in functionalROIs.White
Matter Density (WMD) deviations are shown in Supplementary Fig. 8. Source data
are provided as a Source Data file.
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Clear differences can also be observed in GMD with a high percentage
of individuals with autistic traits exhibiting increased GMD in the
anterior sensorimotor parcels, particularly on the left hemisphere, and
decreased GMD in the superior posterior parcels involved in language
processing (Fig. 6C). In view of the heterogeneity in brain morphology
between individuals across amultitude of pathologies, it is noteworthy
that the current approach does not depend on group-level inferences
but can be used at an individual level to uncover within-group differ-
ences. Furthermore, the availability of a very detailed anatomical as
well as a functional parcellation allow for more sensitive approaches
when investigating pathological deviations from typical development.

While we chose to illustrate cerebellar deviations using the
example of autistic traits, it is important to note that the cerebellum is
known to play an influential role in amyriad of clinical subpopulations
for which this approach would be particularly insightful. Following the
concept of the cerebellar connectome, a framework proposing that
deviations in cerebellar and cerebello-cortical connectivity have a
direct influence on onset and severity of neurodevelopmental dis-
orders, the current approach has the potential to not only advance our
understanding of disease etiology, but might also uncover new sites
for therapeutic interventions28.

Previous investigations into the typical volumetric development
of the cerebellum during childhood and adolescence, although con-
ducted with smaller sample sizes and employing less detailed anato-
mical parcellations, have revealed similar growth patterns. Increases
weremostpronounced in the corpusmedullare and superior posterior
lobe, while the anterior lobe and vermal regions showed stagnation or
decline54,55. Contrasting anatomical and functional maps in the current
study suggests there is merit in using both and that in certain appli-
cations they may be complimentary. Anatomical maps offer a well-
defined way of delineating the cerebellum, thereby providing parcel-
lations that have shown to successfully quantify brainmorphology and
pool data across populations in the past. But as functional activity in
the brain rarely coincides with macroscopic anatomy26, future studies
employing functional parcellations might be able to uncover pre-
dictors of behavior in clinical subgroups that would otherwise be
hidden using anatomical atlases only.

Therefore, normative models of both parcellations and all ROIs
described are freely available on github (https://github.com/cgaiser1/
cerebellar-growth-models)56. Both linear as well as b-spline models can
be downloaded and used as informative priors for new unseen sites
using the PCNtoolkit (https://github.com/amarquand/PCNtoolkit.git).
This not only allows for better predictions in smaller data sets, but also
enables future studies to model individual differences free of site-
effects, and to uncover clinically significant deviations from the nor-
mativemodel. To transfer knowledge from the currentmodels to a new
cohort an adaptation set of approximately 25 samples is needed20. The
remainder of the cohort can then be interpreted on a single subject
basis and compared with the reference model without the need to
employ an additional control group. A detailed account of how nor-
mative models can be implemented in future studies can be found
online (https://pcntoolkit.readthedocs.io/en/latest/) and is also descri-
bed by Gaiser, Berthet and colleagues20. Furthermore, an approach to
quantitatively evaluate within-subject changes in longitudinal designs
using normative modeling has been proposed recently57, which pro-
mises great utility for individual-level data as it allows to estimate
whether individual participants or patients follow their expected cen-
tiles. The PCNportal (https://pcnportal.dccn.nl/), where the current
models can be found as well, further offers the possibility to derive
subject-level statistics in a new dataset in a simple and accessible way,
without the need for any technical background knowledge or com-
puting power58. Greater efforts are needed to discern the role of the
cerebellum in typical and atypical neurodevelopment for which the
current normative models can serve as a highly useful tool.

Limitations
The Generation R Study is a population-wide cohort from The Nether-
lands and therefore the current normativemodelsmight not generalize
ideally to other populations. Participants from Western, educated,
industrialized, rich, and democratic (WEIRD) societies are often over-
represented in research samples, particularly in small studies59. Yet,
importantly the Generation R study is a population-based multi-ethnic
cohort60 and in the current study sample 29.8% of participants come
from non-European backgrounds (Supplementary Table 1). Also, the
distribution of IQ scores in the current sample closely follows the
population distribution (mean ± STD= 102.3 ± 14.8). While normative
models were found to be highly stable with n > 3,00061, it is noteworthy
that the current models can easily be updated within the PCNtoolkit
framework. This can also include new data points outside of our age
range and from diverse backgrounds, or from clinical cohorts. As a
consequence, the cerebellar normative models can be extended and
refined as more information becomes available while new, possibly
smaller cohorts can benefit from informed priors based on ourmodels.
In such a way, the current models and our results on deviations in
children likely to fall on the autism spectrum can be validated in an
external (clinical) cohort in the future.

Another potential limitation is related to how the MRI data were
processed, namely theuseof anadult template spaceand adult atlases.
This is a recurring theme in human neuroimaging, which has yet to be
fully resolved. Importantly, theMAGeTBrain framework is likely able to
improve modeling of individual differences in morphology, possibly
present in a developing cohort compared to an adult population,
through the use of study-specific template propagation. Furthermore,
our scans were acquired on 3TMRI scanners with a voxel resolution of
1 mm3. While this standard setup is able to reliably identify cerebellar
lobules7, higher resolutions are needed to more accurately segment
cerebellar vermal regions, and white and grey matter given the thin,
tightly folded cortical layering of the cerebellar cortex62. Lastly, the
functional parcellation used in this study was a group-average par-
cellation derived from high-quality, extensive functional MRI assess-
ment from adults17. Functional boundaries are likely to vary between
individuals to some degree and may also vary as a function of age.
Future studies should therefore aim to repeat the task-battery in a
cohort of young children and adolescents to quantify whether neu-
rodevelopmental differences exist in the functional parcellation.

In conclusion, we present models of cerebellar growth during
childhood and adolescence, an important time period for brain devel-
opment, based on a large, prospective population cohort, the Genera-
tion R study. We find an anterior-posterior growth gradient mirroring
the age-related improvements of underlying behavior and function. The
anterior/sensorimotor-posterior/cognitive growth gradient resembles a
recently proposed functional gradient related to cognitive load and
follows cerebral maturation patterns, thus providing evidence for
directly related cerebello-cortical developmental trajectories. In recent
years, the cerebellumhas received increasing attention as a critical node
in fundamental cognitive and emotional functions as well as brain
development. The current openly accessible growth models will
therefore be of great value for uncovering cerebellar deviations and
understanding their implications in neuropathology.

Methods
Participants
Participants were part of the Generation R Study, a population-based,
prospective cohort study from fetal life onward60. Between 2002 and
2006, 9,778 pregnant women living in Rotterdam, The Netherlands
were enrolled in the study. Data from the children and caregivers were
collected at several time points. In total, MRI data from 5,185 unique
individuals were obtained across three time points. 1,070 participants
(mean age = 7.9) visited during the first assessment, 3,992 participants

Article https://doi.org/10.1038/s41467-024-46398-2

Nature Communications |         (2024) 15:2351 10

https://github.com/cgaiser1/cerebellar-growth-models
https://github.com/cgaiser1/cerebellar-growth-models
https://github.com/amarquand/PCNtoolkit.git
https://pcntoolkit.readthedocs.io/en/latest/
https://pcnportal.dccn.nl/


(mean age = 10.2) during the second, and 3,725 participants (mean age
= 14.0) visited the testing center at the third assessment. After exclu-
sion of participants with incomplete T1-weighted scans (n = 1,214),
scans without complete consent form (n = 122), scans with incidental
findings (n = 73), and scans with low image quality ratings (n = 454), a
total of 7,270 scans from 4,862 individuals (2392 male, 2470 female)
were available for statistical analysis. Scans were only excluded based
on technical or ethical considerations, but not based on clinical phe-
notypes (i.e. pre-existing conditions) in order to capture the hetero-
geneity of the general population. In the first measurement
assessment, participants included in the analysis had amean age of 7.9
years (range = [6.1-10.7], n = 974, 510 male, 464 female), in the second
assessment a mean age of 10.1 years (range = [8.6 – 12.0], n = 3,785,
1,879 male, 1,906 female), and in the third assessment a mean age of
14.0 years (range = [12.6 − 17.1], n = 2,511, 1,202 male, 1,309 female).
2,734 (56.2%) individuals were measured once, 1,848 (38.0%) indivi-
duals twice, and scans in all three measurement assessments were
acquired from 280 (5.8%) individuals. Roughly half of the sample was
female (50,6%), 29.8% were of non-European ancestry and IQ scores of
included participants closely followed the population distribution (IQ
mean± STD = 102 ± 14.8) (Supplementary Table 1). Written informed
consent from both parents and assent from all participants was
obtained, and the study was approved by the Medical Ethical Com-
mittee of the Erasmus Medical Center. Participants did not receive
monetary compensation, but their travel costs were reimbursed.
Additionally, as a token of appreciation for their participation, they
received small gifts valued at 10€ or less, such as a drinking bottle, a
bag, a power bank, or similar items.

Non-response analysis
Given the prospective, longitudinal nature of the study, it is important
to understand the impact of loss-to-follow-up. We therefore tested
random drop-out in our study by examining possible differences
between participants included and excluded in the current analysis in
terms of the following descriptive characteristics: sex, parental
national origin (Dutch, Non-Dutch but European, Non-European;
obtained from birth records), monthly household net income (low =
<1200€, middle = 1200€ − 3200€, high = >3200€; obtained from
questionnaire), maternal education (higher education pursued or not;
obtained from questionnaire), IQ and behavioral problems. Nonverbal
IQ scores, normalized for sex and age, weremeasured using 2 subtests
(Mosaics [spatial visualization] and Categories [abstract reasoning]) of
the Snijders-Oomen Nonverbal Intelligence Test (SON-IQ) in the first
measurement visit (mean age = 7.9). Behavioral problems were mea-
sured using the Child Behavioral Checklist (CBCL)63 in the second
measurement visit (mean age = 10.1). We dichotomized behavioral
problems according to maternal reports (scoring above 80th percen-
tile: behavioral problems present; below 80th percentile: behavioral
problems not present).

Participants included in the dataset were more likely to be female
(χ2 = 8.38, p =0.004), of Dutch national origin (χ2 = 181.10, p < 0.001),
have higher maternal education (χ2 = 27.10, p <0.001), and to have a
middle or high household income (χ2 = 15.48, p <0.001) and less likely
to have an IQ below 85 (χ2 = 63.21, p <0.001). Behavioral problems as
measured by the CBCL did not differ between excluded and included
participants (weighted total problem score; χ2 = 2.41, p =0.120).

Neuroimaging acquisition
Scans were acquired using two different MRI scanners. In the first
measurement visit, data were collected on a GE MR750 Discovery
system, and data from all subsequent assessments were collected on a
study-dedicated GE MR750w system (General Electric Healthcare,
Wisconsin, USA). High resolution T1- weighted MRI scans were
acquired using an inversion recovery fast spoiled gradient recalled
sequence (IR-FSPGR) using the following parameters: Visit 1:

TR = 10.3ms, TE = 4.2ms, TI = 350ms,flip angle= 16°, acquisition time=
5min 40 s, field of view = 230.4 × 230.4mm, 0.9 × 0.9 × 0.9 mm3

isotropic resolution. Visit 2 and 3: TR = 8.77ms, TE = 3.4ms,
TI = 600ms, flip angle = 10°, acquisition time = 5min 20 s, field of view
= 220 ×220mm, 1x1x1 mm3 isotropic resolution.

Image pre-processing
Images from the first measurement visit were resampled to 1 mm
isotropic resolution to match data from the second and third assess-
ments. Images were then pre-processed using the SMRIPrep tool64.
Briefly, non-brain tissue was removed, voxel intensities were adjusted
for B1 inhomogeneities, and images were then linearly and eventually
nonlinearly registered to standard stereotactic space (MNI152
NLin2009cAsym 1x1x1 mm resolution) using ANTs (github: https://
github.com/ANTsX/ANTs.git). The tissue segmentation procedure
(FSL FAST: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST) resulted notonly
in binary classifications of voxels, but also in per-voxel tissue class
probability estimates. These probability estimates can be interpreted
as the likelihood of a given voxel being grey matter, white matter, or
cerebrospinal fluid. Further, the nonlinear registration produced a
nonlinearwarpfile (which included the linear initialization) fromwhich
we calculated the determinant of the Jacobian matrix for each voxel.
This determinant was used as a measure of volume of that voxel
relative to its volume in standard stereotactic space.

Normative models
Normative models for anatomical and functional subregions of the
cerebellum were generated using the PCNtoolkit python package ver-
sion 0.2712,19,65 using Python 3.10.6. We modelled the effect of age on
cerebellar features of interest (volumes, GMD, WMD) while correcting
forbatch-effects of sex and scanner (model parameters are illustrated in
Supplementary Fig. 1). For both the anatomical and functional parcel-
lations, we split the dataset into a training set (50%) and test set (50%)
using the sex and scanner site variables to ensure equal distribution of
sex and both scanners in both sets. We generated linear and 3rd order
b-spline models with 5 evenly spaced knot points (all available at:
https://github.com/cgaiser1/cerebellar-growth-models). Normative
models of all previously described cerebellar ROIs were successfully
generated. Model performance of both linear and b-splinemodels were
evaluated using Leave-one-out cross-validation (LOO). We employed a
sinh-arcsinh likelihood (SHASHb) to accommodate non-Gaussian
distributions65 and modeled random effects in intercept, slope, and
variance (sigma) on the batch-effects (sex and scanner). Inference was
performed using Markov chain Monte Carlo methods (see Kia et al.,
2022 and de Boer et al., 2022 for full details). Four chains with
2000 samples eachwere generated. Thefirst 500 samples of each chain
were used as tuning samples and were removed from further analysis.
Model outputs include the posterior distributions of the parameters
and deviations from the normative range (z-score which are free of
batch-effects) for each individual in the test set.

Image quality control
To ensure segmentation quality, anatomical segmentations (n =8787
before exclusions) were visually inspected by two expert raters (C.G.,
N.D.). A custom-made MATLAB app (version R2021b, Mathworks, USA)
was used to inspect PNG files of all slices of each scan, and the seg-
mentation qualitywas rated on a 3-point scale (Good, Sufficient, or Bad)
based on inaccuracies in the parcellation, complete coverage of the
cerebellum, andmotion or other artifacts. Scans rated as bad (i.e., cases
without full coverage of the cerebellum, scans with substantial artifacts,
and/or scans with marked inaccuracies in the parcellation) were sub-
sequently excluded from further analyses. Visual examples of scans
rated on the 3-point scale can be found in Supplementary Fig. 9. A
subset of 600 scans were inspected by both raters to assess inter-rater
reliability (IRR). Following visual inspection of all available scans, 454
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(5.2%) were excluded due to low quality ratings, 593 were rated as suf-
ficient (6.7%), and 7740 as good (88.1%). IRR between both raters (C.G.,
N.D.) showed strong agreement on usability (usable or not usable) of
the scans between raters (Cohen’s κ =0.83, CI = [0.72–0.94]).

Anatomical parcellation
The MAGeTBrain framework uses an automated labeling algorithm
based on five manually segmented MR images from healthy partici-
pants. Non-linear registration is used to align the five manually seg-
mented images (in MAGeTBrain referred to as “atlases”) to a series of
individual study-specific “template” images (referred to as
“templates” here).

Seven unique and representative images from the three study
time points were selected, by (a) excluding scans with dental implants,
(b)pre-selecting the top20 scanswith thehighest quality ratings based
on automatic FreeSurfer quality assurance66, and (c) thoroughly
inspecting the top 20 scans per time point for artifacts, inhomogene-
ities, full coverage of the cerebellum, and (cerebellar) cysts. Based on
this evaluation, the 7 scans with the highest quality ratings were
selected per time point, resulting in 21 study-specific template images.

Each of the five manually segmented atlases were then applied to
the 21 study-specific templates, resulting in 105 cerebellar atlas-
template segmentations. This allows for themanual segmented atlases
to be propagated to eachof the template images. Next, each individual
scan in the dataset was non-linearly registered to each of the 105 cer-
ebellar template segmentations, resulting in 105 segmentations for
each input image, and enabling the template-atlas labels to be propa-
gated to each individual participant space22. In the final step, for each
individual input image, the 105 co-registered atlas-template labels
were then fused using voxel-wise majority voting to create a final
segmentation.

The MAGeT algorithm subdivides the cerebellum into 11 vermal
and 22 hemispheric lobules (11 on each hemisphere). Additionally, the
central white matter, the corpus medullare, is segmented in each
hemisphere. White matter that extends into the folia of the lobules was
segmented as part of the lobules. Volumes for each of these 35 anato-
mical parcellations are generated in mm3 by the MAGeT pipeline. Sup-
plementary Fig. 10 shows a representative automatically labelled
segmentation from one individual and gives an overview of all 35 ana-
tomical subdivisions. This computationally intensive approachhasbeen
shown to have better test-retest reliability than other segmentation
techniques and results in high segmentation accuracy by creating a
customizable template segmentation library, thereby being able to take
advantage of existing morphological variances in the cohort7.

Functional parcellation
We parcellated functional subregions of the cerebellum in MNI space,
using the MNI-aligned version of the MDTB atlas17. The MNI-aligned
atlas was chosen over the SUIT space aligned atlas, since it allows to
use the current models without adding an additional processing step
transforming images into SUIT space. Furthermore, while normal-
ization to SUIT space compared to the former linear MNI template has
been shown to improve overlap of cerebellar regions across
individuals67, alignment to the MNI152NLin (the non-linear MNI tem-
plate published since) has greatly improved MNI normalization since
then. Mean greymatter density (GMD) andwhitematter density (WMD)
(values closer to 1 indicate a high probability of a given tissue type in
that voxel) and volumes (defined as the sum of the Jacobian determi-
nants) were extracted for each of the ten functional parcellations (see
Methods: Image pre-processing).

Clinical validation of models using Social Responsiveness
Scores (SRS)
We investigated whether deviations in cerebellar growth are present
in children who are likely to fall on the Autism spectrum according to

the Social Responsiveness Scale (SRS). A shortened 18-item version of
the SRS was administered via questionnaire at the age of 8 years68.
For each ROI separately, the z-scores of children likely to fall on the
Autism spectrum (raw score on SRS >= 90th percentile, n = 198) and
the remainder of the cohort (n = 2,012; children without SRS infor-
mation excluded) were compared. We defined data as having large
deviations in the normative model if the value of their normative
estimate was larger than 1.96 or smaller than −1.96 (i.e., upper and
lower tails of the distribution, critical z for 95% confidence interval).
Due to the different sample sizes of typical and high SRS children,
and therefore different expected proportions under the null
hypothesis, significance of the percentage of children with large
deviations at the p = 0.05 level were evaluated using Binomial testing
(observed vs. expected number of participants with z > 1.96/z < −1.96
in high SRS and typical children, given a null hypothesized prob-
ability of p0 = 0.025, one-sided). Crucially, given the heterogeneous
brainmorphology in Autism69, the current approach does not rely on
group-level inferences. By illustrating percentages of extreme
deviations we can 1) validate that, as expected in a representative
reference model, approximately 2.5% of typically developing chil-
dren fall in the tails of the normative distribution, and 2) show whe-
ther children at risk for Autism diverge from this, even if individual
patterns may show considerable variations. We additionally tested
the effect of SRS score as a continues variable on the deviation scores
using linear regression.

Relating normative model deviations in the functional
parcellation to IQ
Next to the clinical validation, we used the same approach to illustrate
how IQ correlates with cerebellar deviations in the functional parcel-
lation, which contains motor and cognitive subregions, in a supple-
mentary analysis. Results were stratified based on IQ scores obtained
from Snijders-Oomen Nonverbal Intelligence Test (SON-IQ) (please refer
to 3.6. Non-response analysis for details): Low IQ (<70; n = 40), and high
IQ (>130; n = 64). We again defined data as having large deviations in
the normativemodel if the value of their normative estimatewas larger
than 1.96 or smaller than −1.96 (i.e., upper and lower tails of the dis-
tribution, critical z for 95% confidence interval) and significance of the
percentage of children with large deviations at the p =0.05 and
p =0.01 level was evaluated using Binomial testing (see Methods:
Clinical validation of models using Social Responsiveness Scores (SRS)
for details). We find global effects of lower volumes in children with
low IQ along with large positive and negative deviations in GMD and
WMD in posterior cognitive subregions (please see Supplementary
Fig. 11 for details).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The cerebellar anatomical (https://github.com/CoBrALab/atlases)7 and
functional (https://github.com/DiedrichsenLab/cerebellar_atlases)17

atlases are available on github. The cerebellar growth models have
been deposited on github (https://github.com/cgaiser1/cerebellar-
growth-models)56 as well. The raw MRI and participant-level region-
of-interest data are protected and are not availabledue to privacy laws.
However, access can be requested via the Generation R administration
(secretariaat.genr@erasmusmc.nl). Source data are provided with
this paper.

Code availability
Code to generate normative models and transfer knowledge from
existing models to new sites is freely available via the PCNtoolkit
(https://github.com/amarquand/PCNtoolkit).
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