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1. INTRODUCTION

The ability to move is indispensable for key survival func-
tions, so much so that the brain devotes vast resources 
to generating movement. Beyond survival, professional 
achievement and social recognition are often reliant on 
the acquisition and subsequent production of sophisti-

cated motor behaviors (for instance, in the case of crafts-

people, athletes, or musicians). Even mundane activities 

such as typing on a computer require complex motor 

programs. For these reasons, understanding the process 

of motor skill acquisition has been a long- standing topic 

in psychology and cognitive neuroscience. Nonetheless, 
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many outstanding questions remain, and a key one is 
how the observed behavioral changes are related to the 
alterations known to occur at multiple neurophysiological 
levels ( Fields,  2015;  Jensen  &  Yong,  2016;  Krakauer  et al., 
 2019;  Makino  et al.,  2016;  Sampaio- Baptista  et al.,  2013; 
 Zatorre  et al.,  2012).

There is ample evidence from functional Magnetic 
Resonance Imaging (fMRI) studies of learning- related 
changes in activation in primary and secondary motor 
cortices as well as in subcortical areas ( Dayan  &  Cohen, 
 2011;  Floyer- Lea,  2005;  Grafton  et al.,  1995;  Karni  et al., 
 1995,  1998;  Lehéricy  et  al.,  2005;  Penhune  &  Doyon, 
 2002). However, there are discrepancies among studies 
regarding whether activity in these areas increases, 
decreases, or shows more complex non- monotonic pat-
terns of change with practice. It also remains unclear 
whether the changes occur in the primary sensorimotor 
cortices or exclusively in secondary areas ( Berlot  et al., 
 2020;  Huang  et  al.,  2013;  Ma  et  al.,  2010;  Wiestler  & 
 Diedrichsen,  2013;  Xiong  et  al.,  2009). Recent work 
made significant progress in resolving these disagree-
ments with a preregistered long- term longitudinal study 
of subjects practicing a finger- sequence production  
task ( Berlot  et al.,  2020). This study found decreases in 
activation during performance relative to rest in trained 
compared with untrained sequences in the dorsal pre-
motor cortex and the anterior superior parietal lobule. 
Activation in the primary sensorimotor cortex remained 
constant.  Berlot  and  colleagues  (2020) also reported 
changes of the multivariate activation patterns for the 
execution of trained sequences in secondary, but not 
primary, regions ( Berlot  et al.,  2020;  Huang  et al.,  2013; 
 Wiestler  &  Diedrichsen,  2013).

Learning classic finger- sequence tasks primarily req-
uires assembling elements from the repertoire of previ-
ously learned actions instead of creating novel continuous 
movements ( Krakauer  et  al.,  2019;  Wong  &  Krakauer, 
 2019). According to this interpretation, what is learned in 
this type of task is to select rapidly the appropriate, 
already- learned, discrete actions in the correct order. 
Learning may thus primarily occur in movement planning 
and action selection— an interpretation consistent with 
observations of learning- related changes in secondary, 
but not primary, sensorimotor cortices ( Yokoi,  2019). This 
perspective is compatible with a hierarchical architecture 
of the representations underlying motor skill, with asso-
ciative areas encoding chunks and sequences of ele-
mentary motor components or particular component 
features like timing or spatial organization ( Diedrichsen  & 
 Kornysheva,  2015). Nevertheless, it remains unknown 

whether learning sequences of more difficult discrete 
movements (i.e., movements that are initially challenging 
because they have not been practiced previously) are 
associated with the same pattern of activation over time 
(i.e., stability in the primary sensorimotor cortices and 
reductions in the associative cortices). That is, the pri-
mary sensorimotor cortices may also be involved in 
learning such sequences of movements. Here, we 
addressed this issue by developing a configural sequence 
task, akin to playing short sequences of piano chords, 
which naïve subjects had to learn to execute with their 
non- dominant (left) hand (Fig. 1).

Beyond functional changes, human neuroimaging has 
also revealed learning- related alterations in brain struc-
ture. Estimates of gray and white matter structure 
obtained with MRI display differences between adult 
human experts and non- experts in brain regions that are 
relevant to their domain of expertise ( Amunts  et al.,  1997; 
 Bengtsson  et al.,  2005;  de  Manzano  &  Ullén,  2018;  Gaser 
 &  Schlaug,  2003;  Maguire  et  al.,  2000). In longitudinal 
designs, changes in such structural properties can be 
detected following weeks or months of practice to 
acquire skills such as juggling or speaking a new lan-
guage ( de  Lange  et  al.,  2017;  Draganski  et  al.,  2004, 
 2006;  Lövdén  et al.,  2013;  Mårtensson  et al.,  2012;  Scholz 
 et al.,  2009). Some evidence indicates that such struc-
tural changes in gray matter may be non- monotonic, with 
initial increases followed by partial normalization during 
motor learning ( Wenger  et al.,  2017).

Several researchers have attempted to integrate these 
findings of learning- related structural changes with the 
functional changes, and with related observations in ani-
mal models, like cortical map reorganization ( Molina- Luna 
 et al.,  2008;  Reed  et al.,  2011) or the formation and stabi-
lization of selected synapses ( Xu  et al.,  2009;  Yang  et al., 
 2009), under the umbrella of an exploration- selection- 
refinement (ESR) theory ( Kilgard,  2012;  Lindenberger  & 
 Lövdén,  2019;  Lövdén  et al.,  2020;  Makino  et al.,  2016). 
This conceptual model draws from early ideas of varia-
tion and selection within neural populations ( Changeux, 
 1989;  Edelman,  1987) and predicates that remodeling of 
circuits in motor skill learning follows three phases. Ini-
tially, circuits that may elicit potentially adequate move-
ments are randomly recruited (exploration), leading to a 
high activation extent that prompts structural changes in 
those circuits. Subsequently, the neural ensembles sup-
porting movements that are reinforced persist, while 
superfluous circuitry is pruned (selection). Finally, the 
selected circuits are fine- tuned as the optimal behavior is 
repeated, resulting in stable long- term memories and a 
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slow development of precision and consistency of per-
formance (refinement).

The ESR theory generates hypotheses that are testable 
in humans with MRI: (1) The variability of neural representa-
tions (i.e., activity patterns) across trials corresponding to 
the same intended action should be initially high during 

exploration and then decrease rapidly after selection; (2) 
the overall neural activity level should be initially high and 
then decrease during learning; and (3) the ESR process 
should give rise to growth of regional structure in brain 
regions controlling the learned movement during the explo-
ration phase (expansion), followed by a partial retraction 

Fig. 1. Design and task. (A) The longitudinal study spanned a 6- week period, with 7 testing sessions. Participants were 
tested behaviorally once a week at the MR facility, both outside the scanner (unpaced task) and inside the scanner (paced 
task) while undergoing functional MRI. Structural images were also acquired. In between testing sessions, subjects in the 
intervention group practiced at home, 5 times a week. (B) Participants practiced and were tested on a discrete configural- 
response sequence task, in which they had to execute different sequences of finger movements with 5 combinations 
(chords) of up to 4 fingers with their left (non- dominant) hand upon seeing a cue. Subjects used a button box and each 
finger except the thumb had one button assigned to it. Each button that had to be pressed was depicted as a square, 
and button combinations were arranged in 5 rows, to be executed from top to bottom. Subjects practiced two versions 
of the task, both starting with a short fixation, after which a cue was shown depicting the sequence to be executed. In 
the unpaced version of the task (C), subjects were asked to execute the sequence correctly and as fast as possible. 
They received feedback regarding correctness and execution speed, relative to their past trials and to the best score in 
their (fictitious) peer group. A sequence had to be repeated until 20 correct trials were achieved before moving on to the 
next. In the paced version (D), a counter indicated a beat (0.7 s) that participants had to follow when pressing the chords. 
Participants received feedback regarding whether the sequence was correct and in sync with the beat, and they had to 
achieve 5 correct trials to move on to the next sequence. In the scanner, participants were tested on the paced version of 
the task but no feedback was provided, and a different sequence was presented on each trial, with two consecutive trials 
never presenting the same sequence. See Methods for details about the design and the task.
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(renormalization) after the best circuit for the task has been 
selected ( Lindenberger  &  Lövdén,  2019). In the present 
study, we sought to test these preregistered predictions 
(https://osf . io / 48meb; https://osf . io / x4c9b). Under the 
assumption that the task that we developed demands 
learning of both novel elementary movements (simultane-
ous multiple finger presses) and sequential combinations 
that have not been a prominent part of the subjects’ behav-
ioral repertoire before, we predicted these results in both 
primary and secondary sensorimotor areas. In analyses 
that were not preregistered, we also probed past findings 
of reductions in behavioral variability across trials of the 
same intended action and examined how training affects 
the similarity between activation patterns elicited by differ-
ent movement sequences.

To test these hypotheses, we randomly allocated 70 
healthy right- handed younger adults to either an inter-
vention group, which trained the task at home 5 times a 
week during a period of 6 weeks, or to a control group 
(Fig.  1). Once a week, both groups were scanned with 
structural and functional MRI, and tested inside and out-
side of the scanner on trained and untrained sequences. 
With this design, we could probe sequence- specific 
learning by comparing changes in performance and brain 
activity between trained and untrained sequences, con-
trolling for the effects of repeated testing. Furthermore, 
comparison between the intervention and control groups 
enables assessing transfer of training effects to untrained 
sequences (i.e., sequence- general effects of training) and 
to investigate the effects of learning on brain structure. 
We measured baseline brain structure and activity before 
any substantial pretraining. Some discrepancies between 
previous studies could stem from whether or not they 
included pretraining, which could be associated with 
some early changes before the baseline scans. Training 
of the sequences took place both in an unpaced condi-
tion (i.e., subjects were required to complete the seq-
uences as fast as possible) and in a paced condition (i.e., 
subjects were required to execute the discrete move-
ments following a predefined tempo). The paced condi-
tion was administered during fMRI to rule out that 
potential training- related activity changes were driven 
simply by changes in motor output.

2. METHODS

2.1. Participants and recruitment procedures

Subjects were recruited via advertisements on a recruit-
ment website and in an online newspaper, and with  

flyers in the local area. After an information meeting, 
subjects who agreed to partake in the study signed a 
consent form. They were then asked to complete ques-
tionnaires focused on study criteria, the Edinburgh 
Handedness Inventory, and an 18- item version of 
Raven’s Progressive Matrices test. Next, subjects tried a 
short demo of the practice routine (with simpler seq-
uences and fewer trials than they would encounter in the 
actual experiment) so that they could ask questions and 
familiarize themselves with the task and the button box. 
Participants who fulfilled all study criteria (see Supple-
mentary Table  1) received an invitation to take part in  
the study.

The recruited subjects (n  =  70; age  =  20- 30  years, 
right- handed, MRI eligible, no previous experience of 
fine- motor skill acquisition involving the left hand) were 
randomly allocated to either an intervention (n = 35) or a 
control group (n = 35), matched for sex and score in the 
Raven’s matrices test. Participants were informed that 
they would be randomly allocated to two different groups, 
but their group membership was only disclosed after fin-
ishing the baseline session. To be able to fit all the 
planned non- linear trends over test sessions, we excluded 
participants completing less than 4 scanning sessions for 
the analyses reported here, leaving 33 intervention sub-
jects and 30 controls. The two groups considered in the 
final analyses did neither differ statistically significantly in 
sex (M/F intervention group: 12/21; control group: 12/18; 
Kruskal- Wallis χ2(1) = 0.09, p = 0.78) nor in performance 
on the Raven’s Progressive Matrices test (intervention: 
mean = 10.7, SD = 2.9; control: mean = 10.8, SD = 3.2; 
two- tailed t(59.14) = 0.13, p = 0.90). Supplementary Fig-
ure 7 shows a flow chart for the recruitment, attrition, and 
exclusions in the study.

Subjects received financial compensation for each 
training session and for each MR exam, and a scheme 
of rewards and penalties was implemented to incentiv-
ize compliance and effort. Participants in the control 
group were paid up to 5850 Swedish crowns (SEK) if 
they completed all the sessions, whereas participants in 
the intervention group were paid up to 8350 SEK due to 
the additional dedication required by the home training 
sessions.

2.2. Ethics statement

The study was reviewed and approved by the Ethical 
Review Board in Stockholm (Case number: 2018/1620- 
31/2). All the participants gave their informed consent.
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2.3. Motor task

The task was a configural- response sequence learning 
task, which requires the execution of a sequence of key 
combinations that need to be pressed simultaneously 
with fingers of the non- dominant hand, as when playing 
a sequence of chords on a piano keyboard. The 
sequences had 5 combinations of between 1 and 4 fin-
gers, excluding the thumb, and subjects used a button- 
box with 4 buttons (Current Designs, Philadelphia, PA, 
www . curdes . com) to execute them (Fig. 1B). Depending 
on the type of session, subjects went through between 3 
and 6 different sequences. The sequences were associ-
ated with different colors to make it easier for the partic-
ipants to identify them and recognize when there was a 
sequence change during the session. At the beginning of 
each session, the software showed instructions on the 
screen. The subject triggered the start of the task by 
pressing the space button. Each trial started with a fixa-
tion cross on screen (1s). A representation of a sequence 
was then displayed (5 rows with squares denoting which 
fingers to press in the following order from left to right: 
pinky, ring, middle, index) that the participant had to exe-
cute. The task was implemented with the Psychopy 
library (psychopy.org) for python (python.org).

After the baseline session, subjects were told which 
group they had been allocated to and intervention sub-
jects were provided with a LENOVO Thinkpad x200  
Tablet (Beijing, China) running Microsoft Windows 7 
(Redmond, USA) so that they could practice at home. 
Participants in the intervention group practiced at home 
5 days a week during the 6- weeks long experiment. They 
were asked to find a quiet environment to practice free of 
distractions, and, as much as possible, a regular time to 
practice. The subjects’ performance data was uploaded 
to a database at the end of each session, so that research 
assistants could monitor their progression and contact 
them if they detected any problems with the execution of 
the task or any lack of improvement, which was rarely 
necessary.

The sessions at home had two different phases: an 
unpaced phase (Fig. 1C) was followed by a paced phase 
(Fig. 1D). In the unpaced phase, subjects were instructed 
to perform the sequence correctly but doing it as fast as 
possible and attempting to improve their speed continu-
ously. To keep subjects focused, the time to execute the 
sequence was limited to 5 s. Responses that were incor-
rect, too slow, or missed (no response) were signaled 
with a buzzing sound and a red cross mark displayed on 
screen at the end of the trial, together with a message 

indicating the reason for the error. If the response was 
correct, three bars were displayed: a blue bar indicated 
the score (speed, inverse of Movement Time [MT]) of the 
completed trial, a green bar displayed the subject’s score 
across past trials and sessions, and a yellow bar dis-
played a fictitious group best score. Subjects were told 
that this yellow bar reflected the best score for a group of 
subjects examined previously and that they should strive 
to surpass it. To keep the task challenging and at the 
same time confer a feeling of continuous improvement, 
the yellow bar was manipulated so that their score got 
closer and closer with time to the fictitious group score, 
but they were never able to reach it. This manipulation 
kept participants motivated throughout experiment and 
was disclosed at the end of the study.

For each key that was pressed, the system logged the 
key and the corresponding time at which it was pressed. 
Executed sequences were then clustered in 5 chords on 
the basis of the difference between the times of their 
keys, regardless of accuracy. Next, accuracy was 
checked for each chord separately (i.e., the keys assigned 
to the nth chord in the performed sequence had to be the 
same as those in the nth chord in the presented sequence 
for that chord to be considered correct) and then across 
the 5 chords (all chords had to be correct and in the same 
order). Thus, only when the sequence of 5 chords 
matched the presented sequence, in the same order, was 
the trial considered correct. Subjects had to complete 20 
trials correctly before moving on to the next sequence, 
and they did not encounter the same sequence again in 
the same training session.

In the paced phase, participants were supposed to 
execute the same sequences but following a predefined 
tempo (0.7 s/beat). After a fixation cross had been shown 
for 1 s, subjects were prompted to wait during 3 prepara-
tion beats that signaled the pace at which to press the 
keys. This preparation phase was followed by an execu-
tion phase of 5 beats in which subjects were supposed to 
press the sequence of key combinations at the presented 
tempo. The beats were indicated by a visual counter and 
an auditory beat. Subjects had to complete 5 trials cor-
rectly before moving on to the next sequence. At the end 
of the trial, subjects received feedback regarding whether 
the response was correct (green tick mark) or incorrect, 
too fast or too slow (buzzing sound plus red cross and 
message). Responses were considered too slow (fast) if 
MT was 10% longer (shorter) than the MT for the pre-
scribed beat. The paced phase was implemented so that 
subjects could practice the task that was administered 
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during the fMRI measurements, which was paced to rule 
out that potential differences in neural patterns could be 
driven by timing differences in the motor output rather 
than differences in representation. The paced phase in the 
scanner differed from the one at home in a number of 
aspects: (1) subjects relied only on the screen counter to 
follow the tempo and could not hear the auditory beats 
(because the coil was very narrow and did not allow to use 
a headset that would have protected their hearing); (2) 
sequences were interspersed pseudo- randomly (with 2 
consecutive trials of the same sequence never taking 
place), counterbalanced across subjects; (3) no feedback 
was provided at the end of the trial; (4) instead, there was 
a pseudorandom exponentially distributed inter- trial- 
interval (ITI) with mean 7.4 s and truncated between 6.0 s 
and 9.2 s, counterbalanced across subjects; (5) subjects 
had to perform 2 (of the 3) trained sequences and the 
same 2 untrained sequences of the unpaced phase; and 
(6) the number of trials was fixed, with 8 trials per sequence 
and run, yielding a total of 160 trials in a single fMRI ses-
sion (5 runs). To improve participants’ comfort during the 
task and avoid that superfluous movements produced 
undesired BOLD signal fluctuations, after every 8 trials 
subjects were given 6 s to stretch their hand, indicated by 
the text “STRETCH” displayed on the screen. Supple-
mentary Figure 1 illustrates the timeline of an fMRI task 
trial. To perform the task in the scanner, subjects used an 
MR- compatible version of the same button box that the 
experimental group was provided to train at home.

In both the unpaced and paced phase, intervention 
subjects trained three different sequences at home (here-
after trained sequences as opposed to untrained 
sequences). Practice sessions at home lasted a median 
time of 16.3 (SD = 3.7) min.

2.4. Motor sequences

To create the sequences, we considered all key combina-
tions (chords) of 4 fingers except 1- 1- 0- 1 and 1- 0- 1- 1 
(pinky- ring- middle- index; 1 indicates the finger is used 
and 0 otherwise). A preceding pilot study showed that 
these 2 chords were considerably more difficult for sub-
jects and some of them did not manage to press the keys 
simultaneously after multiple trials. Therefore, they were 
discarded, leaving 13 different chords to form sequences 
by concatenation.

We generated sequences of 5 chords with a Hamming 
distance of 3 between each transition (i.e., 3 fingers had 
to change between 2 consecutive combinations) which 
did not contain any repeated chords. These were divided 

into 2 sets of 3 trained and 6 untrained sequences, which 
we call configuration A and B, respectively. The sequences 
forming these two configurations can be seen in Supple-
mentary Table 2. These sets of sequences fulfilled several 
conditions. First, there were no common transitions 
between trained and untrained sequences, as we 
assumed that the core learning components in the task 
were transitions rather than chords. Second, we maxi-
mized the number of chords not shared between trained 
and untrained sequences, given the previous condition. 
Third, we tried to match the frequency distribution of the 
different fingers as much as possible, given the previous 
two conditions. More details about how the sequences 
and configurations were obtained can be found in the 
Supplementary Information.

To guarantee that any possible differences between 
trained and untrained sequences were independent of the 
specific sequences trained, 17 out of the 35 subjects in 
each group received configuration A and the remaining 
ones received configuration B, meaning that approximately 
one half of each group trained on different sequences. For 
tests in the scanner (2 trained/2 untrained sequences), the 
A and B configurations were further split into 2 subgroups 
each (A1/A2/B1/B2), depending on which 2 of the 3 trained 
sequences the subjects were tested on. Only two seq-
uences were tested inside the scanner at a given session to 
respect scanning time limits while still achieving enough 
trials for the individual sequences to ensure adequate 
power for the statistical analyses.

Our use of the terms trained and untrained sequences 
warrants some clarification. Subjects within the same 
configuration subgroup (A1/A2/B1/B2) were tested every 
week on the same 3 trained sequences, whether they 
were in the control or the intervention group. The 2 
untrained sequences tested in each session varied from 
week to week but were the same for control and inter-
vention subjects if they belonged to the same configura-
tion subgroup. Because there were only 6 untrained 
sequences possible with the constraints explained 
above, the 2 untrained sequences were cycled every 3 
testing sessions, that is, they were the same for testing 
sessions 0, 3, and 6, the same for 1 and 4, and the same 
for 2 and 5. Therefore, after testing session 3, untrained 
sequences were not completely novel, but they had not 
been seen by subjects for 3 weeks.

To ensure that the possible effects of training were not 
confounded by the order of presentation of sequences in 
the practice sessions with the laptop, this order was 
counterbalanced across subjects, and across sessions 
to minimize potential expectancy effects.
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2.5. Testing sessions

Both experimental groups were invited to 7 sessions at 
the MR center (Fig. 1A). These sessions corresponded to 
sessions 0 (baseline), 6, 12, 18, 24, 30, 36 for intervention 
subjects (6 sessions were done within a week, with 5 of 
practice at home and one of testing at the MR facility). 
The testing sessions also had two phases, with an 
unpaced phase outside the scanner and a paced phase 
inside the scanner. The paced task was used in the scan-
ner to avoid that timing differences in the motor output 
affected activity. The purpose of the unpaced phase was 
to compare the two groups’ execution speed in labora-
tory conditions every week on trained and untrained 
sequences. The unpaced phase in the testing session 
differed only with that in the home training sessions in 
that there were 2 additional untrained sequences that 
were tested besides the 3 trained ones. The behavioral 
tasks always followed structural scanning. Supplemen-
tary Table  3 summarizes the characteristics of each 
phase and session.

2.6. Data collection waves

Because many scanning sessions were required and 
scanner availability was limited, the data collection was 
divided into 5 waves of 7 intervention and 7 control sub-
jects each. Due to scanner malfunction, the 4th wave 
lasted one week less than planned (5 weeks, with 6 scan-
ning sessions). On average, subjects in the intervention 
group that were included in the 4th wave completed 24.1 
(out of 25, SD = 0.9) training sessions at home, whereas 
those in the remaining waves completed 29.6 (out of 30, 
SD = 0.8) training sessions.

2.7. Statistical analyses of behavioral data

Subjects in general did not make many errors in a session, 
but, in a few cases, we observed a disproportionate num-
ber of errors (number of errors/session: median = 6, mini-
mum = 0, maximum = 291), in particular for home sessions. 
We reasoned that the subjects were not paying enough 
attention or perhaps were experiencing some problem in 
those sessions. Consequently, we excluded all trials of a 
particular sequence if the number of incorrect trials for 
that sequence was more than 1.5 interquartile ranges 
(IQR) above the 3rd IQR of the number of incorrect trials 
for any subject for that sequence. This was done sepa-
rately for each session to allow for a higher number of 
incorrect trials in initial sessions or more difficult sessions, 
and led to exclusion of 6.7% of the data in total.

Only correct trials were included in the analyses of MT. 
Within each session, subjects’ performance was initially 
not very consistent, and it took a few trials until MT stabi-
lized. We therefore discarded the first 10 trials of each 
sequence and session. With the remainder, we computed 
the median and standard deviation (SD) of MT for each 
sequence. Next, for each chord, we computed the mean 
of the times of its corresponding key presses and defined 
an inter- press interval (IPI) as the difference between the 
mean times of two consecutive chords. We then deter-
mined the 4 inter- press intervals between the chords that 
constituted a particular sequence and computed the cor-
relation between IPIs from consecutive trials of the same 
sequence, averaging the correlation across trials to 
obtain a measure of execution consistency within a ses-
sion ( Beukema  et  al.,  2019). The same procedure was 
followed for lags between trials ranging from 1 (i.e., con-
secutive trials) to 9. Finally, we computed the number of 
wrong trials that were performed by a subject for each 
type of sequence and session until reaching the 20 cor-
rect trials required.

The 4 dependent variables were analyzed individually 
and separately for each test session (0- 6) with a linear 
mixed model (LMM) to test for the main effects of group 
(intervention vs. control group) and practice (trained vs. 
untrained sequences), and for the interaction between 
group and practice. A random intercept was included in 
each model and we covaried for training configuration 
(i.e., the counterbalanced sets A/B). FDR control (q < 0.05) 
was applied for the number of sessions. Restricted maxi-
mum likelihood (REML) was used to estimate the param-
eters, with Satterthwaite’s approximation to calculate 
p- values. These analyses were performed with R Soft-
ware and the lme4 and lmerTest packages.

2.8. Neuroimaging sessions

The MRI sessions took place at the 7 T facility at Skåne 
University Hospital in Lund (Sweden). Scanning was per-
formed with a 7  T Philips Achieva scanner (Best, the 
Netherlands) with a dual channel transmit, 32- channel 
receive head coil (Nova Medical, Wilmington, MA, USA). 
Due to malfunction of the RF system, an 8- channel trans-
mit coil was used in 24 of the sessions.

To minimize confounds with functionally- related acute 
differences in cerebral blood flow ( Franklin  et al.,  2013; 
 Månsson  et al.,  2020), structural scans were always per-
formed before functional scans. Subjects were instructed 
to avoid practicing the task during the day of the MR 
scan. In the baseline session, once the structural scans 
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had been acquired, participants were taken outside of 
the scanner and asked to perform the unpaced part of 
the task. After completing this part, subjects underwent a 
functional scan while performing the paced part of the 
task (see details above). In the remaining sessions, the 
structural and functional scans were performed consecu-
tively and the unpaced part of the task was done after all 
scanning had finished. The order was different in the 
baseline session to give the participants the chance to try 
out the task before the first functional scan. Otherwise, 
due to the difficulty of performing the sequences, the 
error rate during the baseline functional acquisition would 
have been too high for most participants. Subjects were 
asked to abstain from alcohol intake on the day before 
scanning, and prior to the examination on the day of 
scanning. They were also asked to refrain from caffeine 
consumption on the day of scanning, as intake of the  
latter can potentially affect morphometric measures  
( Ge  et al.,  2017).

2.9. MRI protocol

In each session, we acquired a T1- weighted (T1w) 
MP2RAGE scan ( Marques  et al.,  2010), with the following 
parameters: MP2RAGETR = 5000 ms, TI1/TI2 = 900/2750 ms,  
flip angles = 5° and 3°, TR/TE = 6.8/2.4 ms, 257 sagittal 
images, matrix size = 320 x 320, voxel size = 0.7 mm iso-
tropic, SENSE factor = 2, partial Fourier = 75%; the total 
scan duration was approximately 8  min. We also acq-
uired a T2- weighted (T2w) TSE scan, with parameters 
TR = 2500 ms, TE = 314 ms, excitation flip angle = 90°, 
refocusing flip angle reduced to 35°, 283 sagittal images, 
matrix size = 320 x 320, voxel size = 0.7 mm isotropic, 
SENSE factor = 2 x 2; and the duration of this scan was 
around 6 min. For functional MRI, EPI scans (TR = 1200 ms,  
TE = 25 ms, flip angle = 65°, matrix size = 112 x 116, 
voxel size = 2 x 2 mm, 44 axial slices of 2 mm thickness 
and 0.7 mm spacing, SENSE factor = 3, 5 runs of 400 
volumes each) and an auxiliary B0 map were acquired. 
The total duration of the functional scans was approxi-
mately 40 min, excluding short breaks between runs.

2.10. Preprocessing of structural data

Bias- free structural images (also known as flat images) 
were obtained by combining the complex images gener-
ated by the MP2RAGE sequence and used to derive CT 
and GMV. The structural images and surface reconstruc-
tions were inspected visually, discarded when not 
deemed acceptable, and the processing pipelines rerun 

without them (i.e., the same scans were used for CT and 
GMV analyses).

2.10.1. Cortical thickness (CT)

To produce surface- based maps of CT, we processed  
the structural images with the longitudinal pipeline for 
FreeSurfer 6.0.1 (https://surfer . nmr . mgh . harvard . edu/), 
with a modified protocol for skull- stripping the MP2RAGE- 
derived structural images ( Fujimoto  et al.,  2014). Besides 
the T1w image, we included the T2w image (- T2pial 
option) when processing the original images and the 
average for each subject (within- subject template, also 
called base image), as the additional contrast can facili-
tate locating the boundaries of the pial surfaces and  
lead to better surface reconstructions. For the last step 
(called long image), to avoid that small differences in 
geometry or registration between T1w and T2w images 
affected the results, we only employed the T1w images 
(see  Reuter  et al.,  2012 for details on the longitudinal pro-
cessing). The CT maps were registered onto the cortical 
surface of the average subject’s template (Freesurfer’s 
fsaverage) and smoothed with a kernel with 10  mm of 
full- width at half- maximum (FWHM) using Connectome 
Workbench (https://www . humanconnectome . org 
/ software / connectome - workbench). For comparison, the 
hand- knob area has around 14 mm of diameter ( Yousry 
 et al.,  1997).

2.10.2. Gray matter volume (GMV)

To derive GMV maps, the T1w images were preproces-
sed with CAT12.7 using the longitudinal preprocessing 
pipeline (http://www . neuro . uni - jena . de / cat12/), consist-
ing of within- subject longitudinal registration, segmenta-
tion into gray matter, white matter and cerebrospinal 
fluid probability maps, normalization, and smoothing 
(8 mm FWHM).

2.11. Statistical analyses of structural data

2.11.1. Structural region- of- interest (ROI)

In order to reduce the number of tests in the univariate 
analyses, we created and preregistered a mask encom-
passing cortical areas involved in motor sequence learn-
ing ( Berlot  et  al.,  2020;  Wiestler  &  Diedrichsen,  2013; 
 Yokoi,  2019), where changes related to training the motor 
task were expected to take place. For this purpose, we 
aggregated a number of frontal and parietal parcels from 
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the Human Connectome Project’s Multi- modal Cortical 
Parcellation ( Glasser  et  al.,  2016). Supplementary Fig-
ure  8 shows the mask, and a list with the parcels that 
were combined can be found in Supplementary Table 4. 
This mask (henceforth ROIsurf) was created on the fsaver-
age surface, and transferred to MNI space to create a 
mask for volumetric analyses (henceforth ROIvol).

2.11.2. Reliability analyses

At each vertex/voxel, we computed the intraclass cor-
relation coefficient (ICC) separately for CT and GMV, 
using a two- way random- effects model to estimate 
agreement across timepoints with the irr R package. A 
high ICC at a given voxel indicates that the value of the 
measure of interest at that voxel has low within- subject 
variance across timepoints, compared to the between- 
subject variance.

2.11.3. Univariate structural analyses

We used linear mixed models (LMMs) with the fixed effects 
of experimental group (intervention vs. control; coded as a 
factor), test session (linear and/or non- linear; see below), 
and the group x session interactions to test for effects of 
training on brain structure (predicting the interaction eff-
ects). Separate models were estimated with CT and GMV 
as dependent variables. Only random intercepts were 
included in the models, since including random effects for 
the linear and/or quadratic slopes (i.e., the effects of test 
session) often led to singular models (variance close to 0) 
and their inclusion made no meaningful difference for the 
fixed effects estimates we were interested in. This holds 
also for the other analyses below involving LMMs.

At each vertex/voxel, we computed the value of the 
Bayesian Information Criterion (BIC) for five different 
LMMs that differed in how session was specified: (1) a 
model with only a linear term for session interacting with 
group; (2) a model with an asymptotic term for session 
interacting with group (increasing inverse- quadratically 
until the middle of the training period and constant after-
wards); (3) a model with an inverse- quadratic term of 
session interacting with group; (4) a model with linear 
and quadratic terms of session interacting with group; 
and (5) a model with linear, quadratic, and cubic terms of 
session interacting with group. All these models had, 
additionally, linear, quadratic, and cubic terms for ses-
sion (main effects). Models 1- 3 were preregistered (Sup-
plementary Fig. 9), although the cubic- polynomial main 
effects were not considered initially and were added a 

posteriori upon observation of the data, to account for 
non- linear drifts in structural measures over time in the 
whole sample, which could compromise the ability to 
detect interaction effects. Models 4 and 5 were also 
added post hoc for completeness in case that models 
1- 3 were too rigid to fit the data adequately. Note that 
models 4 and 5 incorporate, respectively, 1 and 2 more 
parameters than models 1- 3, but this increased flexibility 
should be penalized by the BIC. With the winning mod-
els, we tested for interactions between experimental 
group and session terms. p- Values for interaction terms 
and for tests considering collectively for the different 
session terms (e.g., for model 4, linear and quadratic 
terms) were obtained through parametric estimation with 
the Type III Wald chi- square test (as implemented in the 
Anova function of the car R package).

The univariate tests were restricted to the vertices in 
ROI

surf for the analysis of CT, and to the voxels in ROIvol for 
the analysis of GMV. Since in a few sessions the regular 
transmit coil had to be replaced by an auxiliary one due 
to malfunctioning, we introduced this covariate of no 
interest in the model. We also controlled for training con-
figuration and framewise displacement (FD,  Power  et al., 
 2012) estimated during the functional scan to approxi-
mate in- scanner motion during the structural scan, since 
its potential impact on morphometric measures has been 
documented ( Reuter  et al.,  2015).

2.12. Preprocessing of functional data

Functional MRI data were preprocessed with fMRIPrep 
version 20.1.1 ( Esteban  et al.,  2019), a Nipype- based tool 
( Gorgolewski  et  al.,  2011). The corresponding prepro-
cessing steps are described here using the citation boil-
erplate provided by the software. Each T1w volume was 
corrected for intensity non- uniformity using N4BiasField-
Correction v2.1.0 ( Tustison  et al.,  2010) and skull- stripped 
using antsBrainExtraction.sh v2.1.0 (using the OASIS 
template). The brain mask estimated previously was 
refined with a custom variation of the method to reconcile 
ANTs- derived and FreeSurfer- derived segmentations of 
the cortical gray- matter of Mindboggle ( Klein  et al.,  2017). 
Spatial normalization to the ICBM 152 Non- linear Asym-
metrical template version 2009c ( Fonov  et al.,  2012) was 
performed through non- linear registration with the ants-
Registration tool of ANTs v2.1.0 ( Avants  et  al.,  2008), 
using brain- extracted versions of both T1w volume and 
template. Brain tissue segmentation of cerebrospinal 
fluid (CSF), white- matter (WM), and gray- matter (GM) 
was performed on the brain- extracted T1w using FAST 
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( Zhang  et  al.,  2001). The subject- average cortical sur-
faces reconstructed with the longitudinal pipeline for 
structural analyses were also employed for surface- 
based functional analyses.

Functional data were motion corrected using mcflirt 
(FSL v5.0.9,  Jenkinson  et al.,  2002). Distortion correction 
was performed using GRE fieldmaps processed with 
FUGUE (FSL v5.0.9,  Jenkinson,  2003). This was followed 
by co- registration to the corresponding T1w with 6 degrees 
of freedom with FLIRT (FSL v5.0.9,  Jenkinson,  2003). We 
did not use boundary- based registration because in our 
7 T functional data, it led to failed registrations in a consid-
erable number of cases, whereas the volume- based 
method yielded accurate registrations. Motion- correcting 
transformations, field distortion correcting warp, BOLD- to- 
T1w transformation, and T1w- to- template (MNI) warp 
were concatenated and applied in a single step using 
antsApplyTransforms (ANTs v2.1.0) using Lanczos interpo-
lation. Functional runs with excessive head motion (FD 
more than 1.5 times the interquartile range above the 
upper quartile) were removed (3.6% of runs).

2.13. Statistical analyses of functional data

2.13.1. Functional ROIs

We defined four ROIs in each hemisphere (Fig.  4A), 
encompassing cortical areas involved in motor sequence 
learning ( Berlot  et al.,  2020;  Wiestler  &  Diedrichsen,  2013; 
 Yokoi,  2019), by aggregating parcels from the Human 
Connectome Project’s Multi- modal Cortical Parcellation 
( Glasser  et al.,  2016):

Primary sensorimotor (PS): R_1_ROI, R_3a_ROI, 
R_3b_ROI, R_4_ROI (right hemisphere); L_1_ROI, L_3a_
ROI, L_3b_ROI, L_4_ROI (left hemisphere), excluding 
vertices further than 25 mm of distance from the respec-
tive hand knob ( Berlot  et al.,  2020;  Yousry  et al.,  1997).

Premotor (PM): R_FEF_ROI, R_6a_ROI (right hemi-
sphere); L_FEF_ROI, L_6a_ROI (left hemisphere).

Supplementary motor area (SMA): R_6mp_ROI, 
R_6ma_ROI, R_SCEF_ROI (right hemisphere); L_6mp_
ROI, L_6ma_ROI, L_SCEF_ROI (left hemisphere).

Superior parietal lobule (SPL): R_AIP_ROI, R_IP2_ROI 
(right hemisphere); L_AIP_ROI, L_IP2_ROI (left hemi-
sphere).

2.13.2. First- level activation analyses

The preprocessed fMRI data were resampled on the fsav-
erage6 surface (with 41k vertices for each hemisphere), 

and a smoothing kernel with 10 mm FWHM was applied 
with Connectome Workbench. The smoothed data were 
analyzed with the FMRIB’s Software Library (FSL, https://
fsl . fmrib . ox . ac . uk / fsl / fslwiki/). Low- frequency drifts in the 
time domain were removed by applying a high- pass filter 
cutoff of 90 s. In the single- subject- level statistical analy-
ses, the general linear model (GLM) matrix included 
regressors formed as boxcar functions convolved with 
double- gamma hemodynamic response functions 
accounting respectively for trained correct trials, trained 
incorrect trials, untrained correct trials, untrained incorrect 
trials, and fixation and hand- stretching periods. Six 
realignment parameters to correct for head motion plus 
the derivatives of these and all the previous regressors 
were also included in the model.

2.13.3. Univariate activation analyses

On the group- level, we used LMMs to test for effects of 
motor training on brain functional activation. The param-
eter estimates from the first- level analyses corresponding 
to activation relative to baseline were used as the depen-
dent variable. The model included, for each subject, a 
random intercept and linear and/or non- linear fixed 
effects of session number. At each vertex/voxel in the 4 
functional ROIs, we computed the BIC to compare the 
same 5 LMMs explained for the structural analyses above 
(linear, asymptotic, quadratic, quadratic plus linear, and 
cubic), with the only difference that the interactions of 
session terms in this case were not only with group but 
also with practice (trained/untrained), both coded as fac-
tors. We tested for group x session terms, practice x ses-
sion terms, and group x practice x session interactions 
with the winning model for each voxel/vertex within the 
functional ROIs.

The univariate tests were restricted to the vertices in a 
mask formed by the 8 cortical ROIs (4 per hemisphere) 
mentioned above. False discovery rate (FDR) control for 
multiple testing across voxels was employed, with 
q < 0.025 (to account for the two hemispheres). Like for 
structural analyses, to rule out the influence of the type of 
transmit coil used or of motor training configuration, we 
introduced these covariates of no interest in the models. 
We also controlled for average framewise displacement 
within each run to account for in- scanner motion.

2.13.4. Estimation of multivariate activation patterns

For each voxel and functional run, we first estimated  
trial- by- trial activation patterns ( Mumford  et  al.,  2012) 
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by fitting to each voxel’s data a GLM model with one 
regressor per trial (impulse response convolved with a 
double gamma hemodynamic response function), plus 
two additional regressors accounting respectively for 
fixation and hand- stretching periods. Six realignment 
parameters to correct for head motion plus the deriva-
tives of these and all the previous regressors were also 
included in the model. No smoothing was applied to the 
data to estimate these parametric maps. To take into 
account that voxel signal is corrupted by noise, we 
applied multivariate spatial prewhitening ( Walther  et al., 
 2016) of the regression coefficients with a regularized 
estimator of the variance- covariance matrix of the resid-
uals ( Ledoit  &  Wolf,  2004).

2.13.5. Variability of activation patterns

Next, we were interested in quantifying the variability of 
these trial- by- trial activation patterns separately for 
trained and untrained sequences, so as to be able to 
compare them. Given the set of voxels R in one of the 
cortical ROIs, and Vt  =  β i,t, i∈R{ }, the activation pattern 
in the ROI (vector of parameter estimates) for trial t, we 
calculated the trial- by- trial matrix G formed by the scaled 
inner products of activation patterns, 〈Vt1,Vt2 〉 / T, for all 
trial pairs ( t1, t2 ) in a session, which is related to their sim-
ilarity. For this estimation, we included in our analyses 
correct trials only, and only from runs with at least 3 cor-
rect trials for each of the 4 sequences tested. The matrix 
G determines the representational geometry of activity 
profiles, and Euclidean or cosine distances can be easily 
derived from it ( Diedrichsen  &  Kriegeskorte,  2017; 
 Diedrichsen  et al.,  2017). We then expressed G as a linear 
combination of eight components specifying the contri-
bution to its structure from different features related to 
the similarity between sequence pairs:

Ĝ = α0H0 + αRHR + αCTHCT +αCUHCU +αSTHST

+αSUHSU +αTHT +αUHU  (1)

Ho corresponds to a global intercept (matrix with all entries 
equal to 1). HR  = MR ′MR models the increased covariance 
for pairs of patterns of the same run, where MR is an indi-
cator matrix with a dummy variable for each run. HCT 
reflects the similarity for pairs of patterns of trained seq-
uences, shared across runs, with HCT  = MCT ′MCT, and 
MCT an indicator vector with ones for trained sequences 
and zeros otherwise. HCU is equivalent to HCT for untrained 
sequences. HST  = MST ′MST reflects the similarity for 
trained sequences of the same type (in a session, 4 differ-

ent types of sequences were presented, 2 of which were 
trained sequences and 2 untrained sequences, and each 
of these sequence types was executed 40 times), with 
MST an indicator matrix with a dummy variable for each 
type of trained sequence, with ones when the trial corre-
sponded to that type and zero otherwise. HSU is equivalent 
to HST, for untrained sequences. Finally, HT is a diagonal 
matrix where the diagonal is an indicator vector with ones 
for trials for trained sequences, and similarly for HU. Thus, 
the coefficients for HT and HU should reflect the variability 
for trained and untrained sequences, respectively.

Since the coefficients α. need to be positive, we used 
non- negative least squares to estimate them. The coef-
ficients of interest are αT and αU, as they reflect the 
magnitude of the variability of trained and untrained 
sequences respectively, together with fMRI noise. Under 
the assumption that the level of noise for both types of 
sequences is comparable, we can use these coefficients 
αU and αT to compare the variability of trained vs. 
untrained sequence patterns, taking logarithms to ren-
der the estimates normally distributed for successive 
analyses. Finally, we computed the variability index 

s =  log α( ) for each session, subject, sequence type 
group/untrained, and each of the 8 cortical ROIs speci-
fied above. These calculations were implemented in 
Python 3.6.

2.13.6. Dissimilarity of neural patterns

To elucidate further the changes in neural patterns over 
the course of the experiment, for each of the 8 cortical 
ROIs we computed one further metric, the squared cross- 
validated Mahalanobis distance (also known as cross- 
nobis dissimilarity ( Nili  et al.,  2020;  Walther  et al.,  2016)) 
between patterns of different sequence type:

 

CN a,b( ) = 1
Nruns (Nruns − 1)Nvoxels i, j

i≠ j

∑ βa, i − βb, i,  βa, j − βb, j

 
(2)

where ⋅,⋅  denotes scalar product; a,b index sequence 
types; i, j index different runs; and βa, i is the average of 
trial- wise patterns of type a within run i. We used a cross- 
validated metric because its non- cross- validated coun-
terpart tends to be biased by the presence of noise 
( Diedrichsen  et al.,  2021;  Walther  et al.,  2016). The cross- 
validation folds corresponded to the different session 
runs, as the noise across different runs can be consid-
ered independent. As seen in equation (2), to obtain the 
metric we divided the summed scalar products by the 
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number of voxels Nvoxels, rendering them comparable 
across subjects. We arranged the ensuing metric esti-
mates by whether the pair of sequences was formed by 
two trained, two untrained, or by one trained and one 
untrained sequence. Then, we averaged the estimates 
within each of these categories.

To further illustrate the changes in neural patterns, we 
also trained a linear support vector machine (SVM) to dis-
criminate between patterns from different pairs of sequence 
types. Like for the previous metrics, we arranged the pairs 
when averaging to calculate session/subject estimates by 
whether they were from trained, untrained, or both trained 
and untrained sequences. Classification accuracies were 
estimated by cross- validating across runs, and the SVM 
regularization parameter C was optimized using nested 
cross- validation. These calculations were implemented in 
Python 3.6.

2.13.7. Statistical analyses of dissimilarity and variability  
of neural patterns

For cross- nobis dissimilarities, at each session, we 
tested for a group x practice interaction using an LMM, 
where in this case the practice factor refers to whether 
the dissimilarity is between one trained and one 
untrained sequence or between different untrained 
sequences. For the variability index (s =   log  α( )) and 
the variance of neural patterns, we tested for a group x 
practice (trained/untrained) interaction at each session, 
separately for each session. In these analyses, we 
applied FDR control for the 8 ROIs and number of ses-
sions, with q < 0.05. To rule out the influence of the type 
of transmit coil used, motor training configuration or in- 
scanner motion, we introduced these covariates of no 
interest in the models.

2.14. Datasets used for different analyses

As noted above, data collection was divided in 5 waves 
of 14 subjects each for logistic reasons. The first wave 
was used for the purpose of piloting (although the proto-
col was not changed in subsequent waves and the data 
should be equivalent). Thus, the preregistered hypothe-
ses need to be confirmed using data from the last 4 
waves only. For analyses where we were able to confirm 
the preregistered hypothesis, we report results for the 4 
waves. Whenever the results were either negative or the 
analyses were not preregistered, there was no reason to 
exclude the first wave and therefore we report results 
corresponding to the full dataset.

3. RESULTS

3.1. Behavioral measures: unpaced task

We first asked whether the intervention subjects improved 
on the speed of executing the sequences that were 
trained at home, where they were required to execute the 
sequences correctly but as fast as possible, 5 times a 
week over 6 weeks. This was the case. Median move-
ment time (MT) displayed rapid initial reductions that 
eventually stabilized (Fig. 2A). The learning curves were 
reliable in the sense of being more similar within (i.e., 
across trained sequences) than between subjects (see 
Supplementary Information).

Because the intervention subjects and the control sub-
jects (who did not train on the sequences) were both tested 
in the lab once a week on the 3 sequences that the inter-
vention group trained at home (trained sequences) and 2 
additional ones (untrained sequences), we could also 
address whether there were training- related sequence- 
specific and sequence- general improvements, and 

Fig. 2. Behavioral measures. Panels A- E correspond to the unpaced task outside the scanner, panels F, G to the task 
inside the scanner. (A) Median movement time (MT) over practice sessions for 8 representative intervention participants 
showing reductions in MT with training and interindividual variability in the learning curves. Different trace colors denote 
different sequences trained. The dotted vertical lines correspond to the 7 on- site test sessions, referenced in the remaining 
panels. (B) Mean of the median (within- session) MT for the two groups and sequence types (trained/untrained). (C) 
Standard deviation of MT, as a measure of performance variability. (D) Correlation between the inter- press intervals (IPIs) 
of consecutive trials, a measure of performance consistency. (E) Average number of incorrect trials per sequence in a 
session until achieving 20 correct trials. In all panels, the measures for the control group are depicted in red, and for the 
intervention group in blue. (F) Mean of the median (within- session) MT during the fMRI task. This task was paced, and the 
dashed black horizontal line marks the duration of the sequence at the tempo indicated by the screen counter (2.8 s). Only 
correct trials were considered when computing the MT. (G) Average number of incorrect trials per sequence in a session 
during the fMRI task (out of a total of 40 trials). The measures are averaged across subjects and specific sequences. 
Error bars denote standard error of the mean. Where indicated, the interaction of group x practice (trained/untrained) was 
significant: “**” significant FDR- corrected, q < 0.05; “*” significant uncorrected, p < 0.05.
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whether there were global effects of repeated testing 
behind the improvements over time. The overall time- 
course of MT followed a differentially faster decrease for 
the intervention group and the trained sequences relative 
to the control group and the untrained sequences (Fig. 2B). 
The group (intervention vs. control) x practice (trained vs. 
untrained sequences) interaction reached significance for 
every testing session after baseline, reflecting that inter-
vention subjects were faster than controls especially on 
trained relative to untrained sequences after a week of 
training (p < 0.05, FDR- corrected for the number of ses-
sions; see Supplementary Table 5 for the statistics in each 
session). Thus, parts of the performance improvements 
displayed by intervention subjects were specific to the 
trained sequences. In addition to these sequence- specific 
improvements, both groups showed substantial improve-
ments in median MT over the training period, with most of 
the decreases taking place initially; the intervention sub-
jects did not show significantly larger improvements on 
untrained sequences than the control participants (Fig. 2B). 
On the whole, this pattern of results suggests that there 
was no detectable transfer of learned MT improvements to 
novel sequences (transfer is defined here as improvements 
in performance as a direct result of the intensive training 
taking place at home, over and above test- retest effects).

Because past studies have found reductions in behav-
ioral variability over learning, we also investigated 
whether training reduced the variability of motor output. 
Both groups showed decreases in variability (SD) of MT 
for both sequence types, with a larger reduction over 
time for trained sequences in intervention subjects rela-
tive to controls and untrained sequences (Fig. 2C). The 
interaction group x practice was statistically significant 
(p < 0.05, FDR- corrected for the number of sessions) in 
test session 2 (and significant uncorrected in test session 
4; see Supplementary Table 5 for statistics). To provide a 
complementary measure of behavioral variability, we also 
correlated the IPI pattern (i.e., the 4 intervals between the 
5 discrete presses in a sequence) across trials. Partici-
pants in the intervention group demonstrated more highly 
correlated IPIs between consecutive trials of the same 
sequence type compared to baseline for trained 
sequences relative to the controls and to the untrained 
sequences (Fig. 2D). The group x practice interaction was 
statistically significant (p < 0.05, FDR- corrected for the 
number of sessions) in all test sessions after baseline 
(see Supplementary Table 5 for statistics). When comput-
ing the correlation for pairs of trials lagged by several tri-
als, the correlation was lower the further apart the trials 
were, but a similar pattern was observed, namely that 

practicing the trained sequences led to a markedly more 
consistent performance on those specific sequences 
(Supplementary Fig. 2). Thus, training reduced execution 
variability and this effect was partly specific for the trained 
sequences. Although the time- course of IPIs for the 
untrained sequences increased in a similar fashion in 
both groups, we observed a subtle generalization effect, 
as the increase in IPI over time was steadier in the inter-
vention group as compared to the control group.

The number of incorrect trials per session and 
sequence was similar for intervention and control sub-
jects for trained sequences, that is, subjects did not seem 
to trade- off speed for accuracy when learning the 
sequences (Fig.  2E). Surprisingly, intervention subjects 
who practiced at home committed more errors on 
untrained sequences than the control subjects. The inter-
action group x practice was statistically significant 
(p < 0.05, FDR- corrected for the number of sessions) in 
test session 3 after baseline and uncorrected in sessions 
2 and 5 (see Supplementary Table 5 for statistics). These 
results may indicate that intervention subjects became 
less careful over time when facing new sequences.

Taken together, these results show both task- general 
performance improvements and increased performance 
consistency independent of group or sequence type, but 
also differential and specific improvements to the 
sequences that were trained intensively.

Finally, there were considerable differences between 
trained and untrained sequences for both groups at 
baseline in MT variability (untrained > trained, t(220.14) = 
2.9, p  =  0.003, Fig.  2C) and number of correct trials 
(untrained > trained, z = 2.8, p = 0.006, Fig. 2E), which 
reflects differences in the difficulty of the two sets of 
sequences (due to the different cardinality of the sets and 
the constraints we imposed on the sequences, it was not 
possible to counterbalance them completely, only to 
make the proportions of training configurations equiva-
lent for the two groups, see Methods). These baseline 
behavioral differences are, however, unlikely to account 
for group differences in differential changes over time. In 
addition, the statistical analyses included training config-
uration as a covariate. Therefore, the baseline differences 
between the trained and untrained sequences should 
neither affect the main interpretations of the behavioral 
results nor the imaging results reported below.

3.2. Behavioral measures: fMRI task

In the scanner, both groups executed the sequences 
following the tempo signaled by the screen counter (4 
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beats x 0.7 s/beat = 2.8 s). The control group tended to 
be slightly faster already after a week of training, exe-
cuting the sequences in about 3% less MT than the 
intervention group (Fig. 2F). The group x practice inter-
action was nonetheless not significant at any session 
even at the uncorrected level (see Supplementary 
Table 5 for the statistics in each session). As in the case 
of the unpaced task, the number of incorrect trials per 
session and sequence was similar for intervention and 
control subjects for trained sequences (Fig. 2G). Also, 
as before, intervention subjects committed a slightly 
higher number of errors on untrained sequences than 
the control subjects. The interaction group x practice 
was statistically significant (p < 0.05, FDR- corrected for 
the number of sessions) in test sessions 2 and 4 after 
baseline and uncorrected in session 3 (see Supplemen-
tary Table 5 for statistics).

3.3. Training- related changes in functional activation

Initial analyses of the fMRI data focused on the activity 
elicited by task performance. Whole- brain surface- based 
univariate analyses of the BOLD signal (correct execution 
> resting baseline) demonstrated task- related functional 
activation (p < 0.025, FDR- corrected) in bilateral second-
ary motor areas (supplementary motor area, superior 
parietal and premotor cortex), primary motor and somato-
sensory regions, most prominently on the right side, that 
is, contralateral to the hand used to perform the move-
ments, as well as in the primary visual cortex and regions 
of the salience network (insular and anterior cingulate 
cortices; Fig.  3A). Our task thus elicited activity in the 
expected sensorimotor and dorsal attention networks.

Next, we tested the preregistered hypothesis of 
training- related decreases in activation. For these analy-
ses, we performed voxel- wise analyses restricted to a 
preregistered mask encompassing primary and second-
ary cortical sensorimotor regions. The analyses showed 
sequence- specific decreases in activity in secondary 
sensorimotor areas, but not in primary areas, for the 
intervention group and the trained sequences relative to 
the control group and the untrained sequences (Fig. 3C, 
D). In the analyses revealing these results, we fitted sev-
eral models that assumed an interaction between exper-
imental group, practice (i.e., trained vs. untrained 
sequences), and different shapes of changes over the 
sessions (i.e., the seven longitudinal measurements; see 
Methods). To evaluate the fit of these models, we com-
puted the BIC at each voxel in the mask. Within the cor-
tical areas of interest, the BIC was lowest for either the 

asymptotic or the cubic model, depending on the spe-
cific region (Fig. 3B). The practice by session interaction 
reached statistical significance (p < 0.025, FDR- corrected) 
with both models in clusters within bilateral superior pari-
etal and premotor cortices (Fig.  3D; Table 1). However, 
we were unable to detect practice- related effects in the 
primary sensorimotor cortex (no interactions concerning 
effects of practice were significant in this region even at 
the uncorrected level). Control analyses smoothing the 
data with a kernel with half the size (5  mm FWHM) 
returned an analogous pattern of clusters (Supplemen-
tary Fig. 10). When plotting the effects (Fig. 3C, E), the 
pattern of results was in line with our preregistered 
hypothesis only in the secondary sensorimotor areas, 
which showed larger reductions in activity over time for 
trained than untrained sequences especially for the inter-
vention group. Note also that control analyses with the 
linear or quadratic models of the time- trends over ses-
sions did not reveal any additional clusters showing sta-
tistically significant practice- related effects. The predicted 
three- way interaction of group by practice by session 
approached statistical significance in the same regions 
reported above for the asymptotic model, but the effect 
did not survive correction for multiple comparisons. This 
pattern of results should be interpreted considering the 
study procedures, which included testing control sub-
jects on a subset of sequences (trained sequences) more 
often than on the remaining ones, namely every week. 
This may explain the trends for activation decreases that 
can be observed also in the control group for the trained 
set compared to the untrained set, which varied from 
week to week.

Because our design included a control group, we 
could also test the hypothesis that training effects on 
activation would generalize to untrained sequences, such 
that decreases in activity would also be observed in the 
intervention group relative to the control group for 
untrained sequences. The results did not support this 
hypothesis (Fig. 3C). The group by session interactions 
did not reach statistical significance even at more liberal 
statistical thresholds. This was confirmed by follow- up 
tests: when restricting the analysis of the data to untrained 
sequences, there were no statistically significant differ-
ences between groups (p > 0.1 in all clusters). Therefore, 
practicing the trained sequences resulted in no notice-
able activation changes for the untrained ones.

In summary, brain activity for trained sequences 
decreased relative to untrained sequences in the bilateral 
parietal and premotor cortices. Training- related changes 
in the primary sensorimotor areas were not detected.
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3.4. Training- related changes in variability of activation patterns 
over repeated trials of trained sequences

We had preregistered the hypothesis that training- 
specific sequences would result in lower variability of 
multivariate activation patterns among trials of those 
sequences, as predicted by the ESR model due to sta-
bilization of neural circuits in its refinement phase. To 
test this hypothesis, we derived an index of the variabil-
ity of the multivariate activity patterns over repeated tri-
als of trained and untrained sequences for each subject 
(see Methods) and examined the group averages over 
time in preregistered ROIs in SPL, SMA, PM, and PS in 
each hemisphere (Fig. 4A; these ROIs together formed 
the mask used for the univariate analyses above). This 
index of neural variability was not affected by training in 
a significant manner (Supplementary Fig. 5 and Supple-
mentary Table 7; p > 0.1 in all ROIs and sessions, testing 
separately for a group x practice interaction in each 
ROI/session and applying FDR control for sessions  
and ROIs).

3.5. Training- related changes in the dissimilarities between 
activation patterns

To investigate whether multivariate activity patterns, just 
like the overall activity, also displayed sequence- specific 
changes with learning, we calculated cross- nobis dissim-
ilarities as a measure of the dissimilarity of activation pat-
terns within and between trained and untrained sequences 
(see Methods; these analyses were not preregistered). 
Dissimilarities were computed for the ROIs in SPL, SMA, 
PM, and PS in each hemisphere (Fig. 4A) as in the previ-
ous analyses of pattern variability. The cross- nobis dis-
similarities between patterns for trained and untrained 
sequences increased over time in both groups in all ROIs 
except bilateral primary sensorimotor areas (Fig.  4B, 
green dashed trace). Nevertheless, the increase was more 
prominent for the intervention participants and dissimilar-
ities between trained and untrained sequence patterns 
relative to dissimilarities between untrained sequence 
patterns and controls (the interaction was significant in 
several sessions after baseline; Fig. 4B; Supplementary 

Table 1. Effects of practice on functional activation.

Model Region
MNI coordinates 

(x, y, z)
Cluster size 

(mm2) Chi- square df
Peak p- value 
(uncorrected)

Peak p- value 
(FDR- corrected)

Asymptotic Right Superior Lobule 31, - 40, 39 851.87 22.1 1 2.55e- 06 3.96e- e4
Right Premotor Cortex 21, - 2, 48 433.39 23 1 1.6e- 06 3.96e- e4
Left Superior Lobule - 42, - 35, 38 596.47 18.6 1 1.58e- 05 1.59e- 03
Left Premotor Cortex - 21, - 3, 43 335.21 17.7 1 2.55e- 05 1.59e- 03

Cubic Right Superior Lobule 31, - 40, 39 681.72 24.6 3 1.88e- 05 3.3e- 03
Right Premotor Cortex 21, - 2, 48 258.92 24.8 3 1.72e- 05 3.3e- 03
Left Superior Lobule - 42, - 35, 38 419.54 22.2 3 6.04e- 05 8.4e- 03
Left Premotor Cortex - 20, - 4, 46 133.22 19.5 3 2.2e- 04 8.4e- 03

Clusters showing a practice (trained/untrained) x session interaction on functional activation (cf. Fig. 3).

Fig. 3. Functional activation. Practice- related changes in functional activation within cortical motor areas. (A) The figure 
shows the significance map (p- values) for the contrast of activation against resting baseline (mean effect across subject 
groups, timepoints, and sequence types). P- values were FDR- corrected considering the whole cortex as the search 
area. Executing the motor sequences required by the task elicited brain activity in primary and secondary motor regions. 
(B) Result of the model comparison indicating, at each vertex, the model with the lowest BIC (cyan = asymptotic, red = 
cubic). Non- linear models, and the asymptotic regime in particular, were preferred in the major part of the cortical areas 
probed. BIC reflects the likelihood of the model penalized by its complexity. (C) Functional activation time- courses from 
clusters where the univariate analyses identified effects of practice. (D) Practice x session effect for the asymptotic 
model, revealing changes over time in activation in bilateral parietal and premotor regions that were differential for 
trained as compared to untrained sequences. The figure shows p- values FDR- corrected within the preregistered areas 
for the test of practice- related effects. The pattern found when fitting the cubic model was equivalent. The contour 
lines mark the preregistered mask encompassing primary sensorimotor and secondary motor cortical areas, and the 
corresponding analyses were restricted to these areas. (E) Average of the functional activation time- courses within the 
primary sensorimotor (PS) ROIs, in which no significant practice x session effects were detected. In (A, D), the corrected 
significance threshold was set to q = 0.025 to account for both hemispheres.
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Table  6). In contrast, dissimilarities between sequence 
patterns for different trained sequences (red traces) or 
between sequence patterns of different untrained seq-
uences (blue traces) showed generally a stable trend over 
time in both groups. Overall, these results indicate that 
practicing the trained sequences resulted in their neural 

patterns becoming more dissimilar to those from untrained 
sequences in the secondary motor regions that had 
shown the largest activation decreases.

The use of the cross- nobis dissimilarities is closely 
related to the multivariate pattern classification approach 
that is more common in the fMRI literature. To make a 

Fig. 4. Evolution of cross- nobis dissimilarities between neural patterns for pairs of sequences. (A) ROIs that were used 
for neural pattern dissimilarity analyses (only right hemisphere regions are shown, but the same regions from the left 
hemisphere were also analyzed). (B) Cross- nobis dissimilarities between multivariate patterns of trained and untrained 
sequences increased over time in both groups, and much more prominently for the intervention group. These changes 
were present in all regions except PS. Asterisks indicate a significant interaction of group x practice (untrained/trained– 
untrained). ROI: region- of- interest; PM: premotor; PS: primary sensorimotor; SMA: supplementary motor area; SPL: 
superior parietal lobule; “***” significant FDR- corrected for ROIs and sessions, q < 0.05; “**” significant FDR- corrected for 
sessions, q < 0.05; “*” significant uncorrected, p < 0.05.
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direct contact with this literature and further illustrate our 
findings, we also report average cross- validated classifi-
cation accuracies for multivariate models (SVM) trained 
to separate pairs of different sequences (see Methods). 
These accuracies were significantly above chance (i.e., 
accuracy = 0.5) for untrained sequences in all regions in 
the control group (p < 0.05 in all ROIs for the group mean, 
considering all sessions), implying that different 
sequences had to some extent be distinguishable neural 
representations even when they were not practiced (Sup-
plementary Fig. 6A; see permutated data for comparison 
in Supplementary Fig. 6B). In line with results from com-
puting the cross- nobis dissimilarities, accuracy of the 
classification between patterns of trained and untrained 
sequences increased over sessions and more highly for 
the intervention group (Supplementary Table  8), but 
remained stable for classification between different 
trained or untrained sequences.

In summary, the results from these non- preregistered 
analyses were aligned with the overall activation results 
by showing that when subjects practiced certain motor 
sequences the corresponding activation patterns in sec-
ondary, but not primary, motor areas became more differ-
entiated from those of untrained sequences. The similarity 
of the activation patterns among the trained sequences 
did not show reliable change.

3.6. Structural imaging analyses

To test the preregistered hypothesis of practice- 
dependent changes in cortical thickness and gray matter 
volume, we fitted several models that assumed an inter-
action between experimental group and different shapes 
of changes over the sessions (i.e., the seven measure-
ments; see Methods). To evaluate the fit of these models, 
we computed the BIC at each vertex/voxel of a preregis-
tered ROI. Depending on the region, the BIC was mini-
mized by either the linear, the asymptotic, or the quadratic 
model, but there was no anatomical congruency (i.e., no 
clear spatial pattern) in the spatial BIC map. We then 
tested for interactions between group and session terms 
within the ROI, but we could not find any clusters in which 
these tests survived correction for multiple comparisons 
for any of the measures, even using a liberal threshold. 
Although there were clusters at the uncorrected level, 
examination of the corresponding time- courses sug-
gested that they were driven by fluctuations in the mea-
sures at a few timepoints and not compatible with the 
occurrence of structural changes in the intervention 
group. Supplementary analyses halving the smoothing 

kernel sizes (4 mm FWHM for GMV and 5 mm FWHM for 
cortical thickness) also yielded negative results. In sum, 
we could not identify any pattern consistent with gradual 
differential increases, decreases, or non- linear progres-
sion in the intervention group relative to the control group.

Note that the estimates of cortical thickness and gray 
matter volume displayed acceptable reliability across 
timepoints. Intra- class correlation coefficients (ICC; com-
puted separately for each vertex/voxel within the ROI, 
including only the control subjects and considering these 
as the class of interest) of the structural measures ranged 
from moderate to good across vertices ( Koo  &  Li,  2016) 
for CT (median = 0.78, SD = 0.09) and good to excellent 
across voxels for GMV (median = 0.92, SD = 0.11; Sup-
plementary Fig. 3).

In summary, despite the acceptable reliability of the 
structural measures, we were unable to detect training- 
related changes in any of the measures. Preregistered 
supplementary analyses on approximate T1 relaxation 
times derived from the structural scans, which exhibited 
lower reliability than morphometric measures, did not 
reveal any experience- dependent changes either (see 
Supplementary Information).

4. DISCUSSION

In this study, we acquired repeated behavioral perfor-
mance and neuroimaging measures over the course of 
6 weeks to investigate neural changes associated with 
motor sequence learning. Both the intervention group 
and control groups showed general performance 
improvements, but performance improved more, and 
became more consistent, for sequences that were inten-
sively trained by the intervention group relative to those 
that were not. In line with our preregistered hypothesis, 
practice led to decreases in brain activity in the bilateral 
parietal and premotor cortices. In contrast, no statisti-
cally significant changes were observed in primary sen-
sorimotor areas. In secondary motor areas only, practice 
also resulted in decreased similarity of activation patterns 
between trained and untrained sequences. The similarity 
of the activation patterns among the trained sequences 
did not change. The preregistered predictions of practice- 
related changes in the variability of activation patterns 
across trials and in the estimates of brain structure were 
not supported by the data.

It is surprising that we were unable to detect training- 
related changes in the three structural measures we 
derived from the T1w scans, given that our experiment had 
more within- subject scans than most previous studies  

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/imag_a_00016 by guest on 20 January 2025



20

B. Garzón, G. Helms, H. Olsson et al. Imaging Neuroscience, Volume 1, 2023

in the field and that the number of participants per group 
was on the upper end of the sample size range compared 
to similar studies ( Draganski  et al.,  2004,  2006;  Lövdén 
 et al.,  2013;  Mårtensson  et al.,  2012). In addition, the reli-
abilities of our CT and GMV estimates were above mod-
erate in the areas of interest. At present, the origin of 
learning- induced gray matter changes measured with 
MRI is still uncertain. An animal study which investigated 
the relationship between several neuron morphology 
metrics and the VBM signal found only a significant but 
weak association with spine density ( Keifer  et al.,  2015). 
Another study of the effects of monocular deprivation in 
rats suggests that experience- dependent changes in 
GMV estimated with MRI mainly are the results of swell-
ing astrocytes ( Schmidt  et al.,  2021). It remains unknown 
whether these findings can be translated to humans 
learning a motor task. Our own post hoc simulations 
(Supplementary Information) of the relationship between 
statistical power and relative volumetric change suggest 
that, unless the relative changes are very large and pos-
sibly happening in several cellular constituents, they 
would be unlikely to be detected by vertex-  or voxel- wise 
analyses (e.g., synaptic changes should be very exten-
sive to trigger measurable macroscopic changes on their 
own). On the other hand, extant evidence indicates that 
vascular changes can induce changes in morphometric 
measures. For instance, it has been shown that a single- 
dose pharmacological manipulation that decreases cere-
bral blood flow in a localized manner alters VBM estimates 
in overlapping regions ( Franklin  et  al.,  2013;  Ge  et  al., 
 2017). Other recent studies show task- related effects on 
MPRAGE images in humans ( Månsson  et al.,  2020; Olivo 
et  al., 2022). An intriguing explanation for the lack of 
structural alterations in the present study has to do with 
the structural sequence we used (MP2RAGE), which dif-
fers in a crucial way from the MPRAGE sequences that 
have typically been used in prior studies of experience- 
dependent plasticity in humans. Specifically, in MPRAGE 
sequences the T2* effects are present, whereas in flat 
images derived from MP2RAGE sequences T2* effects 
are mostly cancelled, by virtue of the division of the two 
volumes involved in order to remove the intensity bias 
( Marques  et  al.,  2010;  Tanner  et  al.,  2012). Thus, if the 
learning- related structural changes observed in similar 
experimental designs based on MPRAGE sequences 
were predominantly of vascular origin, they would have 
been mostly cancelled out had MP2RAGE been used 
instead. Remarkably, even though the MP2RAGE 
sequence has been available for over 10 years ( Marques 
 et al.,  2010) and it is becoming the recommended seq-

uence for gray- white matter segmentation ( Droby  et al., 
 2021;  Oliveira  et al.,  2021), no published studies have, to 
the best of our knowledge, shown longitudinal training- 
related structural changes on a similar time- scale using 
this MR sequence, which may be a symptom of its lower 
sensitivity to vascular alterations. Nevertheless, this inter-
pretation remains speculative, and more research will be 
needed to elucidate this question.

Even though executing the motor sequences triggered 
robust and widespread activations in visual, primary, and 
secondary motor cortices, and the nodes of the salience 
network, changes in activation were localized to bilateral 
parietal and premotor regions. Our finding of activation 
decreases in secondary cortical motor areas and absence 
of changes in the primary sensorimotor cortices agrees 
with recent inquiries ( Berlot  et  al.,  2020;  Wiestler  & 
 Diedrichsen,  2013), contradicting a number of older stud-
ies that reported increases ( Floyer- Lea,  2005;  Grafton 
 et al.,  2002;  Karni  et al.,  1995,  1998;  Lehéricy  et al.,  2005; 
 Penhune  &  Doyon,  2002) or non- monotonic changes ( Ma 
 et  al.,  2010;  Xiong  et  al.,  2009). We can obviously not 
exclude that practicing tasks other than ours leads to 
decreases also in primary regions. Importantly, the task 
used in the present study was more challenging than 
those in previous similar studies in terms of motor 
demands (i.e., execution with non- dominant hand, rela-
tively novel configural responses). Nevertheless, we 
observed no changes in activity in the primary sensorim-
otor cortices. In addition, in our study, subjects had no 
exposure to the motor sequences of the experiment prior 
to baseline imaging. To ensure that participants under-
stood the mechanics of the task and were familiar with 
the process, they tested it only once during the informa-
tion session several days prior to the baseline session, 
but the demonstration version of the task required exe-
cuting easier sequences of 3 chords with transitions of 
only 1 or 2 finger changes at a time. Therefore, there was 
no meaningful pretraining of the actual experiment 
sequences that could have triggered changes before the 
first scanning session. We conclude that activity in sec-
ondary cortical motor areas declines from the beginning 
of the training period.

The set of regions in which activation exhibited 
changes for trained sequences corresponds to the dor-
sal attention network (DAN), or dorsal frontoparietal net-
work (dFPN), which consists of the intraparietal sulcus 
and the frontal eye fields ( Corbetta  &  Shulman,  2002). 
These regions are activated simultaneously in a wide 
range of tasks, both motor (reaching, grasping, saccade 
production) and purely cognitive (spatial attention,  

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/imag_a_00016 by guest on 20 January 2025



21

B. Garzón, G. Helms, H. Olsson et al. Imaging Neuroscience, Volume 1, 2023

mental rotation, working memory). Previous studies of 
finger sequence production have demonstrated that 
these regions encode sequences and sequence chunks 
( Berlot  et al.,  2020;  Wiestler  &  Diedrichsen,  2013;  Yokoi, 
 2019;  Yokoi  et al.,  2018), and our multivariate analysis of 
the activity patterns also indicates that different 
sequences could be classified above chance level in 
these regions. Recent reviews have proposed that the 
overarching role of the DAN is the top- down modulation 
of attention ( Vossel  et  al.,  2014) or the emulation of 
actions ( Ptak  et  al.,  2017). One explanation for the 
decreases found in the DAN nodes is that, with practice, 
these areas become more efficient and therefore the 
demand for oxygen sinks ( Berlot  et al.,  2020). A some-
what different perspective would be that, for sequences 
that have been intensively trained and memorized, the 
need to rely on spatial attention to read the sequences, 
subserved by the DAN, is much diminished. In the latter 
view, the changes do not reflect localized plastic change 
per se but the reduced need for involvement of this 
domain- general system after transitioning from con-
trolled to automatic execution ( Chein  &  Schneider, 
 2012). Plastic change would happen at the level of the 
mechanisms selecting these regions in the early phases 
of skill learning.

In the paced task in the scanner, there were consistent 
albeit small timing differences between groups. These 
cannot, nevertheless, account for the neural changes  
we observed: the intervention subjects executed the 
sequences more slowly, but there was no detectable 
group x practice interaction. This is the opposite pattern 
found in the activation data, where there were no appre-
ciable differences between groups together with large 
decreases for the trained relative to the untrained 
sequences. Besides, because of the sluggishness of the 
hemodynamic response, it is implausible that timing dif-
ferences on the order of 100 ms would result in the large 
neural changes detected. The group x practice effects on 
accuracy during the fMRI task were small and did not 
reach significance at all time points after baseline. As 
only correct trials were included in the fMRI analyses, 
these small effects cannot explain the decreases in activ-
ity or the differences between the mean patterns either.

The use of a control group, which former similar stud-
ies did not incorporate ( Berlot  et  al.,  2020;  Ma  et  al., 
 2010;  Wiestler  &  Diedrichsen,  2013;  Xiong  et al.,  2009), 
allowed us to establish that untrained sequences in the 
intervention group did not elicit significantly larger behav-
ioral improvements or differential activity reductions rela-
tive to the control group. This speaks to a lack of 

(measurable) generalization (i.e., the ability to transfer 
learned improvements to novel sequences ( Krakauer 
 et al.,  2019)) from learning the trained sequences to the 
untrained ones in terms of both performance in the pri-
mary outcome measures and functional activity in this 
task. However, the initial large changes occurring 
between the first and second sessions are an exception 
to this lack of generalization. The improvements for the 
untrained sequences also occurred for the control group, 
which implies that they were due to the learning occur-
ring in the testing sessions, and may contain both 
sequence- specific and sequence nonspecific changes. It 
is likely that these initial changes relate to general aspects 
of getting acquainted with the task, such as selecting 
goals, developing online planning, or the use of explicit 
knowledge to find a general strategy to perform the task 
( Ariani  et  al.,  2021,  2022;  Krakauer  et  al.,  2019; 
 Spampinato  &  Celnik,  2020). Furthermore, the smoother 
IPI time- courses for untrained sequences in the interven-
tion group and the overall pattern of behavioral results of 
the paced fMRI task also indicate that practicing the task 
at home leads to partially more consistent and controlled 
performance in general.

We found no evidence for the decreases in variability 
of activation patterns across trials predicted by the ESR 
model. A critical difficulty when comparing trial- wise 
variability of trained and untrained sequences is that, 
due to the low SNR that is typical of fMRI measurements, 
trial- wise pattern variability will have a large contribution 
from non- neural noise that cannot be disentangled from 
neural variability. For this reason, sensitivity to detect dif-
ferences between variability of activation patterns will 
tend to be low. Moreover, an assumption that trained 
and untrained sequences have equivalent levels of non- 
neural noise must be made, which may not hold if sys-
tematic trained- untrained differences in non- neural 
signal are present.

Although neural representations for different seq-
uences were measurably distinct (i.e., classification 
accuracy was above chance) even when the sequences 
were not trained, practice did not lead to appreciable 
changes over time in cross- nobis dissimilarities between 
different (trained) sequences, as would be expected if 
the patterns became more distinct following training. 
Overall, our results are commensurate with the analysis 
of activation patterns for paced sequences by  Berlot 
 and  colleagues  (2020); they could not observe training- 
related effects on dissimilarity between patterns of dif-
ferent sequences that were executed at paced tempo 
either, only general increases in dissimilarity between 
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trained-  and untrained- sequence patterns in secondary 
motor regions. However, the authors found that the dis-
similarity between sequence- specific activation pat-
terns for trained sequences was greater than for 
untrained sequences when the task was performed at 
full speed (as opposed to when it was paced). Single- 
finger tasks do not fully reproduce the demands of more 
challenging real- world skills like playing the piano that 
we would ultimately want to understand. Therefore, 
considering that our task is more difficult and should 
require additional motor control and cognitive processes 
in order to coordinate the simultaneous pressing of keys 
in the same chord, it would be worthwhile to investigate 
an unpaced version during scanning. Establishing con-
ditions in which neural patterns become sequence- 
specific with practice in such tasks is a prerequisite to 
enable future research on the predictions of the ESR 
model and more generally to understand neuroplastic 
changes during skill learning. Besides, it would also be 
interesting to investigate whether generalization effects 
in behavior (such as those we observed in the paced 
fMRI task) are present when the task is unpaced, and if 
so, to study their neural correlates.

We cannot rule out that the reason for the lack of 
structural findings is that the duration of the experiment 
was not long enough or that the task was not sufficiently 
demanding to elicit structural changes, compared to pre-
vious work. While some past studies have used periods 
of the order of months ( Draganski  et  al.,  2004; 
 Matuszewski  et al.,  2021), the duration of our experiment 
was based on a former study of our group in which we 
were able to detect localized changes in motor areas 
( Wenger  et al.,  2017), together with a pilot study of the 
motor task that showed that the practice period extends 
beyond the point where performance reaches a plateau. 
We should therefore have been able to capture the whole 
process of exploration, selection, and refinement that is 
predicted by the ESR model. Longer periods of training 
(months or years) are possibly required to trigger measur-
able structural changes that give rise to differences 
between skilled and naïve groups (e.g., musicians vs. 
non- musicians;  Gaser  &  Schlaug,  2003;  Schlaug  et  al., 
 2001). Alternatively, such differences may to some extent 
reflect selection effects (niche picking), with differences 
existing before practice. It is also possible that adaptive 
training procedures are required, but because our pri-
mary interest was to understand the dynamics of neural 
changes, we expressly avoided using an adaptive task 
that would have confounded the time- course of neural 
alterations. We also note that other analysis approaches 

may be more effective in finding changes in neural repre-
sentations. To obtain the activation patterns, we fitted a 
GLM to the functional data to derive one activation pat-
tern per trial. This approach is bound to lose important 
timing information. A spatio- temporal approach, which 
could potentially capture more nuanced aspects of neu-
ral representations, would be considerably more complex 
to implement and remains as an avenue for future work. 
This approach may be more fruitful for finding differences 
between configural- response and single- finger tasks. 
Lastly, in our study, we opted for the use of a passive 
control group, which offers less control for unspecific 
aspects of learning the task than an active control group. 
However, we deem it unlikely that placebo or motivation 
effects can explain that the changes observed were 
localized only to motor- related areas.

In conclusion, training a paced configural- response 
sequence task with the non- dominant hand during a 
period of 6 weeks resulted in reduced activity in the DAN 
for the sequences that had been practiced, but neither in 
detectable activation changes in primary sensorimotor 
cortices nor in morphological changes. Practice also 
resulted in decreased similarity between the neural acti-
vation patterns of trained and untrained sequences in 
secondary, but not primary, motor areas.
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