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Abstract 9 

Speech production depends on the precise temporal integration of articulatory movements with 10 

phonation. While ventral primary motor cortex is known to encode articulatory features, how 11 

phonatory timing, and its coordination with articulation, is represented across cortical and 12 

cerebellar circuits remains poorly understood. Using 7T functional MRI, we examined neural 13 

representations during overt syllable production varying in place of articulation and voice onset 14 

time. Multivariate analyses revealed reliable, syllable-specific differences in activity patterns 15 

across both cortical and cerebellar speech regions. Ventral primary sensorimotor cortex 16 

distinguished syllables by place of articulation, whereas dorsal sensorimotor cortex was more 17 

sensitive to the timing of voice onset relative to articulation. Secondary sensorimotor speech 18 

areas, including the operculum and auditory cortex, showed a hybrid representational profile, 19 

integrating both articulatory and phonatory features. In the cerebellum, representational 20 

geometry was dominated by the place of articulation; however, overall syllable representations 21 

were most similar to those in the operculum, accounting for unique variance beyond that 22 

explained by ventral sensorimotor cortex. Together, these findings reveal feature-specific 23 

representational tuning across primary sensorimotor regions during speech production. The 24 

selective representational alignment between operculum and cerebellum may support the 25 

refinement of speech motor plans prior to execution. 26 

 27 
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Introduction 28 

Speech is among the most complex motor activities humans perform, requiring the 29 

coordination of approximately 100 muscles across laryngeal, respiratory and oral motor systems. 30 

This coordination integrates two fundamental speech features: articulation, which shapes the 31 

configuration of the vocal tract, and phonation, the generation of voiced sound. Such intricate 32 

orchestration depends on a distributed neural network spanning both cortical and cerebellar 33 

regions (Guenther & Hickok, 2016). Here, we aim to determine how articulatory and phonatory 34 

features of speech are represented across cortical and cerebellar regions during syllable 35 

production.   36 

Articulatory control is primarily attributed to the ventral sensorimotor cortex (vSM), where 37 

upper motor neurons project to brainstem nuclei, which in turn innervate the vocal tract via 38 

various cranial nerves (Jürgens, 2002; Penfield & Boldrey, 1937). Electrophysiological and 39 

imaging studies have shown that neural populations in vSM are selectively tuned to specific 40 

articulators (lips, tongue, and jaw), following a somatotopic layout that recapitulates the vocal 41 

tract (Bouchard et al., 2013; Carey et al., 2017). However, how speech features beyond 42 

articulation, such as phonation, are represented remains unclear. 43 

Phonation is the process of generating sound through the vocal folds (i.e., voicing). This 44 

process involves steady exhalation and laryngeal muscle contraction to vibrate the vocal folds. 45 

Cortically, laryngeal control has been mapped to two distinct regions in the vSM (Bouchard et 46 

al., 2013; Eichert et al., 2020), while exhalation has been shown to recruit a specific region in the 47 

dorsal sensorimotor cortex (dSM) associated with trunk movement (Brown et al., 2009; Loucks 48 

et al., 2007). Notably, the dSM shows greater activation during voiced compared with whispered 49 

speech, suggesting a role in phonatory control that is not limited to respiration (Correia et al., 50 

2020).  51 

Beyond the primary sensorimotor cortex, clinical evidence highlights a critical role for the 52 

cerebellum in speech production (Ackermann & Brendel, 2016). Cerebellar motor regions are 53 

embedded in closed-loop circuits with the cerebral sensorimotor cortex. In these circuits, 54 

individual cerebellar motor territories are reciprocally connected with specific, somatotopically 55 

organized cortical motor areas (Kelly & Strick, 2003; Saadon-Grosman et al., 2022). This closed-56 

loop cerebellar-cortical organization predicts that cerebellar representations should closely 57 

resemble those in vSM. However, recent evidence suggests that the cerebellum integrates signals 58 
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from multiple cortical sources (King et al., 2023). Under this integrative account, cerebellar 59 

speech regions may exhibit mixed representational geometries. Specifically, these regions may 60 

combine articulatory and phonatory features within their neural activity patterns. 61 

In the current study, we used high-field (7T) fMRI to investigate the neural mechanisms 62 

underlying speech production. Participants uttered syllables that differed in place of articulation 63 

and voicing. Leveraging the high spatial resolution afforded by 7T imaging, we aimed to map 64 

cortical and cerebellar regions associated with speech production. We employed Representational 65 

Similarity Analysis (RSA) to determine how specific speech features are encoded in neural 66 

activity patterns. Activity patterns in vSM primarily distinguished between places of articulation, 67 

consistent with previous work (Bouchard et al., 2013). Representational geometries in dSM 68 

differentiated between voiced and voiceless consonants, in line with the involvement of this area 69 

in phonation (Correia et al., 2020). Secondary sensorimotor speech areas outside primary motor 70 

cortex showed a mixture of these two representations. We then tested whether speech 71 

representations in the cerebellum resemble those observed in cortical speech regions. We 72 

hypothesized that cerebellar speech regions would show representational structures similar to 73 

those in vSM, consistent with closed-loop cerebellar-cortical organization (Kelly & Strick, 2003; 74 

Saadon-Grosman et al., 2022). Alternatively, cerebellar speech regions may encode mixed 75 

representational geometries that combine ventral and dorsal sensorimotor features, reflecting the 76 

convergence of cortical inputs to the cerebellum (King et al., 2023). 77 

 78 

Methods 79 

Participants. Twelve neurotypical adults were recruited for this study (6 females, 18-29 years 80 

[mean ± SD = 23.3 ± 3.6]). All participants were right handed as estimated by the Edinburgh 81 

handedness inventory (90.7 ± 15.1; Oldfield, 1971), native-level English speakers, and had no 82 

history of speech impairment or a neurological condition. All experimental procedures were 83 

approved by the Research Ethics Committee at Western University. The participants signed a 84 

written informed consent before participating in the study and were compensated for their 85 

participation.   86 

Stimuli.  Six different consonant-vowel (CV) syllables were visually presented to the 87 

participants at the center of the screen using PsychoPy (https://www.psychopy.org/). The 88 
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syllables were composed of a plosive consonant (/p/, /b/, /t/, /d/, /k/, /g/) followed by the vowel 89 

/a/ (Fig. 1A). Plosives are produced by blocking the airflow in the vocal tract and then releasing 90 

it, creating a burst of air. The plosive syllables in the current experiment varied along two axes: 91 

place of articulation (PoA) and voice onset time (VOT). PoA refers to the location in the vocal 92 

tract where the airflow is obstructed. In plosive sounds, the blockage can be formed with the lips 93 

(/p/, /b/), with the tongue tip against the alveolar ridge (/t/, /d/), or with the back of the tongue 94 

against the velum (/k/, /g/), corresponding to the bilabial, alveolar, and velar sounds, 95 

respectively. VOT refers to the interval between the release of the plosive closure and the onset 96 

of vocal fold vibration. In voiceless plosives (/p/, /t/, /k/), the vocal folds do not vibrate during 97 

the release, whereas in voiced plosives (/b/, /d/, /g/), the vocal folds do vibrate during the release. 98 

Experimental design. Participants underwent MRI scanning in a single session. We acquired an 99 

anatomical image and 10 functional runs. Right before the MRI scan, participants were 100 

familiarized with the behavioral task in a short behavioral session (2 runs, ~20 min). On each 101 

trial, a syllable was presented on the screen for 2 seconds, followed by a fixation cross for 2 102 

seconds (Fig. 1B). Participants were instructed to repeat the syllable out load three times at a 103 

comfortable pace during the 2s presentation period, and to remain silent during fixation to 104 

prevent overlap across task phases. Each run lasted ~4 minutes and included four blocks of 48 s 105 

separated by 14 s rest. Within each block all six syllables were presented, with each syllable 106 

appearing twice on consecutive trials. The order of items pairs within a block was randomized, 107 

resulting in a total of eight presentations of each item per run. Item and trial repetitions were 108 

included to improve the contrast-to-noise ratio (CNR). A period of 10 s rest was added at the end 109 

and of each functional run to allow for signal relaxation and provide a better estimate of baseline 110 

activation. The entire MRI session, including the anatomical scans and setup, lasted ~60 minutes. 111 

Imaging data acquisition. Functional MRI data were acquired on a 7T Siemens Magnetom 112 

scanner with a 32-channel head coil at Western University. Anatomical T1 weighted scan of each 113 

participant was acquired at the beginning of the MRI session, using a magnetization-prepared 114 

rapid gradient echo sequence (MP2RAGE, voxel size=0.7mm isotropic; TR=6000 ms; TE=2.27 115 

ms; field of view=246×246; 224 slices). Task-based functional data were acquired using a multi-116 

band gradient-echo EPI sequence with anterior to posterior phase-encoding direction (voxel 117 

size= 2.3 mm isotropic; TR=1100 ms; TE=20 ms; flip angle=30; multiband acceleration  118 
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factor=2; GRAPPA acceleration=3; field of view=208×208 mm; 56 slices). Each run consisted of 119 

224 volumes. To correct spatial distortions caused by inhomogeneities in the magnetic field, we 120 

also acquired a gradient-echo field map (voxel size=1.3 × 1.3 × 2.5 mm; field of 121 

view=210×210). 122 

Preprocessing. Functional data were preprocessed in native space for each individual separately 123 

using SPM12 (fil.ion.ucl.ac.uk/spm) and custom Matlab code. Our minimal preprocessing 124 

pipeline included the following steps: First, functional images were corrected for geometric 125 

distortions caused by magnetic field inhomogeneity using the gradient echo field map (Hutton et 126 

al., 2002). Then, functional images were realigned to the first volume of the first run to correct 127 

for head motion (six parameters: translation x, y, and z, and rotation pitch, roll and yaw). Lastly, 128 

the biased-corrected functional data were co-registered to the anatomical T1 image, for which the 129 

 

 

Figure 1. Syllable repetition task. A, Experimental stimuli. Top: Schematic illustration of the vocal tract during 

articulation of bilabial (/p/,/b/), alveolar (/t/,/d/), and velar (/k/,/g/) plosive consonants. Red arrow denoting the 

place of articulation. Bottom: Spectrograms of spoken CV syllables of one representative subject (female, 18yo) 

recorded during the behavioral training session. Spectrograms are grouped by voice onset time, with voiceless 

plosives (/pa/,/ta/,/ka/) shown in the top row and voiced plosives (/ba/,/da/,/ga/) in the bottom row. B, Block 

example. Each trial consisted of a CV syllable presented for 2 s, followed by 2 s fixation cross. Participants 

(N=12) were instructed to repeat the syllable three times during its presentation. Within each block, all six 

syllables were presented in a random order, with each syllable repeated twice on consecutive trials. Each block 

lasted ~48 s. Abbreviations: CV – consonant vowel; PoA – place of articulation; VOT – voice onset time. 
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(0,0,0) coordinate was moved to the anterior commissure (AC). No smoothing or normalization 130 

to a group template was performed at this stage.  131 

First level general linear model. The preprocessed functional images were analyzed with a 132 

general linear model (GLM), using a separate regressor for each syllable (/p/, /b/, /t/, /d/, /k/, /g/), 133 

for each run. The activation of each trial (consisting of three repetitions of the same syllable) was 134 

modeled using a boxcar function of length 2 sec convolved with a two-gamma canonical 135 

hemodynamic response function with a peak at 5 sec and a post-stimulus undershoot minimum at 136 

11 seconds. This analysis resulted in activation images (beta maps) for each condition per run, 137 

for each participant. Rest was not modeled explicitly but served as an implicit baseline. 138 

Neocortical surface reconstruction. Reconstruction of cortical surface from the anatomical 139 

image was carried out using Freesurfer (Fischl et al., 1999). In this procedure, white-gray matter 140 

and pial surfaces were reconstructed for each individual. The surfaces were then inflated into a 141 

sphere, and aligned to the left-right symmetric template atlas (fs_LR.32k.spec; Van Essen et al., 142 

2012) based on sulcal depth and curvature information. The functional data were projected from 143 

native space to the subject’s individual surface, by averaging beta values of voxels intersecting 144 

the line connecting corresponding vertices of the individual white matter and pial surfaces. 145 

Cerebellar normalization. Cerebellar isolation and segmentation into white and gray matter 146 

were performed using the Spatially Unbiased Infratentorial Template (SUIT) toolbox 147 

implemented in SPM12 (Diedrichsen, 2006). For each subject, the automatic segmentation was 148 

carefully inspected and, when necessary, manually corrected by one of the authors (S.J.) to 149 

exclude voxels originating from non-cerebellar tissue (e.g., visual cortex). Cerebellar gray and 150 

white matter maps were then normalized into SUIT space using a non-linear deformation 151 

algorithm (Ashburner, 2007). The activation estimates (i.e., beta weights) and residual mean-152 

square from the first level GLM were also resliced into SUIT. The functional data were further 153 

resliced into MNIsymC template atlas (a symmetric version of the cerebellar only template, 154 

aligned to the MNINlin2009cSym template) to enable the definition of symmetric cerebellar 155 

ROIs in the left and right hemisphere. For visualization purposes, functional maps were 156 

projected onto a flat representation of the cerebellum using the SUIT toolbox (Diedrichsen & 157 

Zotow, 2015). 158 
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Defining functional regions of interest. To identify brain regions activated during overt syllable 159 

repetition we generated group-level activation maps across all syllable conditions (Fig. 2). 160 

Individual subject data were projected into group space, spatially smoothed on the cortical 161 

surface or in the volume (kernel width: 6mm), and averaged across participants. To obtain a 162 

hemispheric unbiased estimate we further averaged the data across hemispheres. Functional 163 

ROIs were defined by thresholding the resulting group-average map to retain the top 10% of 164 

vertices in the neocortex, and top 10% of voxels in the cerebellum. For cerebellar ROIs, we 165 

extracted SPM t-values, reflecting average beta maps divided by the standard deviation of the 166 

residual time series at each voxel. For the neo-cortex, anatomical locations of the regions were 167 

identified using the Glasser et al. (2016) atlas.  168 

Quantifying pattern reliability. Pattern reliability was defined as the proportion of total 169 

variance in fMRI activity patterns that could be explained by reliable effects, computed as the 170 

sum of group-level and subject-specific variance components divided by the total variance. To 171 

estimate these components, we applied variance decomposition (https://functional-172 

fusion.readthedocs.io/) to unsmoothed activity patterns in group space (cortical or cerebellar). 173 

For each voxel or vertex and each run, we first subtracted the mean response across all syllables. 174 

This step removes shared global activations that are not specific to individual syllables. The 175 

resulting fMRI activity was decomposed into three variance components: (1) group: reflecting 176 

patterns that are shared across subjects; (2) subject: capturing reliable idiosyncratic differences; 177 

and (3) noise: representing run-by-run variability of the estimates within each person. These 178 

components were estimated from the covariance matrix of activity estimates across voxels, 179 

where 𝑥𝑠,𝑖 denotes the pattern for subject s, in run i. The average covariance across different 180 

people, cov(xs,i, xt,j), is equal to the group variance; the average covariance within a person 181 

across runs, cov(xs,i, xs,j), is equal to the sum of group and subject variance; and the average total 182 

average variance, var (xs,i), is equal to all three components. Pattern reliability is then the sum of 183 

the group and subject variance components divided by the total variance. Statistical significance 184 

of reliability estimates was assessed using one-sample t-tests against zero.  185 

To compare reliability between the cortex and the cerebellum at the subject level, we 186 

conducted a linear mixed-effects model with normalized reliability as the dependent variable, 187 

brain region (i.e., cortex vs. cerebellum) as a fixed effect, and subject as a random intercept. The 188 
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model was fitted using Restricted Maximum Likelihood (REML). Significance was assessed 189 

with Wald z-tests. 190 

 191 

Group-level univariate analysis. To assess whether mean activation differed systematically as a 192 

function of articulatory features, we performed a repeated-measures ANOVA on percent signal 193 

change values extracted from each ROI. The model included within-subject factors of Place of 194 

Articulation (bilabial, alveolar, velar), and Voicing (voiced, voiceless), with subject treated as a 195 

random effect. Significant main effects were followed up with post hoc comparisons, corrected 196 

for multiple comparisons (FDR correction). 197 

To assess the topological organization of different places of articulation, we computed 198 

subject-level contrasts for each articulatory category (bilabial, alveolar, velar) against the 199 

remaining syllables. Group-level effects were then estimated by performing a one-sample t-test 200 

across participants at each vertex/voxel, yielding group t-statistic maps. These maps were used to 201 

evaluate the spatial distribution of place-of-articulation selectivity. 202 

Multivariate pattern analysis of syllable-specific representations. To quantify how much 203 

activation patterns for each syllable differed from each other, we used the cross-validated 204 

Mahalanobis distance (Nili et al., 2014), resulting in a representational dissimilarity matrix 205 

(RDM). Prior to calculating the distances, beta weights were spatially prewhitened (i.e., scaling 206 

each voxel’s beta by the estimated noise standard deviation from the GLM). This step ensures 207 

that the distance estimates reflect true pattern differences rather than noise covariance (Bosch et 208 

al., 2025). To get a cross-validated estimation of the distances, we multiplied the difference 209 

between the activity pattern of two syllables in one imaging run with the differences computed 210 

on any other imaging run. This procedure ensures that if two patterns are only differ due to noise, 211 

then the expected estimate of the distance is zero (Diedrichsen et al., 2021). For visualization 212 

purposes only, the RDM values were square-root transformed and then normalized by their 213 

Euclidian norm to remove overall scale differences across ROIs.  214 

Lateralization index. To assess hemispheric asymmetry during syllable production, we 215 

computed a lateralization index for each speech-related ROI. Lateralization index was defined as 216 

the normalized difference between right- and left-hemisphere activity (or representational 217 
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distances) within each ROI. To account for potential negative values, the difference was 218 

normalized by the sum of the absolute values of both hemispheres: 219 

𝐿𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =  
𝑅 − 𝐿

|𝑅| +  |𝐿|
 220 

Positive values indicate right-hemisphere dominance, while negative values indicate left-221 

hemisphere dominance. Statistical significance of the lateralization was assessed using one-222 

sample t-tests, testing whether the mean lateralization index differed from zero.  223 

Comparing representational dissimilarities. To investigate whether the representational 224 

structure of syllables differed between hemispheres we calculated the cosine similarity between 225 

each subject’s RDM and the leave-one-out group-average RDMs of the left and right 226 

hemispheres. This resulted in four similarity measures per subject (per ROI), reflecting how well 227 

each hemisphere’s representational structure matched the ipsilateral and contralateral group 228 

patterns. Differences between ipsilateral and contralateral similarities were assessed using a 229 

paired t-test.  230 

In a complementary analysis, we tested whether the superior and inferior cerebellar ROIs 231 

differed in their representational structure. For each participant, we computed the cosine 232 

similarity between their RDMs and the corresponding leave-one-out group-average RDMs, and 233 

compared these similarities using a two-sided paired t-tests. 234 

Model comparison. To assess the contribution of each theoretical model (PoA and VOT) in 235 

explaining cortical RDMs, we first strung out the upper triangular elements of the data RDM and 236 

the model RDMs into vectors. For each subject and region, we quantified the strength of each 237 

feature representation by computing Pearson’s correlation between the vectorized empirical 238 

RDM and each model RDM. Group level significance in each region was assessed by testing 239 

whether the correlation coefficients differed from zero using a one-sided one-sample t-test. To 240 

evaluate the relative contribution of each model we performed a non-negative linear regression 241 

for each subject, predicting the 15 inter-syllable distances from a linear combination of the two 242 

models, including an intercept term to account for baseline similarity: 243 

𝑅𝐷𝑀𝑟𝑒𝑔𝑖𝑜𝑛~ 𝑤1 + 𝑤2 ∗ 𝑃𝑜𝐴 + 𝑤3 ∗ 𝑉𝑂𝑇 244 
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For this analysis the model RDM vectors (PoA and VOT) were standardized, so that each had a 245 

sum of squares equal to 1. The relative contributions of PoA and VOT were then compared using 246 

a paired t-test on the regression weights 𝑤2 and 𝑤3 across subjects. 247 

Multidimensional scaling. To visualize the geometric relationships of syllable representations 248 

across speech-related regions, we applied classical multidimensional scaling (MDS) to the 249 

vectorized RDM vectors. MDS projects the N-dimensional dissimilarity matrix into a lower 250 

dimensional space, while preserving pairwise distances. To focus on the pattern of geometric 251 

organization rather than overall magnitude of dissimilarities, each RDM was normalized by its 252 

total quadric norm (i.e., the square root of the sum of squared Crossnobis distances) before MDS. 253 

Dissimilarities were kept as squared Crossnobis distances to ensure unbiased estimates of the 254 

neural pattern differences. 255 

Cerebellum-cortex representational similarity. To quantify the similarity between cerebellar 256 

and cortical representations, we computed the cosine similarity between each subject’s cerebellar 257 

RDM and each cortical RDM. To assess whether these similarities exceeded what would be 258 

expected under a uniform representational structure, we compared each cerebellar-cortical 259 

similarity to a null model in which all pairwise syllable distances were equal. Differences 260 

between cerebellar-cortical and null similarities were evaluated using a one-sided paired t-test. 261 

Leave-one-out non-negative regression. To identify which cortical areas contribute unique, 262 

non-redundant information in explaining cerebellar RDM vectors, we performed a stepwise non-263 

negative linear regression, predicting cerebellar RDMs from the cortical RDMs, by adding one 264 

cortical region at each step. The model was trained using data from all but one subject and tested 265 

on the left-out subject. Model performance was evaluated using cosine similarity between the 266 

predicted and the observed cerebellar RDMs. To assess whether adding a cortical region 267 

significantly improved prediction accuracy, we conducted one-sided paired t-test comparing the 268 

performance between consecutive steps.  269 

 270 

 271 

 272 
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Results 273 

Identifying regions responsive to syllable production 274 

We identified six neocortical regions and two cerebellar regions activated during overt syllable 275 

repetition (Fig. 2), corresponding to the “minimal speech production network” described by 276 

Bohland & Guenther (2006). These areas included a large region in the ventral primary motor 277 

(M1) and sensorimotor (S1) cortex (vSM). A second, smaller region was identified more dorsally 278 

(dSM), situated between the hand and foot representation. We also observed consistent activity in 279 

medial region encompassing parts of the supplementary and pre-supplementary motor areas 280 

(SMA), as well as in the frontal and parietal operculum (OP), the sylvian parietal-temporal area 281 

(Spt), and the auditory belt (Aud, Fig. 2A). Within the cerebellum, we identified two distinct 282 

regions associated with syllable production: a superior region in lobules V/VI (cbSUP) and an 283 

inferior region in lobule VIII (cbINF) (Fig. 2B). This dual representation aligns with previous 284 

fMRI findings demonstrating two somatomotor maps for tongue movement in the cerebellum 285 

(Nettekoven et al., 2024; Saadon-Grosman et al., 2022). 286 

To test which of the regions within this network show hemispheric asymmetry, we calculate a 287 

lateralization index for each region separately (Fig. 2C). We found left hemispheric dominance in 288 

the SMA (t(11) =-2.63, p=.023) and vSM (t(11) =-2.97, p=.012). Right hemisphere dominance was 289 

observed in the operculum (t(11) =2.90, p=.014). In the cerebellum, both superior and inferior 290 

regions showed significantly stronger activity in the right hemisphere (cbSUP: p=.045, cbINF: 291 

p=.005).  292 

 293 

Pattern analysis shows encoding of different syllables  294 

We then asked whether the identified speech-related regions exhibit distinct activity patterns for 295 

different syllables. Surface representations of syllable-related activity patterns showed no clear 296 

spatial segregation between syllables (Fig. 3A). Instead, the maps revealed individual differences 297 

in both the extent and internal organization of activity patches, consistent with previous fMRI 298 

findings (Carey et al., 2017).  299 

To assess whether different syllables were reliably represented despite the absence of clear 300 

spatial segregation, we quantified syllable-specific reliability across runs and subjects using 301 

variance decomposition (Fig. 3B). Importantly, reliability was estimated after subtracting the  302 
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mean activity from each voxel, ensuring the measure reflected the consistency of differences 303 

between syllables rather than overall activation levels. All ROIs showed significant positive 304 

pattern reliability (see Methods, all p<0.05, FDR-corrected), indicating that syllable identity 305 

could be reliably decoded from these regions in individual subjects.  306 

 

 

Figure 2. Average activity during overt syllable production. Group-average activation maps across all syllable 

types, projected onto flattened representation of the neocortex (A) and the cerebellum (B). Major neocortical sulci 

and cerebellar lobular boundaries are indicated by dotted lines. Boundaries of symmetrically-defined functional 

ROIs are outlined in black. C, Lateralization index of average activity. Error bar corresponds to standard error of 

the mean. *p<.05, **p<.01.  

Abbreviations: SMA- supplementary motor area; dSM – dorsal sensorimotor; vSM – ventral sensorimotor; OP –

operculum; Spt – Sylvian parietal-temporal; Aud – Auditory cortex; CS – central sulcus; S1 – primary sensory 

cortex; M1 – primary motor cortex; IPS – intraparietal sulcus; STS- superior temporal sulcus; cbSUP – superior 

cerebellum; cbINF – inferior cerebellum. 
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We then decomposed pattern reliability into two components: group variance, reflecting 307 

structure shared across individuals, and subject-specific variance, capturing reliable but 308 

idiosyncratic patterns. In vSM, the group component was highly significant (left: t(11)=6.79, 309 

p(FDR)=.0001; right: t(11)=5.93, p(FDR)=.0001), accounting for 35.93% (±5.19%) of the individual 310 

pattern reliability. Thus, despite the apparent lack of common organization on visual inspection 311 

(Fig. 3A), vSM exhibits a systematic topology shared across subjects. To illustrate this, we 312 

plotted group contrasts for each place of articulation (bilabial, alveolar, velar) against the 313 

remaining syllables. The resulting map (Fig. 3C) shows more dorsal activation for bilabials, and 314 

more ventral activity for velars, with alveolar syllables preferentially engaging voxels in 315 

between, consistent with previous findings (Bouchard et al., 2013; Carey et al., 2017; Correia et 316 

al., 2020; Eichert et al., 2020).  317 

Lastly, we tested whether syllable-specific information differed across hemispheres (Fig. 318 

3D). Significant left lateralization was observed in both SMA and vSM, with stronger 319 

information in the left hemisphere compared to the right (SMA: t(11)=-2.97, p=.012; vSM: t(11) =-320 

4.15, p=.001). The dSM showed a non-significant trend toward left lateralization (t(11) =-1.66, 321 

p=.12). In contrast, the inferior cerebellum exhibited a significant right lateralization, with higher 322 

information encoded in the right cerebellar hemisphere (t(11)=2.55, p=.026). The operculum, 323 

auditory cortex, Spt, and superior cerebellum showed no hemispheric differences in the strength 324 

of syllable-specific information (all ps >.1).  325 

 326 

Representational geometry in cortical speech regions 327 

Having established reliable syllable-specific information, we next examined its organization 328 

across regions using representational similarity analysis (Kriegeskorte & Diedrichsen, 2019). For 329 

each ROI, cross-validated Mahalanobis distances between activation patterns for different 330 

syllables were computed, yielding a representational dissimilarity matrix (RDM) per region (Fig. 331 

4A). As no significant hemispheric differences were found (see Methods, all ps > 0.1), data from 332 

left and right hemispheres were averaged to produce a single representational estimate per ROI. 333 

To complement this multivariate approach, we also quantified mean activation responses for each 334 

syllable within each ROI (Fig. 4B).   335 

We then examined how syllables are represented within each region by comparing the data 336 

RDM to two models– place of articulation (PoA) or voice onset time (VOT) (Fig. 4C). First, we  337 
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assessed whether each feature was reflected in the regional representational geometry by 338 

correlating the data RDM with each model RDM separately (Fig. 4D). This analysis revealed a 339 

strong correspondence with the PoA model in the vSM (mean r=0.67, p=1.57×10-7), the 340 

operculum (mean r=0.29, p=.001), and to a lesser degree in the auditory cortex (mean r=0.18, 341 

 

 

Figure 3. Evoked activity patterns during the production of different syllables. A, Activation maps in the left 

vSM are shown on a flattened neocortical surface. Each row displays activity patterns from an individual 

participant, with the bottom row showing the group-average across all subjects (N=12). B, Reliability of activity 

patterns for single syllables in speech ROIs. Pattern reliability reflects the variance explained by shared variance 

across subjects and task conditions within each subject, across runs. Within each ROI, reliability for the left 

hemisphere (left boxplot) and right hemisphere (right boxplot) are presented. C, Group t-maps in left and right 

vSM showing articulator-selective contrasts for bilabial (red), alveolar (green), and velar (blue). D, Lateralization 

index calculated as the normalized difference between right and left average Mahalanobis distances, in each ROI. 

Error bars indicate standard error of the mean. *p<.05, **p<.01, ***p<.001. 

Abbreviations: SMA- supplementary motor area; dSM – dorsal sensorimotor; vSM – ventral sensorimotor; OP –

operculum; Spt – Sylvian parietal-temporal; Aud – Auditory cortex; cbSUP – superior cerebellum; cbINF – 

inferior cerebellum; LH – left hemisphere; RH – right hemisphere. 
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p=.018), indicating sensitivity to articulatory structure in those regions. Consistent with these 342 

representational effects, univariate analysis of mean activity showed significant main effects of 343 

PoA in vSM and auditory cortex (Table 1). Post-hoc comparisons revealed distinct response 344 

profiles across regions: in the vSM and operculum, alveolar syllables elicited the highest 345 

activation, whereas in the auditory cortex, bilabial syllables evoked the lowest activation, and 346 

velar syllables the strongest responses (Fig. 4B). 347 

In contrast to PoA representations, significant correlations with VOT were observed in SMA 348 

(mean r=0.155, p=.023) and Spt (mean r=0.157, p=.023). The dSM did not show significant 349 

correlations with either model, though it was positively correlated with VOT (mean r = 0.15, 350 

p=.129). Univariate analyses revealed a significant main effect of VOT in Spt, SMA and dSM, 351 

with post-hoc tests showing higher mean activation for voiceless compared to voiced consonants 352 

(Table 1, Fig. 4B). Notably, the operculum showed a significant univariate effect for VOT 353 

alongside PoA sensitivity in the representational analysis, suggesting an integrated representation 354 

of both articulatory place and temporal voicing information in this region. In the auditory cortex, 355 

voiced consonants elicited higher activity than voiceless consonants, although this effect did not 356 

reach significance.  357 

Next, we evaluated the unique contribution of each feature in explaining the regional RDMs 358 

(Fig. 4E). To do this, we used non-negative linear regression to simultaneously fit each cortical 359 

RDM with both model RDMs, allowing the two features to compete for shared variance. We then 360 

compared the resulting beta weights within each region. vSM showed a significantly stronger 361 

weight for PoA compared to VOT (t(11)=4.85, p=.0005). The operculum also exhibited a stronger 362 

weight to PoA over VOT, albeit to a lesser extent (t(11)=2.28, p=.043). Other cortical regions 363 

showed no significant difference between PoA and VOT weights (all ps>.1), though the auditory 364 

cortex, SMA and dSM showed trends toward VOT dominance.  365 

Multidimensional scaling (MDS; Fig. 4F) summarizes these findings by visualizing the 366 

organizational structure of cortical regions in two dimensions: The first dimension contrasts vSM 367 

and auditory cortex along the PoA-VOT axis, while the second dimension separates vSM, 368 

operculum, and auditory cortex from Spt, SMA and dSM, reflecting a broader distinction 369 

between areas sensitive to articulatory versus temporal features. 370 

 371 
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Figure 4. Representational geometry of syllables within the neocortex. A, RDMs between activity patterns evoked 

by different syllables, averaged across hemispheres and subjects within each region. B, Percent signal change (mean ± 

SEM) for each region depicted in A, grouped by POA, with voiced (white) and voiceless (gray) consonants shown 

separately. C, Distance structure for the PoA (left) and VOT (right) models. Black indicated no difference between 

syllables; yellow indicates large differences. D, Pearson’s correlation coefficient (mean ± SEM) between each regional 

RDM and the feature models. PoA correlations are shown in red and VOT correlations in blue. E, Comparison of 

syllable model fits across speech related ROIs. Bars show mean weight (w ± SEM) across participants for intercept 

(gray), PoA (red), and VOT (blue). F, Multidimensional scaling of differences between ROIs in three-dimensional 

space. *p<.05 ,**p<.01, ***p<.001. 

Abbreviations: RDM – representational dissimilarity matrix; vSM – ventral sensorimotor; OP –operculum; Aud – 

Auditory cortex; Spt – Sylvian parietal-temporal; SMA- supplementary motor area; dSM – dorsal sensorimotor; cb-

cerebellum; PoA – place of articulation; VOT – voice onset time. 
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Table 1. Repeated-measures ANOVA results for place of articulation (PoA) and voicing (VOT) effects on average 

activity in each region.  

Region Factor F(df1,df2) a p-value Post-hoc comparison 
Post-hoc 

p-valueb 

vSM PoA  F(2,22) = 6.50 .0060 Alveolar > Velar .020 

 VOT F(1,11) = 4.73 .052   

 PoA × VOT   F(2,22) = 1.00 .383   

OP PoA  F(2,22) = 1.96 .165   

 VOT F(1,11) = 8.72 .013 Voiceless > Voiced .013 

 PoA × VOT   F(2,22) = 0.66 .528   

Aud PoA  F(2,22) = 24.86 < .001 
Bilabial < Alveolar 

Bilabial < Velar 

.001 

<.001 

 VOT F(1,11) = 1.92 .193   

 PoA × VOT   F(2,22) = 0.44 .650   

Spt PoA  F(2,22) = 1.11 .348   

 VOT F(1,11) = 9.75 .0097 Voiceless > Voiced .0097 

 PoA × VOT   F(2,22) = 0.75 .485   

SMA PoA  F(2,22) = 4.91 .017 Bilabial > Velar .011 

 VOT F(1,11) = 12.32 .0049 Voiceless > Voiced .0049 

 PoA × VOT   F(2,22) = 1.55 .235   

dSM PoA  F(2,22) = 6.36 .0066 Bilabial > Velar .025 

 VOT F(1,11) = 17.29 .0016 Voiceless > Voiced .0016 

 PoA × VOT   F(2,22) = 0.19 .832   

cb PoA  F(2,22) = 10.35 < .001 
Bilabial < Alveolar 

Bilabial < Velar 

.000367 

.020 

 VOT F(1,11) = 3.73 .079   

 PoA × VOT   F(2,22) = 0.89 .423   

aF values are reported with numerator and denominator degrees of freedom.  

bPost hoc p values are FDR-corrected.  

 372 

Representational geometry in the cerebellum 373 

We next investigated syllable representations within the cerebellum. Initially, we compared the 374 

superior and inferior cerebellar speech regions and found no significant differences between 375 

them (p>0.3; Fig. 5A). This aligns with previous studies reporting dual representations of body 376 

parts in sensorimotor cerebellar regions, without clear differences in tuning or representational 377 
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patterns (Nettekoven et al., 2024; Wiestler et al., 2011). Accordingly, we averaged the RDMs 378 

across these two cerebellar regions to obtain a more reliable, consolidated measure of syllable 379 

organization within the cerebellum (Fig. 5B). Mean activations for each condition were also 380 

averaged across these regions to complement the representational analysis with univariate 381 

measures (Fig. 5C). 382 

To characterize the geometrical structure of cerebellar syllable representations, we tested 383 

their relationships with the feature models. Pearson’s correlation revealed a significant 384 

correlation between cerebellar RDMs and the PoA model (mean r=0.34, p=.002), but not with 385 

the VOT model (mean r=-0.008, p=.537) (Fig. 5D). Univariate analysis supported these findings, 386 

showing a main effect of PoA, with lower activation for bilabial sounds (Table 1). Finally, non-387 

negative linear regression demonstrated a significantly stronger weight for PoA compared to 388 

VOT (t(11)=2.55, p=.026) (Fig. 5E). 389 

The arrangement of representations in speech regions (Fig. 4B) suggests that the 390 

representational structure in cerebellar speech areas closely resembles that of the operculum. To 391 

quantify these relationships, we calculated cosine similarity between the cerebellum and each 392 

cortical region. Because cerebellar syllable-related activity patterns were more variable across 393 

subjects than cortical patterns (linear mixed-effects model: β=-0.012, SE=0.006, z=-2.27, 394 

p=.023), subsequent analyses were performed at the individual-subject level to capture subject-395 

specific relationships between the cortex and the cerebellum. Within each subject, the cerebellar 396 

RDM was significantly more similar to the operculum (t(11)=2.206, p=.025) than to a reference 397 

model predicting uniform dissimilarities (Fig. 5F). Cerebellar RDMs also showed some 398 

similarity to vSM, though this did not reach statistical significance (p=.059). Similarities to other 399 

regions were not significant, indicating a selective engagement of the cerebellum with the 400 

operculum and vSM during speech production. 401 

Can the cerebellar representation be best described as a mixture of several cortical regions, 402 

or is a single region suffice? To address this, we estimated weights that best predicted cerebellar 403 

RDMs based on cortical RDMs, using a leave-one-out cross-validation approach incrementally 404 

adding ROIs to the model based on their similarity. We found that adding the operculum to a 405 

model already including vSM significantly improved prediction of cerebellar RDMs (t(11)=2.65, 406 

p=.002), indicating that the operculum contributes unique information over and above vSM. In 407 

contrast, adding vSM to a model that already included the operculum did not significantly 408 
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improve model fit (p=0.1), suggesting that the operculum could account for most of the syllable 409 

representation in the cerebellum (Fig. 5F).   410 

 411 

 

Figure 5. Representational geometry of syllables within the cerebellum. A, Cosine similarities between 

cerebellar ROIs. Plotted are the cosine similarities of each participant’s cbSUP (left) and cbINF (right) RDMs 

compared to the leave-one-out group RDMs of cbSUP (gray) and cbINF (white). B, RDMs between activity 

patterns evoked by different syllables, averaged across cbSUP and cbINF. C, Percent signal change (mean ± 

SEM), grouped by POA, with voiced (white) and voiceless (gray) consonants shown separately. D, Pearson’s 

correlation coefficient (mean ± SEM) between cerebellar RDM and the feature models. E, Size of model weights 

(w ± SEM) across participants for intercept (gray), PoA (red), and VOT (blue) in the combined model. F, Cosine 

similarity between the cerebellum and neocortex. Similarities were calculated between observed and predicted 

cerebellar RDMs using cross validated stepwise non-negative regression. The dashed gray line represents the 

similarity of cerebellar RDMs to a null reference, averaged across participants. *p<.05 ,**p<.01, ***p<.001. 

Abbreviations: RDM – representational dissimilarity matrix; cbINF- inferior cerebellum; cbSUP- superior 

cerebellum; PoA – place of articulation; VOT – voice onset time; vSM – ventral sensorimotor; OP –operculum; 

Aud – Auditory cortex; Spt – Sylvian parietal-temporal; SMA- supplementary motor area; dSM – dorsal 

sensorimotor. 
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Discussion 412 

This study characterized the neural representations of speech during overt syllables 413 

production using multivariate analysis and 7T fMRI. We demonstrate that the patterns associated 414 

with each syllable showed reliable differences in both cortical and cerebellar speech related 415 

regions. These regions exhibited differential tuning along the PoA-VOT axis: While vSM was 416 

primarily tuned to place of articulation, dSM, SMA, and Spt were more sensitive to voice onset 417 

time. The operculum and auditory cortex demonstrated a hybrid profile, with sensitivity to both 418 

features. Furthermore, we found that in the cerebellum, syllables are better represented by their 419 

place of articulation rather than voice onset timing. Surprisingly, cerebellar representations 420 

aligned most closely with the operculum rather than primary sensorimotor cortex, suggesting that 421 

speech control relies on cerebellar-cortical circuits beyond primary motor cortex. 422 

In this study, we found a functional contrast between vSM and dSM in their tuning to speech 423 

features. The tuning of the vSM for different places of articulation supports its established role in 424 

the motoric sculpting of the vocal tract (Bouchard et al., 2013). Therefore, vSM may function as 425 

a motor map with topographical regularities across individuals. The dSM, in contrast, showed 426 

greater sensitivity to voice onset time compared to place of articulation (Fig. 4E). Although this 427 

effect did not reach statistical significance (p=.146), the pattern is consistent with a functional 428 

role of the dSM in phonation (Correia et al., 2020). Unlike the somatotopic maps of articulators 429 

in vSM, the neural patterns for voice onset time may be more idiosyncratic, potentially reflecting 430 

individual-specific strategies for timing respiration and articulation.  431 

Traditionally, the dSM has been associated with trunk movements during respiration (Brown 432 

et al., 2009; Loucks et al., 2007). Here, by varying the temporal onset of phonation relative to 433 

articulation, we demonstrate that dSM activity reflects the precise temporal gating of airflow 434 

during speech production. Recently, the role of the dSM has been extended beyond a simple 435 

representation of the trunk. For example, Correia et al., (2020) demonstrated that voiced speech 436 

recruits the dSM more heavily than whispered speech, even when controlling for lung volume, 437 

suggesting a specific involvement in phonatory control. While we did not directly monitor 438 

breathing patterns in the current study, our finding that the dSM is tuned to voice onset time, 439 

supports the notion that this region is involved in the synchronization of respiration and laryngeal 440 

tension. Future studies utilizing simultaneous fMRI and respiratory tracking are needed to 441 

distinguish the dSM’s role in global respiration vs. its role in syllable-specific temporal gating.  442 
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Contrary to our predictions, cerebellar representations did not exclusively resemble those in 443 

vSM, nor did they reflect a mixture of ventral and dorsal sensorimotor representations. Instead, 444 

cerebellar representational structure aligned most closely with that of the operculum (Fig. 5F). 445 

BOLD signals in the cerebellum predominantly reflect afferent input rather than local output 446 

computations (Caesar et al., 2003; Thomsen et al., 2004, 2009). Therefore, the close alignment 447 

between opercular and cerebellar representational geometry observed in our data likely reflects 448 

information transmitted from the operculum to the cerebellum. Notably, the cerebellum also 449 

interacts with the neocortex cortex by sending outputs back to it. However, such efferent 450 

interactions are not directly captured by cerebellar BOLD measurements. 451 

According to the DIVA model, opercular-cerebellar interactions support the generation and 452 

refinement of feedforward speech motor commands (Guenther, 2006). Within this framework, 453 

the frontal operculum is hypothesized to encode speech-motor plans, while the cerebellum 454 

contributes to the tuning of these plans. If this account is correct, both regions should be active 455 

during speech execution, but only the operculum should show activation during speech 456 

preparation. Alternatively, if the cerebellum forms a closed-loop circuit with the operculum, 457 

preparatory activation should be observed in both regions.  458 

Clinical evidence further implicates the cerebellum in speech planning. Apraxia of speech 459 

and dysarthria are dissociable speech disorders, with apraxia reflecting impaired motor planning, 460 

and dysarthria reflecting deficits in motor execution (Ziegler et al., 2012). While dysarthria is 461 

classically associated with direct cerebellar damage, highlighting the cerebellum’s established 462 

role in speech execution (Ackermann, 2008), recent findings in left-hemisphere stroke patients 463 

reveal a link between reduced cerebellar gray matter and greater apraxia severity (Gibson et al., 464 

2025). Notably, gray matter volume in right cerebellar lobules V/VI, identified here as the 465 

superior cerebellar speech region, best predicted apraxia severity. In contrast, dysarthria severity 466 

showed weaker associations with cerebellar gray matter, underscoring the specificity of this 467 

relationship to speech planning deficits. Together with its representational alignment to the 468 

operculum, these clinical findings strengthen the interpretation that the cerebellum also 469 

contributes to speech planning rather than solely to motor execution. 470 

Speech production relies on interactions between the motor and auditory systems, enabling 471 

the coordination of articulatory commands with their auditory consequences (Guenther, 2006; 472 

Hickok et al., 2011). Our results show that speech production evokes robust and reliable 473 
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activations in the auditory cortex, primarily located along the medial and lateral Heschl’s gyrus 474 

(Fig. 2A). Previous studies have shown that this region responds more strongly to speech than 475 

non-speech sounds, and encodes acoustic-phonetic features during speech perception (Binder et 476 

al., 2000; Mesgarani et al., 2014). Our data extend these findings by demonstrating that the 477 

auditory cortex represents phonatory features not only during speech perception, but also during 478 

speech production. Because external auditory feedback was largely masked by scanner noise in 479 

the current study, these representations are unlikely to arise solely from the airborne auditory 480 

feedback. Instead, our results could indicate that the auditory representations are caused by 481 

internally generated predictions derived from an efference copy of the articulatory command 482 

(Houde et al., 2002). However, these representations may also reflect auditory input transmitted 483 

through bone-conductance (v. Békésy, 1949).  484 

In the current study we used a limited set of syllables, focusing exclusively on plosive 485 

consonants combined with a low-back vowel (i.e. /a/). While this choice provided strong control 486 

over articulatory and temporal dimensions of speech, it limits the extent to which our results can 487 

be generalized to other phonemic categories, different manners of articulation, or to more 488 

complex, naturalistic, speech. Both vowel identity and manner of articulation evoke distinct 489 

activity patterns within the vSM (Bouchard et al., 2013; Bouchard & Chang, 2014). Importantly, 490 

because vowel identity shapes consonant articulation via coarticulation, restricting syllables to a 491 

single vowel may limit the range of consonant-related representational structure captured here.  492 

In summary, this study reveals feature-specific representational tuning of articulatory and 493 

phonatory features within primary sensorimotor areas, with ventral sensorimotor cortex encoding 494 

place of articulation and dorsal regions showing sensitivity to voice onset timing. Secondary 495 

speech areas, such as the operculum and auditory cortex, exhibited a hybrid representational 496 

profile, reflecting heightened sensitivity to the phonetic differences. Surprisingly, cerebellar 497 

representations aligned most closely with those of the operculum, suggesting an opercular-498 

cerebellar circuit involved in speech motor planning prior to execution. It remains to be seen 499 

which specific computations are performed within the cerebellum and how they influence 500 

neocortical speech area.    501 

 502 

 503 

 504 
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