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Abstract 13 

External disturbances to the body are better counteracted when their nature can be predicted in advance. 14 

Here, we investigated the neural mechanisms through which probabilistic predictions shape feedback 15 

responses using functional magnetic resonance imaging (fMRI) in humans. We show that, prior to a 16 

mechanical perturbation applied to a finger, the primary motor (M1) and somatosensory (S1) cortices 17 

receive a signal that linearly encodes the expected sensory input. When perturbations reach these areas, 18 

expectations are combined with the sensory input through a simple additive mechanism, yielding motor 19 

commands that reflect a weighted sum of the two signals. At the same time, M1 and S1 receive a prediction 20 

error signal, likely from upstream regions, encoding the difference between expectations and actual sensory 21 

input. This signal is visible in fMRI data in humans and in the local field potentials in non-human primates, 22 

but not in M1-S1 spiking activity. 23 

Main 24 

From skiing to cycling on uneven ground, many activities require rapid compensations for external 25 

disturbances to the body. Yet, feedback responses to these mechanical perturbations would arrive too late if 26 

exclusively driven by delayed1–3 sensory input. Performance can improve if the nature (e.g., direction, 27 

intensity) of upcoming perturbations is predicted from contextual cues or prior experience. For example, a 28 

passenger standing on a bus can predict being pulled to the right when the bus is about to turn left at a light. 29 

However, if the driver suddenly swerves right to avoid a pedestrian, the passenger will be pushed left, 30 

having to reverse the expected response. Preparing movements in advance typically improves 31 

performance4–9, but it is unclear how the brain shapes feedback responses based on probabilistic 32 

knowledge of future perturbations. 33 

Recent work from our group showed that both humans and non-human primates were able to counter 34 

elbow perturbations (flexion or extension) more quickly when receiving valid probabilistic information about 35 

the perturbation direction9. In monkeys, the expected direction was probabilistically represented in the 36 

spiking activity of neurons in the dorsal premotor (PMd) and primary motor cortex (M1). At perturbation 37 

onset, sensory expectations shaped the initial response, which was then increasingly dictated by the 38 

accumulating sensory input that signalled the actual perturbation direction. These findings point to a simple 39 

mechanism that pre-activates cortical motor regions based on expectations, and then additively combines 40 

expectations with incoming sensory information to generate the motor commands for feedback responses. 41 
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Are there additional computations involved in the manipulation of probabilistic information for feedback 42 

control that eluded the limited spatial coverage offered by electrophysiological recordings? Here, we 43 

investigated this question in humans using functional magnetic resonance imaging (fMRI). Previous work 44 

suggests that the brain may also represent the uncertainty and surprise10–13 associated with expectations 45 

and incoming sensory input, together with a prediction error signal useful for control and subsequent 46 

learning14–17. However, this information was mostly absent in the spiking activity recorded in monkeys9. The 47 

broader spatial coverage offered by fMRI allowed us to assess how sensory expectations are represented 48 

and then combined with incoming perturbations across cortical motor regions, including those not reached 49 

by our previous electrophysiological recordings.  50 

Importantly, the blood-oxygen-level-dependent (BOLD) signal mostly reflects the synaptic input to neural 51 

populations18–20 and therefore provides a complementary measure to spiking activity. Accordingly, to 52 

achieve a meaningful comparison with our previous electrophysiological recordings9, we corroborated our 53 

fMRI results in humans by assessing the local field potentials (LFPs; also a measure of synaptic input21) 54 

recorded simultaneously with spiking activity in our non-human primates dataset22. 55 

Results 56 

Sensory expectations bias responses to mechanical perturbations in a 57 

finger perturbation task  58 

To adapt our previous probabilistic perturbation paradigm9 for fMRI, we chose a task in which human 59 

participants (Experiment 1, N=14; Experiment 2, N=10) countered sudden mechanical perturbations (~3.5N) 60 

to their right index or ring finger (Fig. 1a). Compared to elbow perturbations, finger perturbations are easier 61 

to deliver without causing motion artifacts in fMRI data. More importantly, at the relatively low spatial 62 

resolution of fMRI, finger representations are more spatially distinct than movement directions23, enabling a 63 

clearer differentiation of the neural activity patterns associated with the two perturbations. 64 

Each trial began with the presentation of a visual cue (preparation epoch) signalling the probability that 65 

either the index or ring finger would receive the perturbation. Following a variable delay of 1.5-2.5s, a 66 

perturbation randomly drawn from the cued probability was applied to one of the two fingers using a 67 

pneumatic piston. The participant had to respond as quickly as possible by pushing down the piston with the 68 

perturbed finger (execution epoch). 69 

The active force response began 16321ms after the perturbation and was modulated by the probability 70 

cue (Fig. 1b). Specifically, between 0.2-0.4s after the perturbation, the stimulated finger produced a larger 71 

force if cued with higher probability during preparation (Fig. 1c; index: F3,39=21.134, P<0.001; ring: 72 

F3,39=6.109, P=0.002). The response often began with the finger cued with higher probability even when the 73 

perturbation was applied to the other (e.g., 75:25% probability in favour of the index followed by ring 74 

perturbation), with participants switching to the perturbed finger only after sensory evidence had 75 

accumulated. The overall response can be described as a 2-dimensional trajectory defined by the index and 76 

ring finger force (Fig. 1d). Responding only with the perturbed finger produces a straight trajectory. Trials in 77 

which the perturbation was applied to the finger cued with lower probability showed a significantly larger 78 

mean deviation (see Methods) from the ideal straight trajectory compared to those in which the perturbation 79 

was applied to the high-probability finger (Fig. 1e; index: t13=2.743, P=0.008; ring: t13=3.200, P=0.003). 80 

Similar to what we recently reported for the arm9, these results show that rapid finger responses are 81 

generated by combining probabilistic information available before the perturbation with the incoming sensory 82 

input. 83 
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Figure 1. (a) Participants placed their right hand on a 5-finger keyboard. During preparation, a visual cue indicated the probability 

that either the index or ring finger would be perturbed. Participants were instructed to maintain the force on both fingers (indicated by 

red line cursors) within a 0.1-0.6N range as indicated by the hold area (grey rectangle). During execution, participants had to counter 

the perturbation applied to the index or ring finger by pushing back the pneumatic piston as quickly as possible. In the feedback 

epoch, participants received a score (-1, 0, +1, or +3) depending on their performance (see Methods). (b) Force response on all 5 

fingers for index and ring finger perturbations, depending on the cued probability. The initial bump reflects the mechanical 

perturbation applied to the index (left column) or ring (right column) finger. The black arrows mark the start of the active force 

responses. (c) Mean force responses between 0.2-0.4s (see dashed rectangles in b) from the perturbation. Error bars denote ±SEM 

across participants. (d) Mean force trajectories for index and ring finger perturbation between 0-0.5s from the perturbation. To 

assess corrections in finger selection, we calculated, in each trial, the mean deviation from the ideal straight force trajectory (dashed 

arrow). (e) The mean deviation was significantly larger when the stimulated finger was the one cued with lower probability. Black 

dots indicate individual participants. Asterisks denote statistical significance (*P<0.05, **P<0.01). 

Representation of expectation and uncertainty during preparation 84 

In Experiment 1, participants performed the task while being scanned with 7T fMRI. Because the 85 

haemodynamic response is slow, we included both go- and no-go trials in the design. During no-go trials, 86 

the cue was shown but no perturbation occurred, allowing us to estimate the BOLD response during 87 

preparation independent of execution. 88 
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BOLD activity aligned with cue presentation and averaged across participants within each region-of-89 

interest (ROI; see Fig. 2a) showed a clear separation between go and no-go trials (Fig. 2b). To characterise 90 

brain activation, we fitted a general linear model (GLM) with separate regressors for response preparation 91 

and execution (see Methods). During response preparation, we observed a significant BOLD activation 92 

relative to resting baseline in all ROI except S1 (Fig. 2c; Table 1, first row). 93 

 

Figure 2. (a) ROI as defined on the group 

inflated surface of the left hemisphere. Dotted 

lines indicate major sulci. (b) Average BOLD 

time series for each ROI for go and no-go trials, 

aligned to cue onset (continuous vertical line). 

The dashed vertical line marks 2.5s after cue 

onset, i.e., the longest jitter allowed for cue 

presentation. Error bars indicate ±SEM across 

participants. (c) Activation relative to resting 

baseline (i.e., average contrast estimates, a.u.) 

during preparation and execution in the left 

hemisphere. Results for the right hemisphere 

are shown in Supplementary Materials 1. 

Yet, univariate activation offers only a superficial view of the neural processes that occur in a brain 94 

region. In different conditions, activations and deactivations across voxels can yield similar regional 95 

averages, while converging to distinct neural states. We used representational similarity analysis (RSA)24–26 96 

to assess multi-voxel activity patterns and characterise the neural representation of the task in each ROI. 97 

We first evaluated whether the preparatory activity patterns differed significantly across the 5 probability 98 

cues. To this end, we calculated the cross-validated Mahalanobis (crossnobis) dissimilarities27 between the 99 

activity elicited by different probability cues in each ROI. In a region without cue representation, the average 100 

dissimilarity estimate should be zero. In contrast, all ROI showed above-chance encoding (Table 1, second 101 

row). 102 

We then asked how the probability cues were represented in each ROI. A-priori we hypothesized two 103 

possible representational geometries (Fig. 3a). The expectation representation encodes the upcoming 104 

perturbation (index vs. ring). Therefore, the neural activity patterns for the 100:0% should be maximally 105 

different from the 0:100% condition, with the other patterns being weighted averages of these extremes. 106 
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This corresponds to activity patterns that are linearly ordered according to the expected perturbation (Fig. 107 

3b, horizontal axis). In contrast, in the uncertainty representation (Fig. 3b, vertical axis) the neural activity 108 

patterns for 100:0% and 0:100% are identical (certain perturbation) but maximally different from the 50:50% 109 

condition (undetermined perturbation). 110 

 

Figure 3. Activity patterns during preparation. (a) Hypothesised RDMs of the expectation and uncertainty representations. (b) 

Representational geometry of an area with a mixture of expectation and uncertainty encoding. (c) Average crossnobis dissimilarities 

for each ROI. (d) Standardised weight of expectation and uncertainty in each ROI. The asterisks below the bars denote the 

statistical significance (*P<0.05, **P<0.01, ***P<0.001) of the log-Bayes factor against 0, indicating that removing the component 

significantly reduces the overall model performance (see Methods). Error bars indicate SEM across subjects. The horizontal bars 

denote significant weight differences between expectation and uncertainty. Black dots show individual participants. (e) Weight of 

expectation normalized by the sum of expectation and uncertainty in M1-S1 and premotor-parietal regions. (f) Weight of expectation 

and uncertainty component in a continuous searchlight analysis conducted on the surface of the left hemisphere. (g) Weight of 

expectation in the LFPs (upper and lower panels, pink lines) and spiking activity (lower panels, red lines) recorded from PMd and S1 

in our previous non-human primate dataset9, aligned to cue presentation (Cue) and perturbation onset (Pert). In the upper panels, 

pink contours denote time-frequency clusters where the log-Bayes factor for expectation was significantly higher than 0. (h) Average 

expectation weight in the grey-shaded time interval in panel g. Note that, for non-human primate data, black dots refer to individual 

recording sessions rather than different monkeys. 

Visual inspection of the representational dissimilarity matrices (RDMs; Fig. 3c) suggested that M1 and 111 

S1 reflect the expectation, whereas premotor and parietal areas are more similar to the uncertainty 112 

representation. We used pattern component modelling (PCM) to quantify these observations and express 113 

the information content in each region as a weighted combination of the expectation and uncertainty 114 

representations. Both representations contributed to preparatory activity patterns. Indeed, removing either 115 
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representation worsened the model performance, as indicated by significantly positive log-Bayes factor (see 116 

Methods) in most ROI for both expectation and uncertainty (Table 1, third and fourth rows). While this 117 

suggests that preparatory activity across cortical motor areas represents both expectation and uncertainty, 118 

the strength of the two representations varied markedly. 119 

In M1 and S1, the standardised weight of the expectation representation was significantly higher than for 120 

the uncertainty (Fig. 3d; M1, t₁₃=2.934, P=0.006; S1, t₁₃=4.056, P<0.001). By contrast, in premotor and 121 

parietal areas uncertainty was slightly stronger compared to the expectation representation, although this 122 

difference was not statistically reliable (all t13<1.108, P>0.144). To directly demonstrate the different 123 

information in the two groups of regions, we assessed the weight of the expectation relative to the summed 124 

weight for both representations (Fig. 3e). The proportional expectation weight was significantly larger in M1 125 

and S1 compared to premotor and parietal areas (t₁₃=5.188, P<0.001). The different weight of expectation 126 

and uncertainty in M1-S1 and premotor-parietal areas is also evident in a continuous searchlight analysis 127 

(Fig. 3f). 128 

Table 1. ROI-based statistics for preparation. T-values are one-sided t-tests against 0 with uncorrected P-values provided. For a 129 
family-wise error rate of 0.05, the region passes the Bonferroni correction for an uncorrected P-value<0.007.  130 

Statistics SMA PMd PMv M1 S1 SPLa SPLp 

Activity>rest 
t₁₃=3.050, 

P=0.005 

t₁₃=3.886, 

P=0.001 

t₁₃=3.535, 

P=0.002 

t₁₃=2.812, 

P=0.007 

t₁₃=0.726, 

P=0.240 

t₁₃=2.593, 

P=0.011 

t₁₃=1.895, 

P=0.040 

Encoding 
t13=3.501, 

P=0.002 

t13=4.598, 

P<0.001 

t13=5.381, 

P<0.001 

t13=4.900, 

P<0.001 

t13=7.019, 

P<0.001 

t13=4.419, 

P<0.001 

t13=6.070, 

P<0.001 

lo
g

-B
a

y
e

s
 

fa
c

to
r Expectation 

t₁₃=1.082, 

P=0.149 

t₁₃=3.697, 

P=0.001 

t₁₃=1.618, 

P=0.065 

t₁₃=2.447, 

P=0.015 

t₁₃=3.397, 

P=0.002 

t₁₃=3.035, 

P=0.004 

t₁₃=3.251, 

P=0.003 

Uncertainty 
t₁₃=1.570, 

P=0.070 

t₁₃=2.108, 

P=0.027 

t₁₃=2.124, 

P=0.027 

t₁₃=1.421, 

P=0.089 

t₁₃=2.165, 

P=0.025 

t₁₃=1.675, 

P=0.059 

t₁₃=2.985, 

P=0.005 

Information about expectation reaches S1 as synaptic input 131 

In contrast to our current fMRI results, our previous findings in non-human primates did not show a strong 132 

expectation signal in S19. To confirm this, we re-visited our electrophysiological recordings from monkeys 133 

performing the arm perturbation task22 and fitted the relative weight of expectation and uncertainty to the 134 

spiking activity across cortical motor regions (see Supplementary Materials 3 for results about uncertainty). 135 

Unlike in PMd (and M1, see Fig. S3a), the expectation representation was nearly absent in S1 (red line in 136 

Fig. 3g, lower panel). 137 

While this discrepancy could be due to differences between paradigms or species, it could also depend 138 

on the physiological underpinnings of the different recording modalities. Spiking activity reflects the neuronal 139 

output, whereas the BOLD signal is more influenced by the synaptic input to neural populations18,19. To test 140 

the idea that expectations are represented in the synaptic input to S1 without influencing the spiking activity,  141 

we fitted the relative weight of expectation and uncertainty to the LFPs recorded simultaneously with spiking 142 

activity in our previous electrophysiological dataset22 and reflecting synchronized synaptic activity21 (see 143 

Supplementary Materials 2 for power modulations across frequency bands). We found that, in the LFPs 144 

recorded from both PMd and S1, expectations were significantly represented (P<0.05; cluster-based 145 

permutations) in a frequency band from 10-20Hz (i.e., low beta-band; Fig. 3g; see Supplementary Materials 146 

3 for results about uncertainty). In these areas, the expectation weight in the LFPs and spiking activity 147 

showed a significant interaction between recording modality and ROI (Fig. 3h; F1,48=25.721, P<0.001). Thus, 148 

a parsimonious explanation for the apparent discrepancy between fMRI and electrophysiological findings is 149 
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that the information about expectations reaches S1 as synaptic input but does not influence the neuronal 150 

spiking.  151 

Expectations pre-activate the representation of the future sensory input 152 

We then asked how the expectation signal is related to the activity patterns elicited by incoming sensory 153 

information. At one extreme, expectations may simply pre-activate the sensory representation of the most 154 

likely finger. Alternatively, the activity that generates the expectation signal could be orthogonal to the actual 155 

sensory input in voxel space.  156 

To test this, we calculated the difference between the activity patterns in M1 and S1 for index (100:0% 157 

and 75:25%) and ring finger (0:100% and 25:75%) expectation during preparation, as well as between the 158 

activity patterns for index and ring perturbation during execution. If expectations and sensory input activate 159 

the same cortical representation, preparatory activity would be a scaled version of execution; consequently, 160 

the difference between the activity patterns for index and ring expectation during preparation should be 161 

perfectly correlated with the difference between index and ring perturbation during execution (i.e., 162 

correlation=1). This hypothesis is impossible to test using Pearson’s correlation, because measurement 163 

noise reduces the correlation estimates to lower than 1 even if the true underlying patterns are perfectly 164 

correspondent. For this reason, we used PCM to obtain maximum-likelihood correlation estimates (MLE) 165 

unbiased by measurement noise (see Methods).  166 

In M1 and S1, the unbiased correlation estimates were positive but lower than 1 (Fig. 4; M1, MLE=0.633, 167 

95% CI [0.516, 0.713]; S1, MLE=0.611, 95% CI [0.468, 0.728]). Therefore, the expectation of a perturbation 168 

on a specific finger pre-activates the voxels that also receive the incoming sensory information caused by 169 

the perturbation. At the same time, a correlation of ~0.6 implies that roughly two thirds of execution variance 170 

is not captured by preparatory activity, suggesting that in these two epochs cortical activity explores partly 171 

different subspaces, consistent with well-established previous findings28,29. 172 

 

Figure 4. Maximum-likelihood correlation estimates between activity for expectation and 

sensory input. The correlation estimates for each participant are plotted against the 

functional signal-to-noise ratio (fSNR; see Methods). The dashed red line corresponds to 

the group correlation estimate. The shaded grey area denotes the 95% central CI 

established by participant-wise bootstrap. 

The expectation representation is not caused by overt motor output during 173 

preparation 174 

While the expectation representation in M1 and S1 was strong, we needed to rule out that it was not driven 175 

by subtle finger pre-activation. To discourage unwanted modulation of finger force before perturbation onset, 176 

we required that participants kept the two cursors indicating the force produced by the index and ring finger 177 

in a range between 0.1-0.6N (see Fig. 1a). Participants complied well with this instruction, and the force 178 

difference between the cued and non-cued fingers before the perturbation was minimal (0.0500.025N). 179 
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However, crossnobis dissimilarities between the force patterns produced by the 5 fingers during preparation 180 

suggested that sometimes this subtle finger pre-activation reflected the cued probability (Fig. 5a). 181 

 

Figure 5. (a) Crossnobis dissimilarities 

between force patterns during response 

preparation. Note that the dissimilarities 

closely reflect the expectation model in Fig. 

3a. (b) Linear fit between average crossnobis 

dissimilarity observed in force and in BOLD 

activity patterns during preparation. The black 

dots denote individual participants. The 

shaded region represents the 95% confidence 

interval (CI) for the regression line. 

To test whether these pre-activation patterns could explain the expectation representation in M1 or S1, 182 

we performed a linear regression analysis between the average crossnobis dissimilarity observed in force 183 

(see Fig. 5a) and in M1 and S1 activity patterns (see Fig. 3b) during preparation for each participant. We 184 

found no systematic relationship between these two variables. Most importantly, the intercept of the 185 

regression (i.e., our estimate of the neural difference for participants that did not show any expectation-186 

driven pre-activation) was significantly larger than 0 both for M1 and S1 (Fig. 5b; M1, intercept=0.030, 187 

P=0.001; S1, intercept=0.040, P<0.001). Therefore, the expectation representation during preparation 188 

genuinely reflected probabilistic predictions, rather than pre-activation of the finger cued with higher 189 

probability. 190 

Representation of sensory input and surprise during execution 191 

The mechanical perturbation applied to the fingertip and the ensuing participant’s response elicited a strong 192 

increase in the BOLD signal across cortical motor areas (see Fig. 2b,c). To examine the representational 193 

geometry during execution, we computed the crossnobis dissimilarities between activity patterns elicited by 194 

index or ring finger stimulation. For each finger, we also split the data by the cued probability. We 195 

hypothesised three possible representational geometries for execution activity (Fig. 6a). First, execution 196 

activity may only reflect the sensory input (i.e., the stimulated finger). Second, the expectation 197 

representation identified in preparatory activity may be sustained into the execution epoch independently of 198 

the sensory input representation (see Methods). Finally, the brain may represent how surprising the 199 

perturbation was relative to the expectation, i.e., a representation of the absolute prediction error between 200 

expectations and sensory input. Using PCM, we estimated the relative weights for the sensory input, 201 

expectation and surprise. 202 

Table 2. ROI-based statistics for execution. See Table 1 for statistical tests and conventions. 203 

Statistics SMA PMd PMv M1 S1 SPLa SPLp 

Encoding 
t13=3.741, 

P=0.002 

t13=4.633, 

P<0.001 

t13=4.872, 

P<0.001 

t13=4.856, 

P<0.001 

t13=4.091, 

P=0.001 

t13=4.644, 

P<0.001 

t13=5.413, 

P<0.001 

lo
g

-B
a

y
e

s
 f

a
c

to
r 

Sensory input 
t₁₃=-0.437, 

P=0.665 

t₁₃=2.812, 

P=0.007 

t₁₃=1.346, 

P=0.101 

t₁₃=3.751, 

P=0.001 

t₁₃=4.937, 

P<0.001 

t₁₃=2.111, 

P=0.027 

t₁₃=-0.751, 

P=0.767 

Expectation 
t₁₃≪0,  

P=1.000 

t₁₃=-4.487, 

P=1.000 

t₁₃≪0,  

P=1.000 

t₁₃=-0.860, 

P=0.797 

t₁₃=2.429, 

P=0.015 

t₁₃=-1.262, 

P=0.885 

t₁₃≪0,  

P=1.000 

Surprise 
t₁₃=3.482, 

P=0.002 

t₁₃=4.817, 

P<0.001 

t₁₃=3.224, 

P=0.003 

t₁₃=2.415, 

P=0.016 

t₁₃=2.906, 

P=0.006 

t₁₃=3.695, 

P=0.001 

t₁₃=2.692, 

P=0.009 
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The empirical RDMs suggested a strong representation of the sensory input, especially in M1 and S1 204 

(Fig. 6b). Indeed, the log-Bayes factor (see Methods) for sensory input was significantly positive in PMd, 205 

M1, S1 and SPLa (Table 2, second row). Furthermore, all ROIs showed a significant representation of 206 

surprise (Table 2, fourth row). In contrast, no expectation representation independent of the sensory input 207 

was found during the execution period in any ROI except S1 (Table 2, third row). 208 

 

Figure 6. (a) Hypothesised RDMs and corresponding representational geometries for response execution. (b) Crossnobis 

dissimilarity during response execution. Note that the representational geometry in M1 and S1, beside a strong effect of the 

stimulated finger, also reflects the negative correlation model in Fig. 7c,d. For comparison, see EMG activity in the LLR and Vol time 

windows in Fig. 7e, which instead reflects the positive correlation model. (c) Standardised representation weight of sensory input, 

expectation and surprise within each ROI. (d) Relative weight of sensory input vs. sensory input+surprise in primary sensorimotor 

and premotor-parietal regions. The asterisks below the bars denote that the log-Bayes factor of the corresponding representation 

was significantly larger than 0 (*P<0.05, **P<0.01, ***P<0.001). The horizontal bar with asterisks denotes the significant difference 

between the two groups of ROI. (e) Standardised representation weight of sensory input and surprise projected on the inflated 

surface of the left hemisphere. Black dots denote individual participants. 

Sensory input and surprise representations also showed different strength across ROI. The sensory 209 

input was prominent in M1 and S1, with a significantly larger weight than surprise (Fig. 6c; M1, t₁₃=3.422, 210 

P=0.002; S1, t₁₃=3.347, P=0.003). On the other hand, the surprise representation was significantly stronger 211 

than the sensory input in most premotor and parietal areas (SMA, t₁₃=4.816, P<0.001; PMv, t₁₃=1.819, 212 

P=0.046; SPLa, t₁₃=3.034, P=0.010; SPLp, t₁₃=4.872, P<0.001). The proportion of sensory input weight 213 
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relative to the summed weight of sensory input and surprise was significantly larger in M1-S1 compared to 214 

premotor-parietal areas (Fig. 6d; t₁₃=12.162, P<0.001), providing direct support to the distinct representation 215 

of these two features across different ROI. The differential distribution of sensory input and surprise 216 

representations can also be seen in a continuous searchlight analysis (Fig. 6e). 217 

Integration of expectation and sensory input across motor hierarchy 218 

While the expectation was not represented during execution independently of the perturbation, the 219 

modulation of the force response in different conditions (see Fig. 1b,c) suggests that participants integrated 220 

the expectations with the incoming sensory information. How does this integration occur? One possibility is 221 

that execution activity results from the weighted sum of expectation and sensory input, in a Bayesian-like 222 

additive process. In this case, a high probability cued on the index finger would make response patterns 223 

more index-like, and vice versa for the ring finger. Accordingly, the dissimilarity between execution activity 224 

patterns would be larger between conditions in which expectations and sensory input are congruent and 225 

smaller between conditions in which they are incongruent (Fig. 7a); that is, the neural dimensions 226 

representing the expectations and the sensory input would be positively correlated (Fig. 7b). In addition, the 227 

brain could calculate a weighted difference between expectations and sensory input. This would result in a 228 

signed prediction error signal, with larger dissimilarities between conditions in which expectation is opposite 229 

to the sensory input (Fig. 7c), yielding a negative correlation between the two neural dimensions (Fig. 7d).  230 

Participants’ behaviour (see Fig. 1b,c) suggested that, in the motor output, expectations and sensory 231 

input are combined through the additive process. To characterise the response in more detail, in Experiment 232 

2 we recorded the electromyographic (EMG) activity of hand muscles while participants performed the task 233 

seated at a desk outside of the scanner. We then used PCM to obtain unbiased estimates of the correlation 234 

between expectation and sensory input in EMG activity elicited after the perturbation (see Methods). There 235 

was no clear modulation in a 100ms time window before the perturbation (Fig. 7e,f; no reliable fSNR, see 236 

Methods), nor in the short-latency reflex (SLR; 25-50ms from perturbation; MLE=-0.036, 95% CI [-1.000, 237 

0.719]). This is expected because SLRs are entirely mediated by a spinal circuit30 and typically show limited 238 

modulation based on contextual influences31,32. On the other hand, we found a positive correlation between 239 

expectation and sensory input in the long-latency reflex (LLR; 50-100ms; MLE=0.646, 95% CI [0.370, 240 

0.850]) and into the voluntary response (Vol; 100-500ms; MLE=0.774, 95% CI [0.673, 0.896]), consistent 241 

with the notion these response components receive cortical contributions via the transcortical feedback33 242 

loop and can therefore be subject to more sophisticated modulations34. 243 

The comparison of the estimated crossnobis dissimilarities in EMG and cortical activity in M1 and S1 244 

suggested that expectations and sensory input are combined through distinct processes across different 245 

levels of the motor system (see Fig. 6b and 7e). To confirm this observation, we obtained unbiased 246 

estimates of the correlation between expectation and sensory input also for the neural activity patterns in M1 247 

and S1 during execution. In contrast to the EMG patterns, execution activity in M1 and S1 exhibited a 248 

negative correlation between expectation and sensory input (Fig. 7g M1, MLE=-0.823, 95% CI [-1.000, -249 

0.685]; S1, MLE=-0.613, 95% CI [-0.933, -0.536]). Therefore, the BOLD activity in M1 and S1 does not 250 

reflect the muscular output but a signed prediction error signal between expected and actual sensory input.  251 

We again leveraged our electrophysiological dataset in non-human primates22 to determine whether the 252 

signed prediction error signal in M1 and S1 spreads to spiking activity or is confined to the synaptic input. 253 

The spiking activity of neurons in M1 and S1 showed a positive correlation between expectation and 254 

perturbation direction (Fig. 7i; MLE=0.407, 95% CI [0.280, 0.503]) from 0.04-0.24s after the perturbation, 255 

similar to EMG activity in the human dataset, and consistent with the additive integration process. In the 256 

same time window, the LFPs showed a negative correlation (Fig. 7h) spanning the 13-25Hz (i.e., beta-band; 257 
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MLE =-0.763, 95% CI [-1.000, -0.359]) and 25-100Hz (i.e., gamma-band; MLE=-0.947, 95% CI [-1.000, -258 

0.658]) frequency bands.  259 

Together, these findings indicate that the synaptic activity in M1 and S1, both in monkeys and humans, 260 

reflects the signed prediction error between the expected and the actual perturbation. In contrast, the 261 

spiking activity in both areas corresponds to a signal that additively combines expectations and perturbation 262 

and can be used to drive the muscles. 263 

 

Figure 7. (a-d) Hypothesised RDMs for positive (a) and 

negative (c) correlation between expectation and sensory 

input and corresponding representational geometries (b,d). 

(e) Average crossnobis dissimilarities between EMG 

patterns across participants. (f-i) Maximum-likelihood 

correlation estimates between expectation and sensory 

input in (f) EMG activity, (g) neural activity patterns (i.e., 

beta coefficients) from human participants, and (h) LFPs 

and (i) spiking activity in M1-S1 in non-human primates. 

The black dots indicate individual participants in panels f 

and g, and different recording sessions in panels h and i.   

To summarise our findings in humans, we projected the BOLD activity patterns from each condition 264 

across preparation and execution onto the dimensions in voxel space that explained most variance across 265 

conditions. The first principal component (PC1) reflected the main difference between preparation and 266 

execution. Along PC2, the preparatory activity patterns from M1 and S1 (Fig. 8a, magenta-cyan gradient 267 

dots) were linearly ordered according to the expected finger (see Fig. 3c). These low-dimensional 268 

projections also reveal the positive correlation between preparatory and execution activity (see Fig. 4): 269 

Expecting a perturbation on the index finger (magenta, 100:0%) pushed preparatory activity patterns to the 270 
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left, the same direction as the later index-finger perturbation. Both preparing (cyan, 0:100%) and responding 271 

to a ring-finger perturbation pushed the neural activity patterns in the opposite direction.  272 

After the perturbation, the neural activity patterns were more index- or ring-like when the finger was cued 273 

with lower probability (Fig. 8a, magenta and cyan dots and arrows), consistent with the negative correlation 274 

between expectation and sensory input in the BOLD signal from M1 and S1 (see Fig. 7g). In contrast, EMG 275 

trajectories projected onto the first two PCs show an opposite geometry (Fig. 8b). Consistent with the 276 

positive correlation between expectation and sensory input (Fig. 7f), the EMG patterns elicited by 277 

perturbations applied to the finger cued with higher probability were further apart from each other (Fig. 8b, 278 

dark trajectories), compared to those elicited by perturbations to the finger cued with lower probability (light 279 

trajectories). 280 

 

Figure 8. (a) Projections of M1 and S1 BOLD activity patterns during preparation and execution onto the first two principal 

components. The dots along the magenta-cyan gradient correspond to the five probability cues. The magenta and cyan dots reflect 

the activity patterns for index and ring perturbation, respectively. The arrows denote the transition from preparation to execution. (b) 

Trajectories of average EMG patterns projected onto the first two principal components (PCs). (c) Schematic representation of the 

integration of expectation and sensory input in M1 spiking activity. During preparation, neural population activity reflects the 

expectations about the upcoming perturbations (see Fig. S3a). During execution, the expectation is combined with the incoming 

sensory input through a simple additive mechanism (see Fig. 7e). Additionally, M1 receives a prediction error signal that may push 

the execution activity towards a state corresponding to the actual perturbation (horizontal magenta and cyan arrows). 

Discussion 281 

Our fMRI results in humans demonstrate that neural activity patterns in PMd and M1 scale linearly with 282 

sensory expectations about upcoming finger perturbations (Fig. 8c, preparation epoch). These results are 283 

consistent with our recent findings in non-human primates showing that spiking activity in PMd and M1 284 

linearly represents expectations about upcoming elbow perturbations9. In the fMRI data, we found a similar 285 

expectation representation in S1, which was absent in the spiking activity recorded in the monkeys. This 286 

discrepancy likely occurs because the BOLD signal is more related to the synaptic input to neural 287 

populations and less to spiking activity itself18,19. Indeed, the LFPs recorded from non-human primates also 288 

showed a strong expectation signal in S1. Together, these results suggest that both M1 and S1 receive 289 

information about expectations in their synaptic input. Yet, unlike in M1, in S1 this input information does not 290 

influence the local spiking activity. This is consistent with the notion that the spiking of S1 neurons is tightly 291 

linked to the actual sensory input35, without an expansive representation of other latent dimensions as in 292 

M128,29,36. Interestingly, previous studies have shown similar expectation signals in the BOLD signal 293 

recorded from S1 during the preparation of self-initiated movements37–40. This suggests that the expectation 294 
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signal elicited by probabilistic information taps into a more general mechanism that injects information about 295 

an upcoming movement in the synaptic input to S1 before its onset.  296 

Whether this information serves a specific function remains an open question. It is possible that this 297 

expectation signal could modulate or improve subsequent sensory processing in S141. On the other hand, 298 

our previous work shows that S1 spiking activity is not modulated by expectations during execution (different 299 

from M1)9. Therefore, it remains possible that the expectation signal in the synaptic input to S1 is 300 

epiphenomenal, and reflects neural processes in other motor regions (e.g., M1, PMd)42,43.  301 

In both M1 and S1, the neural activity patterns during preparation and execution were positively 302 

correlated, which indicates that the neural populations pre-activated during preparation are those that 303 

receive sensory information from the finger cued with higher probability (Fig. 8c). Once the perturbation 304 

began, the expectation was combined additively with the incoming sensory input. In the finger task, this was 305 

visible from the stronger force response when the perturbation was applied to the finger cued with higher 306 

probability. The same finger dominated the initial force response even when the perturbation violated the 307 

expectations. This is consistent with our previous finding that feedback responses are initially triggered by 308 

an unspecific signal that marks the occurrence of the perturbation, without specifying on which finger (or in 309 

which direction) it is applied9. In the presence of the pre-activation of the most likely finger, this unspecific 310 

signal drives the initial feedback response depending on the expectations. In line with this idea, the spiking 311 

activity of M1 neurons recorded in monkeys, as well as the initial EMG response in human participants, 312 

reflected a weighted sum of expectation and sensory input. 313 

In contrast, the synaptic input to M1 and S1, as indexed by BOLD or LFPs, reflected the signed 314 

prediction error (i.e., the difference) between expectation and sensory input. This is surprising because, 315 

from a control perspective, the nervous system would not need to compute a prediction error. The weighted 316 

sum of expectation and sensory input would be sufficient to guide feedback responses and can be 317 

computed without the explicit representation of their difference. In this scenario, expectation and sensory 318 

input should be positively correlated both in the spiking activity and in the synaptic input. In contrast, the 319 

correlation was negative in both BOLD signal and LFPs. 320 

There are two potential, mutually non-exclusive uses for this signed prediction error signal. First, the 321 

mismatch between expectations and perturbation could be added to the response, driving the system 322 

toward the correct response more rapidly than the sensory input alone (Fig. 8c, horizontal magenta and 323 

cyan arrows). This is consistent with predictive coding theories of motor control, which propose that motor 324 

commands are generated based on the difference between expectations and incoming sensory 325 

information14–16,44. Second, the signed prediction error could be used for updating the expectations for 326 

subsequent trials45. This updating signal could be weighted by the precision of the expectations, reflected in 327 

the uncertainty representation we observed in premotor and parietal regions.  328 

Where could the signed prediction error be computed? The absence of prediction error signals in the 329 

spiking activity of M1 and S1 makes it unlikely that this subtractive operation is performed locally. More likely 330 

candidates are premotor and parietal regions. These regions receive information about both expectations 331 

and sensory input, although not as strong as M1 and S1. The fMRI data show that this information is 332 

combined to calculate the unsigned prediction error, i.e., the surprise representation. Assuming independent 333 

and spatially intermingled neural populations encoding the signed prediction error separately for each finger, 334 

pooling their activity in the BOLD signal would rectify the signal and produce a response that reflects only 335 

the magnitude of the mismatch. At the same time, the original, unrectified prediction error signal transmitted 336 

to M1 and S1 could contribute to the representational geometry we found in the synaptic input to these 337 

regions. 338 
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In conclusion, we show that the synaptic input to M1 and S1 is similarly modulated in humans and 339 

monkeys responding to sudden mechanical perturbations applied to the fingers or the arm, respectively. 340 

These results provide new insights into the neural machinery that governs rapid feedback responses. 341 

Expectations are not only represented in the expansive latent dimensions of M128,29 without causing overt 342 

muscle activity9, but are also transmitted as synaptic input to S1. As perturbations occur, feedback 343 

responses may not only benefit from the additive combination of this expectation signal with the incoming 344 

sensory information but also be further refined by the prediction error signal acting as a corrective drive in 345 

the synaptic input to M1.  346 

Methods 347 

Participants 348 

We recruited 14 participants for Experiment 1 (6 females; age 18-34 years, mean 21.35 years, SD 3.77 349 

years) and 10 participants for Experiment 2 (2 females; age 21-32 years, mean 25.70 years, SD 4.16 350 

years). All participants were right-handed and did not report any neurological condition. The experimental 351 

procedures were approved by the Research Ethics Committee at Western University (HSREB 107061 for 352 

Experiment 1 and HSREB 108479 for Experiment 2). Participants provided written informed consent and 353 

were compensated for their participation.  354 

Apparatus 355 

We used a custom-made MRI-compatible keyboard device to deliver mechanical perturbations 356 

independently to the right index or ring fingertip and record the force response generated by the stimulated 357 

finger (Fig. 1a). The keys were equipped with force transducers that measured the isometric force 358 

generated by each finger (Honeywell FS series; dynamic range 0–16N; sampling frequency 500Hz). The 359 

fingers were comfortably restrained by a padded clamp adjusted to each participant’s hand size. The 360 

mechanical perturbation (~3.5N) was delivered using pneumatic pistons (diameter 3mm) embedded 361 

underneath each key and operated by compressed air (~70psi). 362 

Task 363 

We instructed participants to counter the finger perturbation as quickly as possible. At the beginning of each 364 

trial, a probability cue consisting of two vertical bars was shown on a computer screen, indicating the 365 

probability that either index or ring finger would receive the perturbation (Fig. 1a). The probabilities were 366 

0:100%, 25:75%, 50:50%, 75:25%, or 100:0% (index:ring) and were shown for 1.5–2.5s. During this 367 

preparation epoch participants received continuous force feedback from two horizontal cursors projected on 368 

the screen. The cursors moved upward when the corresponding key was pressed. To limit unwanted 369 

anticipatory finger presses, we asked participants to keep both cursors within a force range between 0.1-370 

0.6N, symbolized by a grey rectangular hold area (Fig. 1a), while the probability cue was on the screen.  371 

In Experiment 1, we used both go and no-go trials, while Experiment 2 included go trials only. In go 372 

trials, the probability cue disappeared at the end of the preparation epoch. Then, the piston underneath one 373 

of the two fingers was activated, applying an upward force of ~3.5N for 3s (i.e., response execution epoch). 374 

The padded clamp above the finger limited the upward movement of the finger to less than 5mm.  375 

The stimulated finger was randomly drawn from the cued probability distribution. Participants were 376 

instructed to respond as quickly as possible by pressing the piston down until it was deactivated. In no-go 377 

trials, the probability cue remained visible for 5.5s (i.e., the longest jitter for response preparation, 2.5s, plus 378 

the equivalent of execution duration in go-trials, 3s). 379 
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The force feedback was frozen at perturbation onset (go trials) or after the probability cue was presented 380 

for 2.5s (no-go trials). At the end of the trial, both cursors showed the average force exerted by each finger 381 

during the execution phase. This delayed feedback helped participants adjust the amount of force applied in 382 

response to the perturbation. In go trials, the cursor of the stimulated finger should re-appear between two 383 

horizontal lines displayed on the screen, corresponding to a force range of 3.5–8.5 N; the cursor of the non-384 

stimulated finger should remain within the grey hold area. In the training session (see Procedures), 385 

participants learned to produce the correct force output within a few trials. In no-go trials, both cursors 386 

should re-appear within the grey hold area. 387 

In Experiment 1, participants also received a score based on how quickly they responded to the 388 

perturbation at the end of each trial. The displayed reaction time was the interval between perturbation 389 

onset and the time when the force generated by any of the two fingers exceeded 3.5N. The score was 390 

assigned using a staircase system: +3 points for reaction time below the 25 th percentile of the previous 391 

block, +1 between the 25th and 75th percentile, and 0 above the 75th percentile. The thresholds used in the 392 

first block were 0.25s and 0.50s for all participants. Participants received a negative score (-1) if they 393 

exerted >1N isometric force with any finger before receiving the perturbation. No scoring was used in 394 

Experiment 2. 395 

Procedures 396 

In Experiment 1, participants completed a single fMRI session, consisting of 10 functional runs of 30 trials 397 

each and 1 anatomical scan. We used an event-related design in which we randomly interleaved the five 398 

probability cues (0:100%, 25:75%, 50:50%, 75:25%, 100:0%, index:ring) and the three stimulation outcomes 399 

(index, ring, or no perturbation for no-go trials). Because we always drew the stimulated finger from the 400 

displayed probability distribution, the 100:0% and 0:100% cues were always followed (in go trials) by index 401 

and ring stimulation, respectively, resulting in 13 trial types overall. Each functional run included 6 trials for 402 

each probability cue. Of these, 4 were go trials and 2 no-go trials, totalling 30 trials per run. Three 12.5-s 403 

periods of rest were randomly included in each functional run to allow for the estimation of baseline 404 

activation. 405 

The day before the fMRI experiment, participants completed a short training session of 3-5 functional-406 

like runs to familiarise themselves with the task. The training session was carried out in a mock fMRI 407 

scanner to make participants accustomed with the posture in which they would perform the task in the fMRI 408 

session. 409 

Experiment 2 included go trials only, resulting in 8 trial types. Because the task was performed while 410 

sitting at a desk, it was not necessary for participants to get accustomed to an unfamiliar posture. The 411 

training session was therefore replaced by a brief familiarisation with the task and equipment before starting 412 

the experiment. 413 

EMG recordings 414 

In Experiment 2, we used an 11-channel surface EMG montage (Delsys, Trigno Research+ System, Trigno 415 

Duo Sensors) to record the activity of the extensor digitorum communis (EDC), extensor digiti minimi (EDM) 416 

and extensor indicis (EI), extensors of the thumb (extensor pollicis brevis and longus), the flexor digitorum 417 

superficialis (FDS), abductor pollicis brevis (APB), and abductor digiti minimi (ADM), and first dorsal 418 

interosseous (FDI). Raw EMG signals were acquired at 2148Hz. The skin was cleaned with alcohol before 419 

placing the electrodes for reducing impedance and improving the signal. We defined the ideal location of 420 

each electrode by asking the participant to perform slight isometric presses with each finger either in flexion 421 
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or extension direction. The electrode was placed where muscle activation was maximal, as indexed by 422 

palpation and through continuous monitoring of EMG activity. 423 

Behavioural analysis 424 

Visual inspection of the forces aligned to the perturbation suggested that the response scaled with the cued 425 

probabilistic predictions (see Fig. 1b). To quantify this observation, we averaged the isometric force 426 

produced by the stimulated finger (index or ring) in go trials between 0.2-0.4s after perturbation onset (see 427 

dashed rectangles in Fig. 1b) and tested the within-participant effect of the cued probability using a 428 

repeated-measures ANOVA. This analysis was performed separately for index and ring finger perturbation. 429 

We also hypothesised that, following the 25:75% or 75:25% probability cues, if the stimulated finger was 430 

cued with lower probability (25%), participants may initially respond with the finger cued with higher 431 

probability (75%) and then correct their response as sensory evidence accumulated. To quantify these 432 

corrections, we considered the two-dimensional force trajectory (𝑓𝑡) generated by the index and ring finger in 433 

each trial between 0–0.5s after perturbation onset and defined the ideal straight response direction (𝑐) as 434 

the vector connecting the extreme points of this trajectory. We then computed, at each time point, the 435 

Euclidean distance of the force vector from this ideal straight line and averaged this distance over time (see 436 

Fig. 1d): 437 

𝑚𝑒𝑎𝑛 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
1

𝑇
∑ ‖𝑓𝑡 −

𝑐𝑇𝑓𝑡

‖𝑐‖2 ∙ 𝑐‖

𝑇

𝑡=1

 (1) 438 

Where 𝑡 corresponds to the perturbation onset and 𝑇 = 𝑡 + 0.5𝑠. If the force response unfolded along the 439 

ideal straight line, the mean deviation would be 0. On the other hand, if the response was initiated with the 440 

non-stimulated finger and later corrected to the stimulated finger, the force trajectory would deviate from the 441 

ideal straight line, thus increasing the mean deviation. For each stimulated finger, we then performed a 442 

paired-sample t-test between conditions in which the perturbation was delivered on the finger cued with 443 

lower probability, and all the other conditions. 444 

EMG preprocessing 445 

The raw EMG signals were rectified, time-aligned to the perturbation and baseline-corrected by subtracting 446 

the mean EMG activity in the 0.1s preceding the perturbation. We defined four time windows relative to the 447 

perturbation, i.e., pre-perturbation (Pre, -0.1–0s), short-latency stretch reflex (SLR, 0.025–0.05s), long-448 

latency stretch reflex (LLR, 0.05–0.1s) and voluntary response (Vol, 0.1–0.5s). Multivariate analysis and 449 

model fitting (see “Multivariate dissimilarity analysis” below) were performed separately on the mean EMG 450 

activity within each time window in each participant and condition. 451 

Principal component analysis of EMG recordings 452 

For principal component analysis (PCA; see Fig. 8b), we first concatenated trials from each participant and 453 

then standardised the EMG timeseries of each channel to zero mean and unit variance (i.e., z-score 454 

normalisation). We then extracted the two orthogonal dimensions in EMG channel space capturing the 455 

largest variance. The resulting timeseries of the two principal components were stratified by condition to 456 

produce the low-dimensional EMG trajectories shown in Fig. 8b.  457 

Imaging data acquisition 458 

In Experiment 1, we used a 7T Siemens Magnetom scanner with a 32-channel head coil to acquire high-459 

field fMRI data. The anatomical T1-weighted scan was acquired at the end of the scanning session using a 460 
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Magnetization-Prepared Rapid Gradient Echo sequence (MPRAGE) with voxel size of 0.75 x 0.75 x 0.75mm 461 

isotropic (field of view = 208 x 157 x 110mm [A-P; R-L; F-H], encoding direction coronal). For functional 462 

scans (336 volumes) we used the following sequence parameters: GRAPPA 3, multiband acceleration 463 

factor 2, repetition time (TR) = 1.0s, echo time (TE) = 20ms, flip angle (FA) = 30°, slice number: 57, voxel 464 

size: 1.8 x 1.8 x 1.8mm isotropic. To estimate and correct for magnetic field inhomogeneities, we also 465 

acquired a gradient echo field map with the following parameters: transversal orientation, field of view: 210 x 466 

210 x 160mm, 64 slices, 2.5mm thickness, TR = 475ms, TE = 4.08ms, FA = 35°. 467 

Preprocessing of fMRI data and general linear model  468 

Preprocessing of functional images was performed with SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) and 469 

custom MATLAB code and involved the following steps: (1) correction of geometric distortions using field 470 

maps46; (2) rigid-body motion realignment of all images to the first image of the first functional run; and (3) 471 

co-registration to the anatomical scan. No smoothing or normalisation to a standard template was applied at 472 

this stage.  473 

We then analysed the pre-processed images using a general linear model (GLM)47, with separate 474 

regressors for response preparation and execution. Preparation was modelled with five regressors, one for 475 

each probability cue. Execution was modelled with eight regressors, capturing the activation elicited by 476 

index or ring perturbation (and the ensuing force response) following each cue. This resulted in 13 477 

regressors per run, plus an intercept. Each regressor consisted of a delta function convolved with a two-478 

gamma haemodynamic response function (HRF). We used a gridsearch approach to adjust the time to peak 479 

(4, 5, 6, 7, 8, and 9s) and the time to undershoot (10, 12, 14, 16, 18 and 20s) of the HRF and obtain the best 480 

fit to the BOLD timeseries. For preparation regressors, the delta function was placed at cue onset (in both 481 

go and no-go trials); for execution regressors, it was placed at perturbation onset (go trials only). Before 482 

GLM estimation, the BOLD time series were high-pass filtered with a standard cutoff frequency of 128s. The 483 

1st-level GLM analysis resulted in activation images consisting of the fitted beta coefficients across voxels 484 

for each of the 13 trial types, for each run and participant.  485 

Surface reconstruction and regions of interest definition 486 

We used Freesurfer48,49 to reconstruct the white–grey matter and pial surfaces from each participant’s 487 

anatomical image. Each individual surface was then inflated to a sphere and nonlinearly aligned to the 488 

Freesurfer average atlas by matching cortical folding patterns, using sulcal depth and surface curvature to 489 

guide the alignment of gyri and sulci. Next, we resampled both hemisphere of each participant into a 490 

symmetric fs32k template, which represented each hemisphere using 32k vertices. In this way, by selecting 491 

corresponding vertices in each participant, it is possible to compare similar cortical regions. 492 

We used a searchlight approach to assess the information represented across the entire cortical surface. 493 

For each vertex of the fs32k template, we defined a circular region of cortical grey matter (a “searchlight”) 494 

with a 20mm diameter. We then fitted the relative weight of each representation of interest (see “Pattern 495 

component modelling”) to the beta coefficients estimated in the 1st-level GLM within each searchlight. Then, 496 

we assigned the resulting weights to the centre vertex. 497 

We used a probabilistic cytoarchitectonic atlas projected onto the group surface49 to define eight 498 

anatomical ROI encompassing primary sensorimotor regions. M1 was defined by including all nodes 499 

belonging to Brodmann area 4 (BA4) within 2cm from the hand knob50. S1 was defined by selecting the 500 

nodes belonging to BA1, 2 and 3 within 2cm of the hand knob. We divided BA6 into a medial part 501 

(supplementary motor area, SMA), a lateral dorsal part (dorsal premotor cortex, PMd), and a ventral part 502 

(ventral premotor cortex, PMv). Finally, we separated the anterior and posterior parts of the superior parietal 503 
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lobule (SPLa and SPLp) approximately at the midpoint of the intraparietal sulcus. To avoid contamination of 504 

activity between different ROI across sulci, we excluded voxels with more than 10% of their volume lying in 505 

a neighbouring ROI.  506 

Univariate analysis of fMRI data 507 

To evaluate cortical activation during preparation and execution, we performed univariate contrasts of brain 508 

activity as compared to rest. We projected the individual beta coefficients to the group surface via the 509 

individual reconstructed surfaces. For visualization purposes (see Fig. 2c), we averaged the beta 510 

coefficients estimated across conditions, runs and participants. For statistical testing, we conducted a one-511 

sample t-test of the average activation values in each ROI against 0 across participants.  512 

Multivariate dissimilarity analysis 513 

We used representational similarity analysis (RSA)24–26 to assess task-related representations in neural 514 

(i.e., beta coefficients from the 1st-level GLM) and EMG activity patterns. Within each ROI or searchlight, we 515 

first performed a multivariate spatial pre-whitening on the neural activity patterns using the residuals from 516 

the 1st-level GLM: 517 

𝛽𝑝𝑟𝑒𝑤ℎ𝑖𝑡𝑒𝑛𝑒𝑑 = 𝛽Σ−
1
2 (2) 518 

Where 𝛽 is the N (conditions x runs) by P (voxels) matrix of the estimated beta coefficients and Σ is the P-519 

by-P noise covariance between voxels estimated from the residuals of the 1st-level GLM. The noise 520 

covariance Σ was regularised using the Ledoit-Wolf procedure51 to ensure invertibility. Because voxels often 521 

show different (and correlated) levels of noise, the weighting of activation patterns by the inverse noise 522 

covariance makes dissimilarity estimates more reliable27. 523 

We used a similar pre-whitening procedure for EMG responses in the Pre, SLR, LLR and Vol time 524 

windows. For each time window and acquisition run, we first calculated the residuals of the EMG pattern 525 

observed in each condition relative to the mean across all conditions. We then used the variance of the 526 

residuals (𝜎2(𝑤)) estimated separately for each channel to perform a univariate pre-whitening: 527 

𝐸𝑀𝐺𝑝𝑟𝑒𝑤ℎ𝑖𝑡𝑒𝑛𝑒𝑑
(𝑤)

=
𝐸𝑀𝐺 (𝑤)

√𝜎2(𝑤)
, 𝑤 ∈ {𝑃𝑟𝑒, 𝑆𝐿𝑅, 𝐿𝐿𝑅, 𝑉𝑜𝑙} (3) 528 

Where 𝐸𝑀𝐺(𝑤) is the N-(conditions x runs)-by-P (channels) matrix of the EMG activity in the 𝑤 time window. 529 

For both fMRI and EMG data, we then calculated the cross-validated squared Mahalanobis (crossnobis) 530 

dissimilarity 𝑑 between conditions 𝑖 and 𝑗 as follows: 531 

𝑑𝑖,𝑗 =
1

𝑀
∑(𝑥𝑖 − 𝑥𝑗)

𝑚

𝑇
(𝑥𝑖 − 𝑥𝑗)

~𝑚

𝑀

𝑚

 (4) 532 

Where 𝑀 is the number of runs, 𝑥𝑖 and 𝑥𝑗 are the pre-whitened (neural or EMG) activity patterns for 533 

conditions 𝑖 and 𝑗, either from run 𝑚 or averaged across all the other runs (~𝑚). Cross-validation makes the 534 

dissimilarity estimates unbiased by measurement noise27. Because measurement noise pulls activity 535 

patterns in random directions, without cross-validation the expected dissimilarity between two activity 536 

patterns would be always larger than 0, even when they are identical and only differ by their noise. With 537 

cross-validation, the expected dissimilarity between identical patterns is 0, which means that we could test 538 

the average dissimilarity against 0 using a one-sided t-test to determine whether activity patterns carried 539 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2026. ; https://doi.org/10.64898/2026.01.19.700321doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.19.700321
http://creativecommons.org/licenses/by/4.0/


 

 
 

19 

reliable information. Note that, especially when two patterns are very similar, cross-validated dissimilarity 540 

estimates can be negative24,25,52. 541 

Correlation between behavioural and BOLD dissimilarities 542 

To ensure that the expectation representation in M1 and S1 during response preparation was not driven by 543 

subtle finger pre-activation, we first calculated the crossnobis dissimilarities between the mean force 544 

patterns for each probability cue across the five fingers measured in the 1.5s time interval before the 545 

perturbation. Then, we performed a linear regression analysis between the mean force dissimilarity and the 546 

mean neural dissimilarity observed during preparation in the same participant. If the dissimilarities between 547 

neural activity patterns for different probability cues are solely driven by finger pre-activation, then the 548 

intercept of the regression should not be significantly larger than 0; that is, participants that did not show 549 

finger pre-activation should also not show any BOLD dissimilarity. To test this, we performed a one-sided t-550 

test of the intercept estimate against 0. 551 

Pattern component modelling 552 

We used Pattern component modelling (PCM)53, a complementary framework to RSA, to characterise the 553 

nature of the representational geometry in neural and muscle activity patterns. Rather than estimating and 554 

evaluating the dissimilarities between activity patterns, PCM is a probabilistic framework that evaluates the 555 

marginal likelihood that the observed activity patterns have a multivariate Gaussian distribution of mean 0 556 

and a covariance matrix 𝐺. Because we assumed a mean of 0, we did not subtract out the mean of each 557 

condition across voxels, thus 𝐺 is more accurately called the second moment matrix of the distribution. The 558 

second moment matrix can be directly translated to squared Euclidean distances (𝐷) through the equation: 559 

𝐷𝑖 ,𝑗 = 𝐺𝑖,𝑖 + 𝐺𝑗𝑗 − 2 ∗ 𝐺𝑖,𝑗  (5) 560 

Where 𝑖 and 𝑗 are two different conditions (e.g., two different probability cues or stimulated fingers in the 561 

current experimental design). This allows us to visualize the representational models as RDMs (see Fig. 3a 562 

and 5a), while still using the more powerful24 approach of PCM for model evaluation. Note that the squared 563 

Euclidean distance is mathematically equivalent to crossnobis dissimilarity when the activity patterns are 564 

pre-whitened27.  565 

Representational models for preparation  566 

For the preparation epoch we considered two different representations of the probability cue . The 567 

expectation representation predicted that the activity of each voxel scaled linearly with a feature vector (𝑓) 568 

corresponding to the difference in probability between index and ring:  569 

𝑓𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 = [−1, −0.5, 0, 0.5, 1] (6) 570 

The uncertainty representation predicted that the activity patterns scaled with the variance of a Bernoulli 571 

distribution, defined as: 572 

𝑓𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑝(1 − 𝑝) = [0, 0.1875, 0.25, 0.1875, 0] (7) 573 

Where 𝑝 is the probability of a certain outcome (e.g., index stimulation) and 1 − 𝑝 is the probability of the 574 

opposite outcome (e.g., ring stimulation).  575 

For each representational model, the predicted second moment matrix 𝐺 was defined as the outer 576 

product of 𝑓: 577 

𝐺 = 𝑓𝑓𝑇  (8) 578 
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For visualization, we then calculated the predicted dissimilarity matrices of each model from the 579 

corresponding second moment matrices according to Eq. 5 (see Fig. 3a and 5a).  580 

Representational models for execution 581 

For execution, we designed three different representational models that predicted the neural or EMG 582 

response in 8 conditions, including 4 different probability levels (i.e., 25% to 100%) for each finger. The 583 

sensory input representation predicted that the data simply based on the identity of the stimulated finger and 584 

was defined as: 585 

𝑓𝑖𝑛𝑝𝑢𝑡 = [−1, −1, −1, −1, 1, 1, 1, 1] (9) 586 

With -1 and 1 indicating index and ring finger, respectively.  587 

We also assessed the expectation representation, in which the activity of each voxel scaled with the 588 

difference between index and ring finger probability:  589 

𝑓𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 = [−0.5, 0, 0.5, 1, −1, −0.5, 0, 0.5] (10) 590 

The surprise representation predicted that the activity patterns scaled linearly with the Shannon surprise, 591 

defined as the negative log-probability of the observed event given the cue: 592 

𝑓𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 = −𝑙𝑜𝑔2(𝑝) (11) 593 

Where 𝑝 = [1, 0.75, 0.5, 0.25, 0.25, 0.5, 0.75, 1], i.e., the probability cued on the stimulated finger. Note that the 594 

Shannon surprise reflects the absolute prediction error between finger and cue.  595 

Model fitting and evaluation 596 

In PCM, the second moment matrix (𝐺) of the observed activity patterns is modelled as the linear 597 

combination of different representational models (𝐺ℎ): 598 

𝐺 = ∑ exp(𝜃ℎ) 𝐺ℎ

ℎ

 (12) 599 

Where exp (𝜃ℎ) is the weight parameter of the ℎ𝑡ℎ representational model, and 𝐺ℎ the predicted second 600 

moment matrix. Because weights cannot be negative, using the exponential allows for unconstrained 601 

optimisation of the model parameters. To make the weights comparable, we normalised the trace of the 602 

predicted second moment matrices for each 𝐺ℎ to 1. In this way, the weight can be used to estimate the 603 

amount of variance explained by each representation included in the model. Importantly, this approach 604 

relies on the assumption that each representation spans an independent neural dimension. Therefore, the 605 

weight of each representation reflects how strongly the corresponding information is encoded in a certain 606 

brain region independently from all other representations in the model. 607 

For the fMRI data, we fitted the relative weights of each representational model to the pre-whitened beta 608 

coefficients, separately for each task epoch (preparation and execution) and within each ROI or searchlight. 609 

We performed one-sided dependent-sample t-tests to compare the relative weight of different 610 

representations within the same ROI. Then, to directly compare the information encoded in different 611 

premotor-parietal vs. M1-S1, we averaged the weight of each representation within each ROI group and 612 

performed a one-sided dependent-sample t-test on the weight of a representation of interest (e.g., 613 

expectation in Fig. 3e and sensory input in Fig. 6d) relative to the sum of all representations of interest (e.g., 614 

expectation+uncertainty in Fig. 3e and sensory input+surprise in Fig. 6d). 615 

To assess the expectation (and uncertainty) representation in the LFPs and spiking activity recorded 616 

from non-human primates in PMd and S1, we aligned the recordings to cue presentation and perturbation 617 

onset and then fitted the relative weight of each representation at each time point (and frequency band, for 618 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2026. ; https://doi.org/10.64898/2026.01.19.700321doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.19.700321
http://creativecommons.org/licenses/by/4.0/


 

 
 

21 

the LFPs). Then, to assess whether the expectation encoding differed across each areas (i.e., PMd and S1) 619 

and recording modality (spiking activity and LFPs), we averaged the expectation weight over 0.64s (and 620 

between 10-20Hz for LFPs) after cue presentation (see grey-shaded time interval in Fig. 3g, lower panels) 621 

and performed a 2-by-2 repeated-measure ANOVA.  622 

To establish whether a predicted representation contributed significantly to explain activity, we first fitted 623 

all the possible combinations of the candidate representations (e.g., expectation alone, uncertainty alone 624 

and expectation+uncertainty). Then, we calculated the log-Bayes factor (𝐵𝐹𝐹) of each representation, 625 

defined as the difference between the marginal log-likelihoods of the activity patterns under the models that 626 

included the representation and those that did not: 627 

𝐵𝐹𝐹 = log ∑ 𝑝(𝑑𝑎𝑡𝑎|𝑀)

𝑀:𝐹=1

− log ∑ 𝑝(𝑑𝑎𝑡𝑎|𝑀) (13)

𝑀:𝐹=0

 628 

Where 𝐹 is the representation of interest (i.e., expectation, uncertainty, sensory input, or surprise) and 𝑀 is 629 

a model including a combination of representations; 𝐹 = 1 indicates that the representation of interest is 630 

included in 𝑀. The maximal likelihood of the observed activity under model 𝑀 is given by 𝑝(𝑑𝑎𝑡𝑎|𝑀) and 631 

was estimated using the Akaike Information Criterion (AIC), which corrects the maximal likelihoods for the 632 

model complexity54.  633 

For fMRI data, we tested the log-Bayes factor of each representational model against 0 using a one-634 

sample t-test across participants in each ROI. A positive log-Bayes factor indicates that the representational 635 

component helped to explain the activity patterns in the context of all the other components. 636 

For the LFPs and spiking activity, we used cluster-based permutations to establish the significance of 637 

the log-Bayes factor in the in different time (and frequency) bins, while controlling for multiple 638 

comparisons55. First, we calculated a one-sample t-statistic against 0 across sessions and defined clusters 639 

of contiguous significant time(-frequency) bins. We then generated a null distribution by randomly inverting 640 

the sign of the log-Bayes factor for a random subset of sessions and recomputing the t-statistic over 1,000 641 

permutations. In each permutation, we thresholded the t-values at the uncorrected p < 0.05 level and 642 

recorded the cluster of contiguous significant bins with the largest weighed size, defined as the number of 643 

bins in the cluster multiplied by the sum of the absolute t-values within the cluster. The observed clusters 644 

were considered significant if their weighted size exceeded the 95th percentile of the null distribution. 645 

Correlation model 646 

In Experiment 1, we used a PCM correlation model to achieve correlation estimates between neural activity 647 

patterns during response preparation and execution unbiased by measurement noise. First, in each run, we 648 

contrasted the neural activity patterns elicited during preparation by sensory expectation cued on the index 649 

(i.e., 100:0% and 75:25% probability cues) vs. ring (0:100% and 25:75%) finger. A similar contrast was 650 

obtained for the execution epoch between the activity elicited by sensory input to the index vs. ring finger. 651 

Then, we estimated the correlation between contrasts for preparation and execution. The correlation model 652 

uses the repeated measures of the two contrasts (𝑥 and 𝑦) across runs to estimate their signal variances 653 

(𝜎𝑥
2 and 𝜎𝑦

2) as well as the variance of the noise (𝜎𝜖
2). The predicted second moment matrix (𝐺̂) of the true 654 

activity pattern then is:  655 

𝐺̂ = [
𝜎𝑥

2 𝜌𝜎𝑥𝜎𝑦

𝜌𝜎𝑥𝜎𝑦 𝜎𝑦
2 ] (14) 656 

We derived the maximum-likelihood estimate for the correlation between the true activity patterns both for 657 

each individual participant and for the group (see black dots and dashed horizontal red line, respectively, in 658 
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Fig. 4 and 7f-i). To obtain confidence intervals for the group estimate, we conducted a bootstrap procedure, 659 

resampling the participants with replacement at each iteration. We performed 1000 iterations and calculated 660 

the 95% central confidence interval of the correlation estimate (see dashed grey areas in Fig. 4 and 7f-i).  661 

We used a similar approach to estimate the correlation between expectation and sensory input in BOLD, 662 

EMG, LFPs and spiking activity during execution. In this case, we calculated the contrasts between 663 

execution activity following the 75-25% vs. 25-75% probability cues and between index vs. ring finger (or 664 

flexion vs. extension, for LFPs and spiking activity in monkeys) perturbation. Then, we obtained maximum-665 

likelihood estimates of the correlation between the two contrasts using PCM. For the EMG data, we 666 

estimated the correlation using the pre-whitened (see Eq. 3) mean activity patterns in four separate time 667 

windows, corresponding to the 100ms before perturbation onset (Pre), 25-50ms after perturbation (SLR), 668 

50-100ms after perturbation (LLR) and 100-500ms after perturbation (Vol). For the same correlation in LFPs 669 

and spiking activity, we used the pre-whitened (as done for EMG, see Eq. 3) mean patterns across 670 

electrodes (LFPs) or units (spiking activity) between 40-240ms after the perturbation. For the LFPs, 671 

separate correlations were estimated in the alpha (8-13Hz), beta (13-25Hz) and gamma (25-100Hz) 672 

frequency bands. 673 

To diagnose the reliability of our correlation estimates, we plotted the correlation estimates against the 674 

estimated functional signal-to-noise ratio (fSNR) of the two contrasts, defined as: 675 

𝑓𝑆𝑁𝑅 =
√𝜎𝑥

2 ∗ 𝜎𝑦
2

𝜎𝜖
2  (15) 676 

At low fSNR, maximum-likelihood correlation estimates become unstable and may fall at the parameter 677 

bounds (i.e., correlation=1). For example, in the Pre epoch in EMG recordings (see Fig. 7f), the fSNR was 678 

close to 0 and the preparation-execution correlation estimate was -1 for the majority of the participants. This 679 

scenario flags the correlation estimate as unreliable. 680 

Low-dimensional projections of BOLD activity patterns 681 

We used a multidimensional scaling approach to obtain the low-dimensional projections of BOLD activity 682 

show in Fig. 8a. This corresponds to performing an eigen-decomposition of the second moment matrix of 683 

the observed activity patterns, yielding orthogonal dimensions in voxel space that capture most of the 684 

variance across conditions. In this way, the projection of the activity patterns onto the first two principal 685 

components preserves the dominant representational geometry of the second moment matrix and can be 686 

used for visualisation. 687 

Electrophysiological recordings in non-human primates 688 

The spiking data from the non-human primate electrophysiological datasets are publicly available22 and 689 

described in detail in a recently published paper9. In brief, monkeys countered mechanical perturbations 690 

delivered with a KINARM robot exoskeleton (BKIN Technologies)56 that could rotate the elbow either in 691 

flexion or extension direction. Before the perturbation, the monkeys received probabilistic information about 692 

the upcoming perturbation (0:100%, 25:75%, 50:50%, 75:25%, 100:0%, flexion:extension). 693 

Electrophysiological recordings were carried out using high-density Neuropixels probes (1.0 - 1 cm, 1.0 NHP 694 

- 1 cm, and 1.0 NHP - 4.5 cm), pre-processed using a custom pipeline 695 

(https://github.com/JonathanAMichaels/PixelProcessingPipeline), and spike sorted with Kilosort 2.057. The 696 

LFPs were read from the Neuropixels LF stream, which was recorded at 2,500Hz. We downsampled the 697 

initial 384 channels to a total of 32 channels and then performed a time-frequency analysis using the 698 
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FieldTrip toolbox58. We defined fifty frequencies of interest logarithmically (log10) spaced from 1 Hz to 400 699 

Hz. The time bins of interest were sampled at a resolution of 0.01 seconds. After the LFPs were demeaned 700 

and a bandpass filtered (1-400 Hz, 3rd order), we calculated the power spectrum in each time bin using the 701 

multi-taper convolution method with a Hanning taper. The time windows for the convolution were 702 

dynamically adjusted relative to the frequencies of interest to cover 5 cycles at each frequency. For the 703 

subsequent analysis, we pooled the recording sessions from both Monkeys (PMd, 17 sessions; M1, 9 704 

sessions; S1, 9 sessions) totalling ~35000 trials overall. 705 
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