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The neural basis of movement preparation has been extensively studied during self-
initiated actions, in which motor cortical activity during preparation shows a lawful

relationship to the parameters of the subsequent action*. However, movements
areregularly triggered or corrected on the basis of sensory inputs caused by
disturbances to the body. Since such disturbances are often predictable, and

since preparing for disturbances would make movements more prescise, we
hypothesized that expectations about sensory inputs also influence preparatory
activity in motor circuits. Here we show that when humans or monkeys are
probabilistically cued about the direction of future mechanical perturbations, they
incorporate sensory expectations into their movement preparation and improve
their corrective responses. Using high-density neural recordings, we establish
that sensory expectations are widespread across the brain, including the motor
cortical areas involved in preparing self-initiated actions. The geometry of these
preparatory signals in the neural population state is simple, and scales directly
with the probability of each perturbation direction. After perturbation onset,
acondition-independent signal shifts the neural state leading to rapid responses
thatinitially reflect sensory expectations. Using neural networks coupled to a
biomechanical model of the arm?, we show that this neural geometry emerges only
when sensory inputs signal that a perturbation has occurred, before resolving the
direction of the perturbation. Thus, just as preparatory activity sets the stage for
self-initiated movement, it also configures motor circuits to respond efficiently to

sensory inputs.

Humans and animals are often able to prepare amovementin advance
and such preparation generally makes movements more precise. The
neural basis of movement preparation and its relationship to movement
execution has frequently been studied with delayed action paradigms,
inwhich the nature of afuture movementis instructed butits execution
must wait until a subsequent go cue (reviewed in refs.1,2). During the
preparatory period, between the movement instruction and the go
cue, muscle activity remains unchanged but motor cortical activity
represents parameters of the future movement*™, predicts move-
ment variability”?and reaction time™ ¢, and s causally linked to motor
execution”'®, presumably by setting the initial state of the dynamical
system that ultimately produces movement* 2,

Although preparing specific movement parameters is an essential
aspect of self-initiated actions, movements are regularly triggered or
corrected on the basis of sensory inputs caused by disturbances to the
body or environment. Since such disturbances can oftenbe predicted,
and since preparing for potential disturbances would improve motor
performance, we hypothesized that sensory expectations should also

directly shape preparatory activity in motor cortical circuits. Such
ascheme s a key prediction of theories of biological motor control
based on optimal feedback control**? and would be consistent with
previousreports that motor cortical areas rapidly respond to sensory
inputs (reviewed inrefs. 24,25) in away that accounts for biomechani-
cal*® and task constraints” 2,

Here we show that when cued about the likely direction of future
mechanical perturbations, humans and macaque monkeys read-
ily incorporate expectations about the upcoming sensory input
into their movement preparation and that this preparation improves
their performance. We then demonstrate thatinformation about sen-
sory expectationsis robust and widespread in monkey motor circuits,
but not early sensory areas. The neural geometry of these signals is
simple, directly representing the probability of each perturbation
direction. Finally, we develop a normative model of the motor sys-
tem that shows how this neural geometry is beneficial for counter-
ing perturbations and how it relies on the timing of incoming sensory
signals.
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Reflexesreflect sensory expectations

To investigate whether expected sensory inputs shape preparatory
activity in motor cortical areas, we designed a task in which human
participants were given probabilistic information about how a future
mechanical perturbation would displace their arm. Participants (n = 20)
satin an exoskeleton robot and maintained the position of their hand
within asmall central target while countering a constant background
load (Fig. 1a and Methods). On each trial, they were randomly shown
one of five visual cues that explicitly informed them about the prob-
ability that their elbow joint would be flexed or extended by an upcom-
ing mechanical perturbation (Fig. 1b). After an unpredictable delay, a
perturbation drawn from the cued probability distribution was applied
to their elbow joint. Participants were instructed to respond to the
perturbation by moving their hand into a large goal target as quickly
and accurately as possible.

Participants were very good at the task (success rate: 85.7 + 6.3%;
mean +s.d.), andrarely initiated amovementincorrectly during catch
trials without perturbations (error rate: 5.0 + 3.5%). The probability
cues biased task performance in a graded manner, with participants
countering perturbations most effectively if the visual cue indicated
with 100% certainty that the particular perturbation direction would
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Fig.1|Long-latency stretchreflexes are sensitive to sensory expectations.
a, Human participants were seated in the KINARM exoskeleton robot, allowing
presentation of visual stimuli, tracking of the arm and application of mechanical
forcestothe shoulder and elbow. Image credit: Erika Woodrum, Erika Woodrum
Art, Ltd. b, Participants held their hand at asmall central target while resisting
abackgroundload and were shown a peripheral goal target. Onsingle trials
participants received one of five visual cues indicating the probability that the
upcoming mechanical perturbation would flex or extend their elbow joint and
thus push theirhandinto or out of the goal target. After a variable delay, a
perturbation drawn from the displayed probability distribution was applied
and participants had torespond to the perturbation by moving their hand into
thegoaltarget quickly and accurately. Note that the five visual cues ultimately
map onto eight experimental conditions because three of the visual cues (that
is,25%/75%,50%/50% and 75%/25%) lead to two possible perturbations. ¢, Mean
elbow kinematics across participants (n = 20) showed that participants
responded to the perturbationsinagraded manner, in which the speed with
which participants moved to the target depended on the cued probability of
each perturbation. Middle, the mean-subtracted elbow kinematics. Right, the
mean hand kinematics. d, Mean biceps muscle activity measured via surface
electromyography (EMG) as afunction of perturbation direction and probability
cue.Note that theinitial excitatory response to extension perturbationsin the
short-latency reflex (SLR) window is the same for all probability cues, but that
the subsequentexcitatory responseinthe long-latency reflex (LLR) and voluntary
windowsisscaled by the probability cues. a.u., arbitrary units. e, Mean muscle
responses were significantly modulated by probability cuesin the long-latency
reflex and voluntary windows (repeated-measures ANOVA, P< 0.001).

occur, withagraded response for lower-probability cues (Fig. 1c, left).
This effect was even more visible in the mean-subtracted elbow kin-
ematics (Fig.1c, middle). Thatis, elbow displacement decreased for the
same perturbation as the probability of that perturbation increased.
Statistical analysis showed areliable difference in elbow kinematics as
afunction of probability in the movement period (0-400 ms after per-
turbation onset; repeated-measures ANOVA, F(3,19) = 59.75, P<107°).

Itis unlikely that participants had been making binary guesses in
line with the most likely perturbation on individual trials, causing
the average to show a graded response, as the distribution of elbow
velocity inversion times following perturbation onset generally tended
towards slower responses as perturbations became less likely, showing
unimodal distributions (see Extended DataFig.1for individual partici-
pant distributions). Indeed, these distributions did not significantly
differ from a unimodal distribution for any participant or probability
(Hartigan’s dip test on extension conditions, all P> 0.13), although
we may not have the statistical power to fully exclude this possibility
inall participants.

We specifically chose mechanical perturbations that evoked stretch
reflexes because the various components of the stretch reflex involve
different neural circuits®. The short-latency component, measured as
muscle activity occurring 20-50 ms after muscle stretch, isgenerated
entirely by spinal circuits®. The long-latency component, measured as
muscle activity occurring 50-100 ms after muscle stretch, includes a
contribution from motor cortical areas via the transcortical feedback
pathway****. Thus, if motor cortical circuits are setinaccordance with
sensory expectations, long-latency stretch reflexes should be sensi-
tive to the probabilistic information about the direction of the future
mechanical perturbation. Indeed, previous studies using a similar
approach have shown that the long-latency stretchreflexis shaped by
many parameters that influence preparatory activity in motor cortical
areas in the context of self-initiated movements? %,

As expected, our mechanical perturbations evoked excitatory or
inhibitory stretchreflex responses starting around 20 ms after muscle
stretch, depending onwhether the perturbation lengthened or short-
ened the muscle (Fig. 1d and Extended Data Fig. 2). Notably, stretch
reflex responses were initially insensitive to probability information,
which emergedinagraded manner approximately 70 ms after muscle
stretch, withinthe long-latency epoch associated with the transcortical



feedback pathway (Fig. 1e). We found no reliable effect of probability
in the short-latency epoch (short-latency reflex, 20-50 ms after per-
turbation onset; repeated-measures ANOVA, F(3,19) =2.35, P=0.08).
By contrast, we did find a reliable effect of probability in both the
long-latency (long-latency reflex, 50-100 ms; F(3,19) = 7.55,P= 0.0002)
and voluntary (100-150 ms; F(3,19) =18.28, P< 0.0001) epochs. Note
that thismodulation did not reflect anticipatory modulation of muscle
activity prior to the perturbation®, as there was no reliable effect of
probability on muscle activity immediately prior to muscle stretch
(background, -200 to 0 ms; F(3,19) = 0.86, P= 0.46).

Together, these results show that participants prepare perturbation
responses on the basis of sensory expectations and suggest that this
process engages motor circuits viathe transcortical feedback pathway.

Sensory expectations shape neural activity

Our finding that long-latency stretch reflexes are sensitive to sensory
expectations strongly suggests motor corticalinvolvement but cannot
establishadirectlink toits preparatory state. To directly test whether
sensory expectations shape preparatory activity in motor cortical
areas, we trained two macaque monkeys in a similar version of the
task performed by human participants (Fig. 2a and Methods). In this
version, monkeys returned their hand to a single central target when
perturbations flexed or extended their elbow joint. Unlike human par-
ticipants, who were verbally informed about the probabilistic nature
ofthe cues and enacted the association immediately, monkeys learned
toassociate the visual cues with probabilities through experience over
several months.

After training, monkeys were very good at the task, completing a
large percentage of initiated trials correctly (monkey M: 89.1 + 4.1%,
monkey P: 93.2 +1.9%; mean + s.d. over sessions) and rarely starting
their response before perturbation onset (monkey M: 7.3 + 3.1%, mon-
key P: 5.4 £1.6%). Similar to human participants, monkeys showed a
clear effect of the probability cue on their elbow kinematics in the
400 ms following the perturbation (Fig. 2b; one-way ANOVA of single-
trial elbow angle over probability conditions, monkey M: extension
F(3,16424) =79.6, P <107, flexion F(3,16274) =169.3, P <10%; monkey
P:extension F(3,7099) = 61.8, P <107, flexion F(3,7054) = 35.5,P<10°),
demonstrating that they learned to prepare for future perturbations
onthebasis of the probability cue. Also similar to human participants,
itisunlikely that these differences were caused by guessing what per-
turbation would occur on individual trials, since the distribution of
elbow velocity inversion times following elbow perturbations did not
significantly differ from a unimodal distribution (Hartigan’s dip test,
trials pooled across sessions and each condition tested separately;
monkey M: all Pvalues > 0.81; monkey P: all Pvalues > 0.64; see Extended
DataFig. 3 for individual distributions).

Having established that monkeys use probabilistic cues to prepare
their responses to mechanical perturbations, we recorded single neu-
rons from multiple brain areas to assess how neural population activity
supported this preparation. To do so, we developed a new recording
setup allowing parallel single neuron extracellular recording using
Neuropixels probes (Methods). In both monkeys, we recorded from
four areas potentially involved in this preparation (Fig. 2c): primary
somatosensory cortex (S1), primary motor cortex (M1), dorsal premo-
tor cortex (PMd) and dorsolateral prefrontal cortex (dIPFC), record-
ing from 8,141 single neurons in total (see Extended Data Table 1for a
breakdown of all recording sessions).

We used demixed principal component analysis (dPCA) to decom-
pose neural population activity into task-related components, including
probability information (that is, the visual cues), perturbation direction
(elbow flexion or extension), condition-independent changes, and any
linear interactions. To fit dPCA, neurons within each brain region were
pooled across recording sessions. Once these dimensions were found,
they were used to project simultaneously recorded neurons onto dPCs

forsingle trials. Figure 2d shows the single-trial correlation between the
top probability dimension of each area and the perturbation probability
throughout the preparation time. Between the cue and perturbation
time, the top probability dimension was predictive of probability to
some extentineacharea, however, there were clear differences across
areas. Notably, PMd and dIPFC showed a single-trial correlation with
probability around 100 ms after the cue was presented, followed by
ramping probability information in M1. By contrast, representations
inS1were very small and ramped up latest during preparation.

Tovisualize the nature and extent of these representations, we plot-
ted the condition-averaged neural population activity of each area
projected into the top dPC of each factor (Fig. 2e,f). During prepara-
tion, conditions corresponding to identical visual cues overlap in the
probability dimension, leading to five distinct clusters of traces. These
probability representations were clearestin PMd and M1, reaching their
peak shortly before the perturbation and then decreasing through-
out the movement period. As expected, the probability dimensions
represented only probability information and did not delineate what
perturbation was actually applied, demonstrating that probability
information was linearly separable from perturbation information. We
next considered how the neural geometry was structured. Although
dPCA did not look for any particular ordering of the cues, the top
probability dimension clearly ordered these cues by the probability
magnitude, especiallyin M1and PMd. The top perturbation dimension
clearly separated the two perturbation directions in all areas except
in dIPFC, where representation of perturbation direction was small.
Asupplementary analysis confirmed that perturbation directioninfor-
mation was evident earliest in S1, followed by M1 and PMd (Extended
DataFig. 4a).

Alsonotableisthatall areas showed dominant condition-independent
signals, which vary across time but not in relation to other task vari-
ables. These varied across areas, with S1 and M1 showing the sharp-
est responses to the perturbation, while higher order areas (PMd and
dIPFC) showed less sharp responses to the perturbation and greater
ramping during preparation. The origin of the condition-independent
signal at perturbation onsetis unclear (see Discussion), since the major-
ity of sensory inputs from the periphery would be directional and show
an opposite response for different elbow perturbation directions.

To summarize these results across all dPCs, we examined the total
variance explained by each factor (includinginteractions and residual
variance) across areas and monkeys (Fig. 2g,i). We found a clear gradient
of probability information across areas, with probability information
least dominant in S1and becoming more dominant in M1, PMd and
dIPFC. Conversely, we found the reverse gradient for perturbation
information, frommost dominantin S1toleast dominantin dIPFC. The
interaction of probability and perturbation explained only a very small
amount of variance overall. Notably, condition-independent dimen-
sions represented the majority of variance explainedin all areas, high-
lighting the importance of these time-varying signals and in line with
previous work during self-initiated movements®**’. A supplementary
analysis showed that condition-independent perturbation responses
were generally evident earlierin S1thanin M1and PMd (Extended Data
Fig.4b). Residual variance not captured by dPCA was very small, with
the exception of dIPFC, suggesting that the remaining varianceis either
not linearly separable or related to other factors not experimentally
controlled.

Finally, if the probability dimension causally relates to the behav-
ioural response to the perturbation, we would expect that fluctuations
inthe probability dimension onsingle trials would affect behaviour on
the same trials. To test this idea, we used the single-trial projections
of neural activity onto the first probability dimension and correlated
themwith elbow velocity in the first 150 ms following the perturbation
period (Fig. 2h,j). In previous analyses, some probability information
was present in dIPFC and S1. However, we did not observe any clear
correlation between single-trial fluctuationsin probability information
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Fig.2|Sensory expectations shape preparatory activity inmotor cortical
areas. a, Two macaque monkeys performed aversion of the task similar to the
task performed by human participants, using anon-human primate version of
the KINARM exoskeletonrobot, needing to returnto a central target after having
theirarm displaced out of the target by an elbow perturbation. Image credit:
Erika Woodrum, Erika Woodrum Art, Ltd. b, Mean elbow kinematics across
recording sessions showed clear scaling by probability cuein both perturbation
directions. ¢, Single neurons were recorded over sessions from four cortical
areas: S1, M1, PMd and dIPFC. d, dPCA was performed across the single neurons
ofeachareato disentangle task-related signals at the populationlevel. Projections
onto the top probability demixed principal component (dPC) were used to
predict probability magnitudes onsingle trials pooled across all sessions of

and subsequent elbow velocity after the perturbation. By contrast,
neural activity immediately before the perturbation in both M1and
PMd significantly predicted elbow velocity after the perturbation on
single trials, suggesting that the probability representation in these

4 | Nature | www.nature.com

St

M1 PMd  dIPFC

eacharea. Thick coloured linesindicate correlations significantly greater than
chance, where chance level was obtained by randomly shuffling probability
conditions and correlating with the true probability condition (one-sided
permutationtest, P<0.001,10,000 iterations). e,f, Top dPCs are plotted for
eachtask factor (probability, perturbation, condition-independent) across
areas formonkey M (e) and monkey P (f). dPCs are normalized to the maximum
value of each task factor pooled across areas. g, Summary of total variance
explained per task factorineach areafor monkey M. h, Mean prediction of single-
trialelbow velocity in the 150 ms after the perturbation by the top probability
dPC, performed separately for each perturbation direction and averaged,
chancelevel calculationasind.i,j, Thesameanalysesasing (i) and h (j), for
monkey P.

areas may directly modulate rapid responses to perturbations, aresult

consistent with their key role in the transcortical feedback pathway.
Given the widespread presence of sensory expectation signals in

multiple cortical areas, we extended our recording setup to enable



the use of 4.5 cm Neuropixels®®in monkey P, to target subcortical and
cortical medial wall structures. Thalamusis particularly interesting,
given the rich and differentiated input and output connectivity of
its various nuclei. We targeted the ventroposterior lateral thalamus
(VPL), the ventral lateral posterodorsal thalamus (VLpd), and the
ventral lateral anterior thalamus (VLa). VPL receives tactile and pro-
prioceptive information from the cuneate nucleus and has dense
projections to S1 (ref. 39) and M1 (ref. 40), whereas VLpd receives
primarily cerebellar input and projects to the the supplementary
motor area (SMA) and PMd/M1 (ref. 41), and VLa receives pallidal
input and projects to SMA/PMd/M1 (refs. 41,42), motivating us to
alsorecord from SMA. Performing the same dPCA analysis asin Fig. 2,
we found that probability information was present in most of these
areas rapidly after cue presentation (Fig. 3b), reinforcing that this
information is widespread in the motor circuit. Specifically, VLa
and VLpd showed an increase in probability prediction in the top
probability dPC within 100 ms of the cue, followed closely by SMA.
By contrast, the VPL showed only low levels of prediction much later
in preparation, similar to what we observed in S1. Note that observing
low levels of probability decoding later during preparationin VPL
relative to S1 does not contradict the expected hierarchy of these
areas, since any preparatory-related probability activity is likely to
be a consequence of top-down signals.

A summary of variance explained (Fig. 3d) shows that, as in previ-
ous analyses, condition-independentinformation was by far the most
dominant. SMA and VPL had the largest perturbation responses, and
probability information in VPL accounted for less than 0.3% of total
variance. A supplementary analysis of perturbation responses showed
that the timing of perturbation information in VPL was similar to S1
(Extended Data Fig. 4). Visualizing the projections in the top dPC for
probability (Fig. 3¢) confirms that probability information was minimal
inthe VPL.Itisnoteworthy that the geometry of probability information
inthe other thalamic nucleiand SMA were organized by relative prob-
ability, as observed in other cortical areas (Fig. 2). Post-perturbation
elbow velocity was weakly predictable from the top probability dPC
ofallthese areas close to perturbation time (Fig. 3e), suggesting some
direct dependence between neural state and subsequent behaviour,
although this relationship was much weaker than what was observed
inPMd and M1.

Together, these results point to astrong and widespread representa-
tionof sensory expectationsin cortical and subcortical motor circuits
but not early sensory areas.

Sensory expectations accumulated from experience

Inour previous experiments, humans and monkeys were shown aran-
dom probability cue on each trial, making the visual cue the only source
ofinformation for forming sensory expectations. Although examples
like this exist in natural environments, expectations about future sen-
soryinputs canalso be discovered through experience interacting with
the environment. Therefore, we designed an additional experiment to
investigate the neural representation of sensory expectations acquired
over multiple trials. In this experiment (Fig. 4a and Methods), monkeys
received alternating blocks of randomly cued probabilities (presented
visually) and adaptation blocks where perturbations were drawn from
asingle randomly chosen probability distribution that was not visually
cued to the monkey (for example, 75% extension). We did not include
the 100% probability conditions in the adaptation blocks to maintain
some uncertainty about the underlying distribution. In adaptation
blocks, the only way to determine the underlying perturbation prob-
ability distribution was by experiencing a succession of perturbation
trials. In monkey M, we recorded 333 neurons in S1,399 in M1, 244 in
PMd, and 1,329 in dIPFC. In monkey P, we recorded 215 neurons in S1,
586inM1,1,629 in PMd, 1,427 in dIPFC, 131in VPL, 204 in VLpd, 497 in
VLa, and 413 in SMA.
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Fig.3|Sensory expectations shape preparatory activity inmotor but not
sensory thalamus. a, Single neuron recordings were made from monkey P over
sessions from four areas: SMA in the medial wall, and the VLa, VLpd, and VPL
nucleiofthe thalamus. b, dPCA was performed across the single neurons of
eachareatodisentangletask-related signals at the populationlevel. Projections
onto the top probability dPC were used to predict probability magnitudes
onsingle trials pooled across all sessions of each area. Thick coloured lines
representsignificant correlations, where chance level obtained by randomly
shuffling probability conditions and correlating with the true probability
condition (one-sided permutation test, P<0.001,10,000 iterations). ¢, Top
dPCs are plotted for each task factor (probability, perturbation, condition-
independent) across areas. dPCs are normalized to the maximum value of each
task factor pooled across areas. d, Summary of total variance explained per
task factorineach areafor monkey P.e, Mean prediction of single-trial elbow
velocity inthe 150 ms after the perturbation by the top probability dPC,
performed separately for each perturbation direction and averaged, chance
level calculationasinb.

Both monkeys adapted to the distribution of experienced pertur-
bations, scaling their responses on the basis of the probability of the
underlying distribution (Fig. 4b,c). To dissect the time course of this
adaptation, we aggregated all of the visually cued trials across sessions
(for each monkey and perturbation direction separately) and fit linear
regressions to predict the probability distribution of each trial on the
basis of the post-perturbation kinematics (shoulder and elbow velocity
0-400 ms post-perturbation; L1 regularization coefficient selected
using Bayesian optimization with 5-fold cross-validation). We used this
regression fit on the visually cued blocks to predict probability condi-
tions on adaptation trials and assessed performance as the Spearman
correlation for trials at all points within an adaptation block (Fig. 4d,e).
For both monkeys, post-perturbation kinematics started showing a
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Fig.4|0Only some areas represent sensory expectationsaccumulated from
experience.a, Monkeys performed an adaptation variant of the main experiment
inwhich trials alternated in block between randomly visually cued probabilities
(asinthe main experiment) and adaptation blocks without probability cue.
Here, the perturbation probabilities were 75% extension, 50/50% or 75% flexion,
fixed within each block. Image credit: Erika Woodrum, Erika Woodrum Art, Ltd.
b,c, Mean elbow angle of each condition for trials with monkey M (b) and
monkey P (c) within the adaptation blocks only.d,e, We aggregated all of the
visually cued trials across sessions (for monkey M (d) and monkey P (e) and
perturbation direction separately) and fitlinear regressions to predict
probability on the basis of the post-perturbation kinematics (shoulder and
elbow velocity in the window 1-400 ms post-perturbation; lasso regularization
parameter for least-squares linear regression selected using Bayesian

significant representation of probability condition 10-20 trials into
the adaptationblock. Anoptimal Bayesianintegrator would reach 95%
confidence in the most likely probability distribution after around 15
trialsinthe case in which each of the 3 distributions are equally likely,
aswas the casein our experiment.

To test which brain areas show a similar representation of sensory
expectations in the visually cued and adaptation conditions, we
repeated the previous regression analysis instead using populations
of neuronsineachareato predict probability, training the regression on
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optimization with 5-fold cross-validation). We used this fitted regression to
predictthe probability condition onadaptation trialsand assessed performance
asthe Spearman correlation for trials at all points within an adaptation block.
Correlations used all trials within a sliding window that included the 50 trials up
toandincluding the currenttrialinblock. Chancelevel calculations for remaining
panels were made by randomly shuffling (10,000 iterations) the probability
values of each trial for each point within ablock and calculating the Spearman
correlation with the true value. Correlations were considered significant (thick
solid colours) if they exceeded the 99.9th percentile of the random distribution.
f,g, Same analysisasind (f) and e (g), but using neural population activity in
the300 mspriortothe perturbationto predict probability condition (linear
regression with L2 penalty). h, Same analysis asin g, for additional areasin
monkey P.

thevisually cued blocks and testing on the adaptation blocks (Fig. 4f,g).
Across monkeys, we found that probability representationsin the adap-
tation blocks were only found consistently in PMd and M1, starting
earlier in PMd, suggesting that these areas either are involved in the
accumulation of evidence forming particular sensory expectations,
orreceive thisinformation from other unrecorded areas. In monkey P,
despite some subcortical (VLa and VLpd) and cortical (SMA) areas
showing probability representations during our visually cued experi-
ment, only SMA and VLpd showed a clear representation of probability
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Fig.5|Models of closed-loop motor control develop sensory expectations
dependentonfeedback timing. a, We used an opensource toolbox, MotorNet?,
totrain32recurrent neural networks to control abiomechanical model of
thearm duringreaching, including realistic muscles, feedback and delays.

A condition-independent pulse signalling the perturbation was provided along
with proprioceptive feedback. Models were trained both onarandom reaching
task with targets throughout the workspace that had tobereached aftera
random mechanical perturbation, and aversion of the experiment performed
by humans and monkeys. BE, biceps extension; BF, biceps flexion; EE, elbow
extension; EF elbow flexion; SE, shoulder extension; SF, shoulder flexion. Image
adapted with permission fromref. 3, eLife. b, Left, average elbow kinematics of
allmodels and an example model. Middle, the same kinematics with the mean
activity subtracted. Right, average muscle activation of two simulated muscles,

signal delivery time
relative to perturbation (ms)

showingscaling of muscle activation within the long-latency reflex window
(50-100 ms post-perturbation).c, We performed the same dPCA analysis as
performed on neural dataonthe simulated neural activity (first dPC of an example
modelshown for each task factor). Var expl, variance explained. d, Mean elbow
kinematics of models when the top probability dPCis silenced for the entire
trial. e, Quantification of the reduction of kinematic modulation depth due to
sensory expectations whensilencing the top probability dPC. Each grey line
corresponds to one model (n=32models).f, Inallmodels, the time at which

the condition-independent perturbation signal was provided to the network
(original trained time was 20 ms after the perturbation) was manipulatedin
trained networks to examine its effect on the magnitude of sensory expectations
inbehaviour.Shaded error representss.e.m. over models.
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duringthe adaptationexperiment. Of all areas examined, VLpd showed
asignificant representation of probability earliestin the block and did
notshow asignificant representation at the end of the block. The sign
of the significant correlation for VLpd was also reversed, suggesting
thatit may have a different role during visually cued trials and adapta-
tion trials.

Together, these results suggest that some brain regions, most promi-
nently PMd, show similar neural representations of probability during
visually cued and adaptationtrials, and that the earliest representations
were present in the cerebello-thalamic inputs to cortex.

Sensory expectations emerge in models

Ourresults demonstrate the strong presence of sensory expectationsin
motor circuits. We next considered the conditions under which neural
networks learn to represent sensory expectations and how such rep-
resentations improve motor performance. To address this, we used
ouropen source toolbox, MotorNet?, to create closed-loop models of
reachinginwhichrecurrent neural networks actuate realistic muscles
to control a two-link model of the arm and receive delayed sensory
feedback (Fig. 5a and Methods).

Matching standard numbers of human participants included in
behavioural experiments, we trained 32 networks on arandom reach-
ing task in which they produced reaches between random pointsin
the workspace after receiving unpredictable perturbations delivered
directly to the joints of the arm model. Paralleling the monkey’s expo-
sure to both everyday movements and the experimental task (Fig. 2),
network training interleaved iterations of the random task and a
version of the experimental task similar to the one the monkeys
performed. During the experimental task, the networks also received
aprobability cue as in the human and monkey experiments. Delayed
proprioceptive feedback allowed the model to detect displacement due
to mechanical perturbations applied to the limb. Notably, mirroring
what we observed empirically in early sensory areas (VPL and S1), we
included a condition-independent perturbation signal as part of the
proprioceptive feedback that signalled when a perturbation occurred
but did not provide information about perturbation direction.

After training, model parameters were frozen, and they were tested
onaversion of the experimental task similar toFig. 2. Of note, although
the models were not trained to produce a specific movement trajectory
or pattern of muscle activity, the models responded more quickly to
perturbations that were more likely than to perturbations that were less
likely (Fig. 5b), closely resembling humans and monkeys. The models
learned this association between probability cues and perturbation
probability by experiencing many perturbations paired with each visual
cue, and the same pattern of results was obtained in networks with a
one-hotinput for visual cues (Extended DataFig. 5), as well as networks
reaching peripheral targets as in Fig. 1. Behavioural effects were due
toscaling of muscle responses soon after perturbation onset, starting
inan epoch akin to the long-latency reflex window due to the sensory
delaysintroducedinto our feedback loop (Fig. 5b, right).

Decomposing neural activity of the model in the same way that we did
for monkey datausing dPCArevealed very similar dimensions for prob-
ability, perturbation and condition-independent signals as observed in
the empirical data (Fig. 5¢). Notably, the geometry of sensory expecta-
tions was simple and similar to the empirical data, directly representing
relative probability. To test whether this probability dimension was
causally responsible for the behavioural effects that we observed, we
eliminated all neural activity projecting into this dimension by sub-
tracting the appropriate amount of neural activity fromeach neuron at
eachtime pointinthetrial, without retraining the networks. Figure 5d
demonstrates that when this dimension was eliminated the scaling of
kinematic responses by probability was almost completely abolished.
This effect was quantified by calculating the modulation depth due to
probability during movement (Fig. Se; maximum divergence between
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Image adapted with permission fromref. 3, eLife.

elbow kinematics for 100% flexion and 100% extension conditions in
-100 to 300 ms around perturbation onset), which confirmed that
the effect of sensory expectations on motor performance were almost
completely driven by this dimension.

Finally, it was important to understand what constraints allowed
the modelto take advantage of probability informationinits feedback
responses. To investigate this question, we modified the timing of
the condition-independent perturbation input by manipulating its
latency from its original value of 20 ms post-perturbation, without
retraining the networks (Fig. 5f). The effectiveness of sensory expec-
tations decreased very quickly as the latency increased, showing
essentially no effect once it was delayed more than about 50 ms, while
reducing the latency increased the effectiveness of sensory expecta-
tions. Of note, when networks were trained from scratch without the
condition-independent input to inform them of perturbation onset,
they were eventually able to correct for perturbations, but they did
not exhibit responses that scaled with expectations (Extended Data
Fig. 6). Thatis, sensory expectations shape feedback responses when
aperturbationis detected before sensory inputs resolve the ambiguity
about what perturbation occurred and eliminate the need torespond
on the basis of prior expectations.

Discussion

Ourresults demonstrate that humans and monkeys incorporate knowl-
edge about future sensory inputs when preparingamovement and that
this preparation improves their performance. Neural data show that
information about sensory expectations is widespread across cortical
and subcortical areas, generally following a simple neural geometry
that directly represents the probability of each perturbation direc-
tion. Aneural network trained to control abiomechanical model of the
arm reveals that incorporating sensory expectations into movement
preparation is advantageous when responding to such disturbances,
provided that the perturbationis detected early enoughtoactonsen-
sory expectations before incoming sensory information resolves the
ambiguity about what perturbation occurred.

The neural representation of sensory expectations is consistent
with our understanding of motor cortical control®*, Motor cortex
has an expansive ability to represent task variables in its preparatory



state', including prior information about goallocation*** and reward*®,
but we demonstrate here that motor cortical areas directly represent
expectations about sensory inputs during preparation (Fig. 6, output
null trajectories). When disturbances do occur, responses are trig-
gered by a condition-independent signal (with a similar profile to the
condition-independent signal that precedes voluntary movements®)
that quickly produces amuscle response (Fig. 6, output-potent trajec-
tories). This muscle response proportionally reflects current expecta-
tions about perturbation direction (Fig. 6, muscle activity), similar
to how goal-directed movements following perturbations reflect a
continually updating movement plan®. Asin self-initiated movements,
neural activity initially evolves in the neural space on the basis of the
flow field determined by recurrent dynamics. As sensory information
abouttheactual disturbance (in our study, the perturbation direction)
arrives, the modified flow field directs the neural activity towards the
trajectory appropriate for the muscle activity necessary to counteract
the actual perturbation.

In this framework, the straightforward representation of sensory
expectationsin the neural preparatory state can co-exist with dimen-
sions related to other task factors such as goal location, a predic-
tion that can be tested directly in future experiments. Another open
question is to what extent eye movements have a role in these neural
representations. Although we did not track eye movements, the wide-
spread presence of sensory expectation signals, as well as the alignment
betweenneural datain the visually cued and adaptation experiments,
suggest that eye movements to visual cues cannot fully explain the
present results.

Inadditionto the directional proprioceptiveinformation transmitted
through cortical areas following perturbations®?°, we found a promi-
nent condition-independent signal upon which feedback responses are
likely to rely®. The vast majority of information in VPL, the thalamic
nucleus projecting most strongly to the primary somatosensory cortex,
was condition-independent, suggesting that this signal could have
originated in the periphery, spinal cord or brainstem. One possibility
is that cutaneous receptors, when aggregated together at the level of
second-order neurons (cuneate nucleus), transiently signal the pres-
ence of a perturbation®®. Pacinian corpuscles are a likely candidate,
owing to their sensitivity to high frequency vibration and the fact that
their receptive fields cover such large areas, giving them low direc-
tional resolution®. Another possibility is that fusimotor drive through
gamma motor neurons increases muscle spindle sensitivity such that
transient vibrations during perturbations in any direction produce a
condition-independent signal through la afferents®?. Determining the
general function of this condition-independent signal and the circuit
that constructsitis animportant area for future work.

Our results have implications for predictive coding, which has
been proposed as a widespread mechanism for increasing sensi-
tivity to input across the brain®~, We show that the early sensory
areas investigated (VPL and S1) show very little predictive coding in
our task, but very strong condition-independent signals. Predictive
feedbackinearly sensory areas has been proposed as amechanismto
improve state estimation during movement in the presence of delays*®.
However, in our experiments, there were no ongoing movements
when perturbations arrived and therefore no corollary discharge
of motor commands to sensory areas. The presence of the rapid
condition-independent signal discussed above probably eliminates
the need forimproving state estimationimmediately following unex-
pected perturbations, and we see no evidence that sensory predictions
are used in this case to increase input sensitivity. Furthermore, in a
supplementary analysis, we found no evidence for aneural represen-
tation of unsigned prediction error, a signal involved in predictive
coding (Extended Data Fig. 7).

Only a subset of areas showed sensory expectations when these
expectations were accumulated over trials, namely areas involved with
motor preparation and execution (SMA, PMd and M1) and VLpdinthe

thalamus, which receives primarily cerebellar input and outputs to
SMA/PMd/MI (ref. 41). The presence of probability information earliest
inthe cerebellar thalamus is noteworthy, as the cerebellum has been
identified as a crucial component of state estimation during action®”*’,
and muscleresponsesrelated to the expected duration of amechanical
perturbation are eliminated in capuchin monkeys during cooling of
the dentate nucleus®®. Our results suggest that the cerebellum may be
necessary for initially forming expectations on the basis of experience
(asinouradaptation experiment), but may have a different role when
probabilistic information is extracted from sensory inputs (as in our
visually cued experiment), or once stable sensory expectations have
been established.

In conclusion, our findings reveal that motor circuit dynamics are
strongly shaped by sensory expectations and demonstrate a novel
computational role for preparatory activity in motor circuits: modu-
lating responses to sensory feedback.
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Methods

Human experiment

Participants. Twenty healthy individuals (13 male and 7 female partici-
pants, 18-35years of age, 2 left-handed) took part in this experiment.
All participants reported normal or corrected-to-normal vision and
no history of neuromuscular impairments. Prior to data collection,
all participants provided informed written consent. Participants were
paid for their time and were able to withdraw from the study at any
time. The study was approved by the Office of Research Ethics at the
University of Western Ontario.

Apparatus. Participants were seated with their right armina KINARM
robot exoskeleton (Fig. 1a, BKIN Technologies®), allowing flexion and
extension movement of the shoulder and elbow joints in the horizontal
plane. The robot can independently apply specific flexion or torques
atthesejoints. The two segments of the exoskeleton, consisting of the
upper arm and forearm, have three adjustable cuff sizes to match the
dimensions of the participant’s arm. Foam pads were inserted into any
remaining space between the cuffs to ensure tight coupling of the limb
totheapplied torques. After adjustment of the robot, calibration was
performedtoalignareal-time, 0.5 cmdiameter cursor ontherightindex
fingertip of each participant. The hand-position feedback and visual
targets of the experiment were displayed in the same horizontal plane as
the arm movement. These virtual-reality images were projected in front
of participants at eye-level viaan LCD monitor onto a semi-silvered mir-
ror. Before initiating the experiment, an opaque blinder was installed
beneath the mirror to occlude direct vision of the physical right arm
during all trials. Kinematic datawere sampled at 1,000 Hz.

Experimental procedure. Throughout the duration of the experiment,
aconstant background load of 1N m extension torque was applied at
the elbow, pre-exciting the flexor muscles. The use of a background
load extending the elbow increases the stability and magnitude of
flexor muscle responses®*2 To initiate each trial, participants moved
their hand to a target (0.5 cm diameter) representing the external
angles of 80° and 60° for the elbow and shoulder joints, respectively.
As instructed, participants tried to exert the minimum force neces-
sary to hold their arm at the home target without co-contraction of
antagonistic muscles. After 300 msinthe home target, the goal target
(3.5 cmdiameter) appeared forarandom period between400-600 ms
(Fig.1b). The design of this task, including the large peripheral target,
mirrors many previous experiments designed to investigate the role of
goal information on muscle responses to mechanical perturbations®.
The goal target was presented at a location that could be reached
withal0° pure elbow flexion from the home target. Then the arrow(s)
indicating the probability of elbow perturbation direction appeared
for arandom period between 800-1,100 ms before the perturbation
was applied at the elbow. All 5 probability cues were equally likely,
and randomly selected from a pool of 880 trials. The arrows were cre-
ated with areas directly proportional to the per cent probability. The
perturbation was then applied (step torque of £1 N m), which either
flexed their elbow, moving their hand into the target, or extended their
elbow, moving the hand away from the target. At the moment the per-
turbation was applied, the probability cues disappeared and visual
feedback about handlocation disappeared for 50 ms. Participants were
instructed to move to the grey target once they felt the perturbations,
andtodosoinlessthan 700 ms. If this was achieved, the target changed
from grey to green. However, if participants took more than 700 ms,
thetarget changed fromgreytored. Thisfeedback was used to prompt
participants to move quicker for the next trial if they moved too slowly.
If participants moved off the home location prior to the perturbation,
the trial was aborted and repeated later in the experiment. No restric-
tions were implemented on the trajectory of their arm movements.
Regardless of greenor red feedback, after holding theirarmat the goal

target for 400 ms, thetorqueisreturnedto the level corresponding to
the constant background load. Participants then immediately moved
to the home button to start the next trial.

Participants completed 49 practice trials, whichwere notincludedin
the analysis. As part of the 880 trials, participants randomly received
10 trials of each condition as a catch trial. During catch trials, the cue
appeared but the perturbation was never applied. The target auto-
matically turned green after 2 s of holding the home target. Catch trials
were used to ensure participants were not moving before the onset of
the perturbation. Rest breaks were provided throughout each experi-
ment at approximately 15-20 min intervals or when requested by the
participants.

Electromyographic recording. The skin above the muscles of inter-
est was scrubbed using a piece of gauze soaked with rubbing alcohol.
The EMG electrodes (Delsys Bagnoli-8 system with DE-2.1 sensors)
were coated with conductive gel (Chattanooga REF4248). The elec-
trodes were taped to the skin surface above the belly of three right
armmuscles: the short head of the biceps brachii, an elbow flexor; the
brachioradialis, an elbow flexor; and the medial head of the triceps
brachii, an elbow extensor. The electrodes were aligned parallel to the
muscle fibres. A reference electrode was secured on the left clavicle
of each participant. EMG signals were amplified with a gain 0of 1,000
and digitally sampled at 1,000 Hz. The collected EMG data was then
bandpass filtered at 10-500 Hz using a zero-phase, second-order But-
terworth filter and full-wave rectified.

Muscle activity of elbow flexors were normalized by their mean
activity from the last 200 ms prior to perturbation onset across all
trials. Muscle activity of the elbow extensor, medial tricep, was nor-
malized to mean EMG activity during three special trials at the start
ofthe experiment. These three trials totalled 11 swithaconstantIN m
elbow flexion torque.

Non-human primate experiments

Subjects. Two male rhesus macaques (monkey M, Macaca mulatta,
10 kg, 15 years old; monkey P, M. mulatta, 16 kg, 11 years old) partici-
patedinthestudy, whichis the standard sample size for electrophysi-
ological experiments in the field. No randomization or blinding was
undertaken. All procedures described below were approved by the
Institutional Animal Care and Use Committee at Western University
(protocol 2022-028).

Experimental procedure. The design of the main monkey experiment
closely mirrored the human experiment. Throughout the experiment,
aconstant background load of 0.02 N m extension torque was applied
at the elbow. On each trial, monkeys waited with their fingertip in a
central target (located under the fingertip when the shoulder and elbow
angles were 32° and 72°, respectively; target size: 1.2 cm diameter).
After avariable delay (600-800 ms), one of the five possible probability
cues appeared randomly. In the monkey experiment, the probability
arrows were coloured to further differentiate them (dark blue, 100%
extension; light blue, 75% extension; white, 50% extension; light orange,
25% extension; dark orange, 0% extension). If at any point before the
perturbation, the hand went outside the home target, the trial was
aborted. Trials were excluded from analysis if at any point during the
delay period hand velocity exceeded 0.5 cm s™. For monkey P, these
trials were aborted in real-time, whereas for monkey M they were
excluded fromanalysis. Afteravariable delay of 800-1,200 ms, monkeys
received one of two unpredictable elbow perturbations (+0.2 N mstep
torque) which served as a go cue to compensate for the perturbation
and return to the central target. For monkey M, at the time of pertur-
bation onset all visual feedback was frozen until the hand returned to
the goal target. For monkey P, all visual feedback was frozen for 150 ms
after the perturbation. After returning to the central target and holding
the hand there for 700 ms, aliquid reward was given. Inboth cases the
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probability cues remained on until the end of the trial. In10% of trials,
after 1,200 ms no perturbation was applied and a liquid reward was
given. In perturbation trials, the amount of liquid given at the end of
thetrial scaled with the speed of the return movement. Trials in which
the time between the perturbationand the reward exceeded 1.2 swere
excluded from analysis.

Electrophysiological recording. We performed high-density extracel-
lular recordings using multiple Neuropixels probe versions (Neuropix-
els1.0:1 cmlength, Neuropixels 1.0 NHP:1 cmlength, and Neuropixels
1.0 NHP: 4.5 cm length). After training on basic tasks, both monkeys
were implanted with custom 3D printed titanium implants (accurate
to 0.2 mm) that were designed to precisely conformto their individual
skulls as determined by a model obtained using micro-computed
tomography. Titaniumimplants were fixed in the skull using a variable
number of titanium screws and included a built-in recording chamber
and head post. Neural recording targets were identified by register-
ing the computed tomography to a pre-surgery MRI (3D Slicer), and
identifying the 3D location of each brain area by warping segmenta-
tions from a composite macaque atlas to the individual MRI of each
animal (NMT v2 (refs. 64,65), CHARM®** and SARM? atlases, see ref. 68
for additional thalamic parcellations). The use of skull conforming
titaniumimplants allowed us to precisely plan recording trajectoriesto
target desired structures. The precision of ourimplantation technique
was confirmed post-mortem in monkey M to be accurate to within
<0.5 mm on the cortical surface. For the S1 recordings in both mon-
keys and for the VPL recordings in monkey P, targeting was tested by
applying small displacements to the elbow joint in a passive context
and showing selective responses. The localization of VPL is further
supported by rapid condition-independent perturbation responses
not present in other thalamic nuclei (Extended Data Fig. 4). Finally, in
aseparate experimentin monkey P targeting of the medial geniculate
nucleus was confirmed using passive listening to auditory tones, further
confirming the validity of our targeting methods.

After monkeys were trained in the experiment, craniotomies were
performed over the planned recording areas. In monkey M, a large
craniotomy was performed to expose the entire recording area, while
inmonkey P, small2.7 mmburr holes were drilled over recording sites
asneeded. In monkey M, a custom holder was designed (Neuronitek)
for use with 1.0 cm Neuropixels to allow insertion through the dura
using 2-4 mm retractable guide tubes and actuated with Narishige
microdrives. In monkey P, we created a new design (Neuronitek) for
use with the 4.5 cm NHP Neuropixels to allow insertion through the
durausing9 mmretractable guide tubes and actuated using amanual
microdrive. For eachrecording configuration, we 3D printed a custom
holder (Formlabs 3B+, Grey resin V4) that aligned the Neuropixels
along a specific, pre-defined trajectory targeting the areas of inter-
est. Recordings in S1 primarily targeted Brodmann arealand area3b,
although recordings in monkey P sampled more densely from area3b,
and partially from 3a. Recordingsin M1targeted a mixture of gyral and
sulcal M1, with the majority coming from gyral M1.

Neural data processing. Neural data were recorded from Neuropixels
probes using SpikeGLX. Neural data were processed using a custom
processing pipeline (https://github.com/JonathanAMichaels/Pixel-
ProcessingPipeline). For monkey M, action potential stream data were
firstdrift corrected using spike localization and decentralized registra-
tion®*”°implemented in spikeinterface”, which was able to accurately
track vertical probe drift and correct it. Due to the large craniotomy,
some of these recordings had large drift (0-250 um). Neural data were
then processed withKilosort 2.0 (ref. 72) to further stabilize recordings
during spike sorting. For monkey P, drift was minimal due to small
craniotomies (drift 0-15 pm), so we immediately processed the data
using Kilosort 4.0 (ref. 72), including built-in drift correction. Single
neurons were considered successfully recorded if they were flagged by

Kilosort as single neurons using default parameters, and if they were
stably recorded for the duration of the recording. To determine whether
neurons were properly isolated over the course of the recording, we
generated the average firing rates of each neuron for each condition
of the main experiment (8 conditions) divided up into 5 equal blocks
of trials, additionally averaging across all time in each trial 200 ms
before cue onset to 300 ms after perturbation onset), which yielded
amatrix of 8 x 5 values for each neuron. We then calculated the mean
index of dispersion for each neuron (variance over time block divided
by mean over time block, averaged across conditions) to estimate how
stable each neuronwas over the course of therecording. It isimportant
to note that this metric does not test neurons for tuning to the task,
only for reliable responses over the course of the recording. Neurons
with anindex of dispersion below 2 were included in further analysis.
The majority of neurons had anindex of dispersion <1, and shifting this
threshold +1did not affect results.

Ingeneral, no set of selection criteria can definitively classify single
neurons from multi-unit activity, so as an additional control we exam-
inedwhether astricterinclusion criteria of only units witha peak abso-
lute template amplitude in the range typically associated with single
neurons (150-300 pV) changed our main findings. The dPCA results
remained qualitatively unchanged despite removing 53-55% of neu-
rons. Ingeneral, itis unlikely that the types of analyses presentedin this
work would be very sensitive to the accidental inclusion of multi-unit
activity, since at the population level linear dimensionality reduction
techniques find similar results regardless of whether or not data are
spike sorted at all”.

Demixed principal components analysis. Principal component
analysis (PCA) iscommonly employed to reduce the dimensionality of
high-dimensional datasets by finding alow dimensional representation
that captureslarge amounts of variance using independent linear com-
binations of neurons. For PCA, given amatrix of data X, where each row
contains the average firing rates of one neuron for all times and task
conditions, PCA findsanencoder Fand anequivalent decoder D, which
minimizes the loss function L = ||X - FDX||? under the constraint that
the principal axes are normalized and orthogonal, and therefore D = F'.
Unfortunately, datathat arerepresented in this way often heavily mix
the effect of different task parameters between latent dimensions. We
would like to extract dimensions that dissociate our specific task con-
ditions. To achieve this, we performed dPCA with 20 latent dimensions?
using freely available code: http://github.com/machenslab/dPCA.
In contrast to PCA, dPCA seeks to explain marginalized variance with
respect to our specific task variables (probability, perturbation, and
time), instead of merely explaining total variance. Unlike PCA, dPCA
utilizes aseparate encoder and decoder, such that the loss being opti-
mizedwasL =Y, L, =Y, (IIXy = FoDyp XII* + A lIF, DylI*), where X, is the
marginalization of the full datawith respect to each of our task param-
etersof interestand the A termis aregularization parameter, prevent-
ing overfitting. Marginalizations of X can be obtained by averaging
over all parameters which are not being investigated and subtracting
all simpler marginalizations. In our case the marginalizations of inter-
estwere probability x time, perturbation x time, time and probability x
perturbation x time. The specific value of Awas determined using 5-fold
cross-validation for each brain area in each monkey, allowing each
factor to have a different value of A,

dPCArequires dataforall combinations of levels of each factor, which
was not the case for our data, since in the 100% probability conditions
the opposite perturbation (0% likely) never occurred. To handle this
small amount of missing data, we used a technique proposed in the
original dPCA paper and fit ageneralized linear model to each neuron
at each time point, using the task factors (probability and perturba-
tion) as a design matrix. Using this fit, we generated surrogate data for
the missing conditions to obtain a balanced design. In order to match
trial-to-trial variability, firing rates included random Gaussian noise
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that scaled with the standard error of each model coefficient. While
this simulated data was used for fitting dPCA, in no case was it used
during analysis or calculation of variance explained.

Motor control model. We trained anumber of neural network models
to control abiomechanical model of the arm by actuating simulated
muscles during reaching using our previously developed opensource
toolbox, MotorNet>, For all models, the timestep size was 0.01 s, and we
included a proprioceptive delay (20 ms), a visual delay (70 ms), and a
muscle output delay (20 ms). We additionally included Gaussian noise
at all time steps in the proprioceptive signal (s.d.: 107), vision signal
(s.d.:107%), and in the muscle activation signal (s.d.:10™). Effectors were
actuated using numerical integration with the Euler method. The arm26
model used in this study is available under the RigidTendonArm26
Effector class. Itis described briefly below. The skeleton of the arm26
models follow the formalization proposed in Mussa-lvaldi et al.’*. The
full formalization of the Hill-type muscles can be found in Thelen”,
equations 1-7,and with the parameter values used in that study. When
different parameters were provided for young and old individuals, the
values foryoungindividuals were used. In the RigidTendonArm26 class
the momentarms are approximated as described inKistemaker etal.”,
equations A10-A12.

Recurrent neural network architecture. All networks consisted of one
layer of gated recurrent units (GRUs) with 256 units and standard acti-
vations (update/reset: sigmoid, candidate: tanh). Kernel and recurrent
weights wereinitialized using Glorot initialization’” and orthogonalini-
tialization’, respectively. At all time points we included gaussian noise
in the candidate activation (before nonlinearity, s.d.:107%). Biases were
initialized at 0. Fifty per cent of GRUs (equivalent results if 100%) were
connected to the output layer of one node per muscle with a sigmoid
activation function. The output layer’s kernel weights were initialized
using Glorot normalization, and its bias was initialized at a constant
value of 3. Because the output activation function is a sigmoid, this
initial bias forces the output of the policy to be close to 0 at the start
ofinitialization, ensuring a stable initialization state. Fifty per cent of
GRUs (equivalent results if 100%) received task-related and feedback
inputs and these units were non-overlapping with units connected to
the output layer. As task-related inputs, networks received a delayed
vector (70 ms delay) of (x, y) Cartesian coordinates for the start posi-
tion and target position, target size, directional elbow perturbation
probability (-1to1),and abinary cuesindicating when the elbow prob-
ability cues was on, resulting in a 7-element input vector. Networks
also received delayed feedback (20 ms delay) from the environment
consisting of proprioceptive signals containing muscle length and
velocity for each muscle, vision of the (x,y) position of the endpoint
(70 ms delay), and anon-directional perturbation pulse (equal to one
20 ms after the perturbation, otherwise 0), resulting in a 15-element
feedback vector.

Network training. Networks received interleaved training on a ran-
dom reaching task and a probabilistic perturbation task. In the ran-
dom reaching task, trials consisted of delayed reaches between ran-
dom locations in the reachable workspace, where movement started
after an unpredictable mechanical perturbation (random uniform -2
to 2 N m perturbations shoulder and elbow) and no probability cues
were given. Target size was randomized (0-10 cm diameter). In the
probabilistic perturbation task details closely matched the human and
monkey experiments. The start/end location was 60 degrees shoulder
and 80 degrees elbow angle, targets were 1.2 cm diameter, and pertur-
bations were —1or1N melbow perturbations. Inall training there was
no background load and the randomized timing of cues was similar
to the monkey experiment. Fifty per cent of trials were catch trials
(no perturbation) to prevent unwanted premature movements. Each
trainingiteration consisted of abatch of 64 trials, each 3 slong, and we

used the Adam” optimizer with alearning rate of 3 x 107, Each task was
trained for 2,000 iterations.

Networks were optimized using atotal loss that was aweighted sum
of individual loss components, each addressing different aspects of
the model’s performance:

1
L :ACartesianﬁ Z Z Z lxy - target|
1 1
+Amuscleﬁ z z Z F+Avelocityﬁ z z Z UZ
1 1
+ Aactivityﬁ Z Z Z h2+ Aspectralﬁ Z Z z (Azh)z

+ AjerkBl_T Z Z Z (A2U)2

where Bis the batch size, Tis the total number of time steps in an
episode, xyand target are the current and target cartesian endpoints,
F is the force applied by all muscles, v is the Cartesian endpoint
velocity, and & is the hidden activity of the network. Each component
had a specific weight during training, specifically, Ac,esian=10°,
Amuscle = 100'/1velocity =2x 1Ozi/lactivity = 10_1'/1spectral = 104'/ljerk = 106 .
The specific values of each of these components was not critical to
successful training, with a few caveats. The muscle force penalty was
necessary to prevent the network from simply using high levels of force
at all times, the spectral penalty was necessary to prevent networks
fromlearning chaoticdynamics as aresult of the delayed sensory feed-
back, and the jerk penalty sped up training by encouraging networks
to respond robustly to mechanical perturbations. All networks were
trained under the same loss function, but wereinitialized and trained
under different random seeds, leading to differing initial network
weights and simulated trials.

Assessing relative model contributions to neural geometry. Due to
the multicollinearity of the four explanatory models we used in Exten-
ded DataFig. 7, we used Shapley values derived from cooperative game
theory®8'to estimate the true contribution of each model. To compute
the Shapley value ¢, for each predictor i, we use the formula:

ISt AN = IS - D!

_ iy .
¥= NS Ui -£s),

SSN\{i}

where Nis the set of all predictors, S € N\ {i}represents each possible
subset of predictors that excludes i, |S| is the size of subset S, and f(S)
is the performance metric (in our case, R*) achieved by amodel using
only predictors in S. In all cases we used non-negative linear
least-squares regression® (N-fold cross-validated across condition
pairs) to fit the lower triangle the relational dissimilarity matrices
(RDMs) of models to RDMs of neural data. RDMs were computed as
the Euclidean distance between all pairs of conditions. For neural data,
these RDMs were calculated in the high-dimensional neural space using
the average firing rate of all neurons recorded within each brain area
(pooled across sessions).

This formula evaluates the change in model performance,
f(S U {i}) —f(S), whenpredictoriisadded tosubset S,and weights each
marginal contribution, ensuring equal representation of all subset
sizes. Since Shapley values are calculated across a full set of subsets,
each predictor’s contribution was normalized to the model’s total per-
formance across all predictors. To match the amount of measurement
noise between conditions, we took the most conservative approach
and randomly downsampled all conditions to contain the same number
of trials. We repeated the entire Shapley value calculation ten times
with different random subsamples of trials and averaged the result.

For significance testing, after trial averaging we randomly shuffled
the conditions for each neuronindependently and repeated the entire
Shapley value calculation 100 times, using this distribution as a null
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distribution. A predictor’s Shapley value was considered significant
ifit exceeded the 99th percentile of this null distribution.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The neural data that support the findings of this study are openly
available in the Dryad digital repository at https://doi.org/10.5061/
dryad.Ovt4b8hbr (ref. 83). Human data will be shared upon reasonable
request by the corresponding author.

Code availability

Raw neural data were processed using a custom processing pipeline
(https://github.com/JonathanAMichaels/PixelProcessingPipeline).
Custom code for data analysis was writtenin MATLAB and Python and
isavailable from the corresponding author upon request.
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Extended DataFig.1|Elbow velocity inversion time distributionsin human
participants. Visualization of the distribution of elbow velocity inversion times
(i.e. time of maximum elbow joint excursion) relative to perturbation onset
across allhuman participants, separated by probability condition. Only the
extension perturbation conditions are shown, since flexion perturbations
broughtthe handinto thetargetand did notrequire strongbehavioral responses.
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Extended DataFig.2|Perturbationresponsesin humanbrachioradialis
and medial triceps. a, Inelbow extension conditions, no significant differences
were found between probabilities in the background epoch (-200-0 ms before
perturbation) of the brachioradialis (F(3,19) =1.57, p = 0.21) orin the short
latency (SLR,20-50 ms) response (F(3,19) =1.73, p=0.17). In contrast, there was
asignificant effect of probability on EMG activity in the long latency epoch
(LLR,50-100 ms) of brachioradialis (F(3,19) = 7.04, p = 0.0004) and during the
voluntary epoch (100-150 ms) of brachioradialis (F(3,19) =32.62, p < 0.0001).
b, Inelbow flexion conditions, no significant differences were found between
probabilitiesin the background epoch (-200-0 ms before perturbation) of the
medial triceps (F(3,19) = 0.31, p = 0.82), in the shortlatency (SLR,20-50 ms)
response (F(3,19) =1.30, p=0.28), orinthelonglatency epoch (LLR, 50-100 ms)
ofthemedial triceps (F(3,19) = 0.99, p = 0.40). In contrast, there was a significant
effect of probability on EMG activity during the voluntary epoch (100-150 ms)
of the medial triceps (F(3,19) =10.07,p < 0.0001).
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Extended DataFig. 3 | Elbow velocity inversion times distributionsin
monkeys. Visualization of the distribution of elbow velocity inversion times
(measured as ms after perturbation time) across all monkey sessions, separated
by probability condition. All neural recording sessions within each monkey
were pooled together.
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Extended DataFig. 4 |Timing of perturbation directiondetectionand
perturbationdetectionsignals across areas. a, Foreachbrainarea, we
analyzed neural population data to determine the time at which the perturbation
directioncould be detected. For eachrecording session, we fit a classifier to
distinguish what perturbation was appliedin all trials within asession (SVM,
5-fold cross-validated, 0 to150 msrelative to perturbation onset). We analyzed
theclassifier performance across all trials within each area, smoothed the
result (20 Hzlow-pass 4th-order zero-phase butterworth), and determined the
moment of maximum velocity in the classifier performance (colored dots
above each plotand corresponding text). b, Foreach brainarea, we analyzed
neural populationdatato determine the time at which the perturbation could
bedetectedindependent of the perturbation direction. For eachrecording
session, we fit a classifier to distinguish pre-and post-perturbation times
acrossall trials within a session (SVM, 5-fold cross-validated, -150 to 150 ms
relative to perturbation onset). We averaged the output of the classifier across
all trials within each area, smoothed the result (20 Hzlow-pass 4th-order
zero-phase butterworth), and determined the moment of maximum velocity in
the classifier output (colored dots above each plot and corresponding text).
Theclassifier outputis normalized to zero at the moment of perturbation for
visualization purposes.
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Extended DataFig.5|Models with one-hot probability cue inputs develop
sensory expectations. We trained 32 recurrent neural networks to controla
biomechanical model of the arm during reaching, including realistic muscles,
feedback, and delays, but using one-hotinputs to represent each probability
cue (separate input channel for each cue) instead of the direct probability
representation used in Fig. 6. Average kinematics and muscle responses were
virtually identical to the main results of Fig. 6.
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perturbation pulseincludedinthe results of Fig. 6. Average kinematics of models
performing the experiment did not scale with probability, nor did muscle
activationwithinthelong-latency reflexwindow (50-100 ms post-perturbation).
Theresults of Fig. 6 are outlined ingray.
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differed purely based onactual perturbationdirection (a, Perturbation Model).
Totest therelative contribution of these models to explaining neural data,

we converted allmodels and neural population datainto euclidean distance
matrices between all pairs of conditions (relational dissimilarity matrices,
RDMs) torepresent the geometry of each model and the neural population.
Disentangling the contribution of each of these models to observed neural
activity is challenging due to multicollinearity that exists between models. To
overcome this, we used a concept from cooperative game theory to estimate
the contribution of each model. We used non-negative linear least-squares
regression to predict the RDM of the neural populationateach time point based
onlinear combinations of our model RDMs. Importantly, we exhaustively fit
every possible combination of models, allowing us to calculate Shapley values,
whichestimate the true contribution of each model to explaining neural data
(see Methods). During the preparatory period only the Probability Model was
abletosignificantly fit the data, and this effect was widespread across cortical
areas (b). The earliest and strongest representation was in PMd, while the latest
and weakest was in S1. Probability representations collapsed dramatically
within the 50-100 ms after the perturbation, and in many areas were replaced
immediately by the Perturbation Model and the Prediction Error Model.
Although perturbation direction representations were far more dominant,
predictionerrors were also reliably and significantly present, and canbe seen
insome example single neurons (c, e.g. 4th neuron from the left). Perhaps
surprisingly,inno case did the Unsigned Prediction Error Model ever significantly
explain neuralgeometry, indicating that responses directly related to surprise
were not present. In Monkey P, we performed the same analysis for additional
medial wall and thalamic areas (d). Significant linear representations of
probability were also widespread during preparationin these areas, with the
exception of VPL. Most of these areas also showed asignificant representation
of the Perturbation Model and the Prediction Error Model, while no areashowed
asignificantrepresentation of the Unsigned Prediction Error Model.
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Extended Data Table 1| Recording session information

Monkey M Monkey P

Successful Successful
Session Recorded neurons trials Experiment Type Session Recorded neurons trials Experiment Type
06-Apr-22  M1: 26 783 Random 17-Jan-24  MI: 286 735 Random
07-Apr-22  PMd: 62 845 Random 18-Jan-24  MI: 283 928 Random
20-Apr-22  PMd: 32 1375 Random 19-Jan-24  M1: 230 969 Random + Adaptation
22-Apr-22  M1l: 134 1613 Random 23-Jan-24  PMd: 333 969 Random + Adaptation
28-Apr-22  S1:50 1524 Random 24-Jan-24 ~ PMd: 333 1126 Random + Adaptation
29-Apr-22  MI: 82 1770 Random 26-Jan-24  PMd: 175 1200 Random + Adaptation
04-May-22 PMd: 73 1421 Random 29-Jan-24  PMd: 256 1419 Random + Adaptation
05-May-22 PMd: 32 1254 Random 30-Jan-24  PFC: 231 1157 Random + Adaptation
06-May-22  S1:39 1562 Random 31-Jan-24  dIPFC: 306 1347 Random + Adaptation
12-May-22 PMd: 57 1657 Random 01-Feb-24  PMd: 336, dIPFC: 219 1221 Random + Adaptation
13-May-22  S1: 42 1691 Random 02-Feb-24  dIPFC: 329, VLA: 243 1231 Random + Adaptation
16-May-22 M1: 87 1932 Random 05-Feb-24  dIPFC: 342, VLA: 254 1262 Random + Adaptation
18-May-22  M1: 59, PMd: 133 1735 Random 06-Feb-24  S1:113 1539 Random + Adaptation
25-May-22 PMd: 39 1855 Random 08-Feb-24  S1:23, M1: 192 1342 Random + Adaptation
26-May-22  S1: 35, PMd: 219 1653 Random 09-Feb-24  S1:102, VLpd: 204 1413 Random + Adaptation
27-May-22  S1: 20, PMd: 89 1699 Random 19-Feb-24  SMA: 157 688 Random + Adaptation
14-Dec-22  PMd: 102, dIPFC: 299 964 Random + Adaptation 20-Feb-24  SMA: 95, preSMA: 92 1068 Random + Adaptation
15-Dec-22  PMd: 7, dIPFC: 347 1347 Random + Adaptation 21-Feb-24 SMA: 161, preSMA: 151 1615 Random + Adaptation
02-Feb-23 ~ PMd: 36, dIPFC: 128 1078 Random + Adaptation 28-Feb-24  VPL: 131 1471 Random + Adaptation
03-Feb-23 ~ PMd: 16, dIPFC: 309 1755 Random + Adaptation 29-Mar-24  M1: 164, PMd: 196 1120 Random + Adaptation
09-Feb-23 ~ PMd: 18, dIPFC: 24 910 Random + Adaptation
10-Feb-23  PMd: 37, dIPFC: 111 1344 Random + Adaptation
14-Feb-23  PMd: 2, dIPFC: 46 959 Random + Adaptation
15-Feb-23 ~ PMd: 10, dIPFC: 89 1138 Random + Adaptation
16-Feb-23  MI: 60 1424 Random + Adaptation
17-Feb-23  S1:81 1724 Random + Adaptation
24-Feb-23  S1: 136, M1: 132 1077 Random + Adaptation
01-Mar-23  S1: 116, M1: 207 1301 Random + Adaptation
03-Mar-23  PMd: 69 1719 Random + Adaptation

Date, number of recorded neurons from each area, number of successful trials, and experiment type for all individual recording sessions across both monkeys.
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Neural data collected using Spike-GLX (v3.0)
NMT v2 Macaque Atlas was used for planning electrode trajectories in combination with pre-acquired MRl and CT.
Further details regarding data collection are described in the Methods section of the manuscript.

Data analysis MR and CT images were processed and co-registered using 3D Slicer (v5.2)
Spike sorting was completed offline using either decentralized drift correction (within spikeinterface) and Kilosort 2.0, or using Kilosort 4.0.
Neural network modeling used the MotorNet toolbox (v0.2.0).
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The neural data that support the findings of this study are openly available in the Dryad digital repository at https://doi.org/10.5061/dryad.Ovt4b8hbr. Human data
will be shared upon reasonable request by the corresponding author.
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Reporting on sex and gender Twenty healthy individuals (13 males and 7 females, aged 18-35 years, 2 left handed) participated in our human experiment.
No analyses related to sex were undertaken, and no information about gender was collected.

Reporting on race, ethnicity, or No information regarding race, ethnicity, or other groups was collected.
other socially relevant

groupings

Population characteristics Participants were healthy individuals aged 18-35. All participants reported normal or corrected-to-normal vision and no
history of neuromuscular impairments.

Recruitment Participants were recruited through word of mouth and an internal university experimental subject pool. The experiment
addresses low-level motor functions that are unlikely to be affected by a less diverse participant pool, although this question
is a topic of future work.

Ethics oversight Participants were paid for their time and were able to withdraw from the study at any time. The study was approved by the

Office of Research Ethics at the University of Western Ontario.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
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Sample size We analyzed data from two non-human primates, collected over dozens of sessions per animal. In non-human primate research, a few
sessions across two animals is generally considered sufficient when results are robust across animals.
We analyzed data from 20 human participants. No sample size calculation was performed, although this number of participants falls within
the typical range for similar studies.

Data exclusions  No data were excluded from analysis.

Replication All primary reported behavioral and neural results were independently replicated in each animal by pooling neural data across the many
recording sessions of each animal. Human participant behavioral and physiological results were confirmed at the population level. No
additional replications were undertaken.

Randomization  All subjects (either human or non-human primate) experienced the same experimental design and trials were randomized.

Blinding All subjects (either human or non-human primate) experienced the same experimental design and trials were randomized. Experimenters did
not have influence over presented conditions.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI |:| ChlIP-seq
Eukaryotic cell lines IZI |:| Flow cytometry
Palaeontology and archaeology |:| IZI MRI-based neuroimaging
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Two male rhesus macaques (Monkey M, Macaca mulatta, 10 kg, 15 years old; Monkey P, Macaca mulatta, 16 kg, 11 years old)
participated in the study.

Wild animals No wild animals were used in this study.
Reporting on sex Two males were used in the study. Sex was not considered in the study design.
Field-collected samples  No field-collected samples were used in this study.

Ethics oversight All procedures described were approved by the Institutional Animal Care and Use Committee at Western University (Protocol
#2022-028).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks

Novel plant genotypes

Authentication

N/A

N/A

N/A

Magnetic resonance imaging

Experimental design

Design type

Design specifications

N/A

N/A

Behavioral performance measures ~ N/A
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Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI |:| Used

Preprocessing

Preprocessing software

Normalization

Normalization template
Noise and artifact removal

Volume censoring

MR and CT images were processed and co-registered using Slicer3D (v5.2)

The AFNI @animal_warper function was used for normalization. T1 sequences were volume normalized using a non-linear

T1 Structural

77

Slice thickness = 0.5mm.

Orientation = right-anterior-superior.

whole brain

|X| Not used

approach.

Macaque NMT v2

N/A

N/A

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type of analysis: | Whole brain || ROI-based || Both

Statistic type for inference

(See Eklund et al. 2016)
Correction

Models & analysis

n/a | Involved in the study

N/A

N/a

N/A

N/A

|X| |:| Functional and/or effective connectivity

|X| |:| Graph analysis

|X| |:| Multivariate modeling or predictive analysis

>
Q
S
(e
=
)
o
o)
=
o
=
—
@
§o)
o)
=
>
Q@
wv
c
S
3
Q
<L

€20z |udy




	Sensory expectations shape neural population dynamics in motor circuits

	Reflexes reflect sensory expectations

	Sensory expectations shape neural activity

	Sensory expectations accumulated from experience

	Sensory expectations emerge in models

	Discussion

	Online content

	Fig. 1 Long-latency stretch reflexes are sensitive to sensory expectations.
	Fig. 2 Sensory expectations shape preparatory activity in motor cortical areas.
	Fig. 3 Sensory expectations shape preparatory activity in motor but not sensory thalamus.
	Fig. 4 Only some areas represent sensory expectations accumulated from experience.
	﻿Fig. 5 Models of closed-loop motor control develop sensory expectations dependent on feedback timing.
	﻿Fig. 6 Schematic of the neural dynamics of sensory expectations.
	Extended Data Fig. 1 Elbow velocity inversion time distributions in human participants.
	Extended Data Fig. 2 Perturbation responses in human brachioradialis and medial triceps.
	Extended Data Fig. 3 Elbow velocity inversion times distributions in monkeys.
	Extended Data Fig. 4 Timing of perturbation direction detection and perturbation detection signals across areas.
	Extended Data Fig. 5 Models with one-hot probability cue inputs develop sensory expectations.
	Extended Data Fig. 6 Models without a condition-independent perturbation signal don’t express sensory expectations.
	Extended Data Fig. 7 Probability representations are widespread during preparation and are replaced by prediction error and perturbation direction representations during movement.
	Extended Data Table 1 Recording session information.




