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Sensory expectations shape neural 
population dynamics in motor circuits

Jonathan A. Michaels1,2,3 ✉, Mehrdad Kashefi1, Jack Zheng1,2, Olivier Codol1, Jeffrey Weiler1, 
Rhonda Kersten2, Jonathan C. Lau1,4, Paul L. Gribble1,2,5, Jörn Diedrichsen1,6,7 & 
J. Andrew Pruszynski1,2,5 ✉

The neural basis of movement preparation has been extensively studied during self-
initiated actions, in which motor cortical activity during preparation shows a lawful 
relationship to the parameters of the subsequent action1,2. However, movements 
are regularly triggered or corrected on the basis of sensory inputs caused by 
disturbances to the body. Since such disturbances are often predictable, and  
since preparing for disturbances would make movements more prescise, we 
hypothesized that expectations about sensory inputs also influence preparatory 
activity in motor circuits. Here we show that when humans or monkeys are 
probabilistically cued about the direction of future mechanical perturbations, they 
incorporate sensory expectations into their movement preparation and improve 
their corrective responses. Using high-density neural recordings, we establish  
that sensory expectations are widespread across the brain, including the motor 
cortical areas involved in preparing self-initiated actions. The geometry of these 
preparatory signals in the neural population state is simple, and scales directly  
with the probability of each perturbation direction. After perturbation onset,  
a condition-independent signal shifts the neural state leading to rapid responses 
that initially reflect sensory expectations. Using neural networks coupled to a 
biomechanical model of the arm3, we show that this neural geometry emerges only 
when sensory inputs signal that a perturbation has occurred, before resolving the 
direction of the perturbation. Thus, just as preparatory activity sets the stage for 
self-initiated movement, it also configures motor circuits to respond efficiently to 
sensory inputs.

Humans and animals are often able to prepare a movement in advance 
and such preparation generally makes movements more precise. The 
neural basis of movement preparation and its relationship to movement 
execution has frequently been studied with delayed action paradigms, 
in which the nature of a future movement is instructed but its execution 
must wait until a subsequent go cue (reviewed in refs. 1,2). During the 
preparatory period, between the movement instruction and the go 
cue, muscle activity remains unchanged but motor cortical activity 
represents parameters of the future movement4–11, predicts move-
ment variability12 and reaction time13–16, and is causally linked to motor 
execution17,18, presumably by setting the initial state of the dynamical 
system that ultimately produces movement19–21.

Although preparing specific movement parameters is an essential 
aspect of self-initiated actions, movements are regularly triggered or 
corrected on the basis of sensory inputs caused by disturbances to the 
body or environment. Since such disturbances can often be predicted, 
and since preparing for potential disturbances would improve motor 
performance, we hypothesized that sensory expectations should also 

directly shape preparatory activity in motor cortical circuits. Such 
a scheme is a key prediction of theories of biological motor control 
based on optimal feedback control1,22,23 and would be consistent with 
previous reports that motor cortical areas rapidly respond to sensory 
inputs (reviewed in refs. 24,25) in a way that accounts for biomechani-
cal26 and task constraints27–32.

Here we show that when cued about the likely direction of future 
mechanical perturbations, humans and macaque monkeys read-
ily incorporate expectations about the upcoming sensory input  
into their movement preparation and that this preparation improves 
their performance. We then demonstrate that information about sen-
sory expectations is robust and widespread in monkey motor circuits, 
but not early sensory areas. The neural geometry of these signals is 
simple, directly representing the probability of each perturbation 
direction. Finally, we develop a normative model of the motor sys-
tem that shows how this neural geometry is beneficial for counter-
ing perturbations and how it relies on the timing of incoming sensory  
signals.
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Reflexes reflect sensory expectations
To investigate whether expected sensory inputs shape preparatory 
activity in motor cortical areas, we designed a task in which human 
participants were given probabilistic information about how a future 
mechanical perturbation would displace their arm. Participants (n = 20) 
sat in an exoskeleton robot and maintained the position of their hand 
within a small central target while countering a constant background 
load (Fig. 1a and Methods). On each trial, they were randomly shown 
one of five visual cues that explicitly informed them about the prob-
ability that their elbow joint would be flexed or extended by an upcom-
ing mechanical perturbation (Fig. 1b). After an unpredictable delay, a 
perturbation drawn from the cued probability distribution was applied 
to their elbow joint. Participants were instructed to respond to the 
perturbation by moving their hand into a large goal target as quickly 
and accurately as possible.

Participants were very good at the task (success rate: 85.7 ± 6.3%; 
mean ± s.d.), and rarely initiated a movement incorrectly during catch 
trials without perturbations (error rate: 5.0 ± 3.5%). The probability 
cues biased task performance in a graded manner, with participants 
countering perturbations most effectively if the visual cue indicated 
with 100% certainty that the particular perturbation direction would 

occur, with a graded response for lower-probability cues (Fig. 1c, left). 
This effect was even more visible in the mean-subtracted elbow kin-
ematics (Fig. 1c, middle). That is, elbow displacement decreased for the 
same perturbation as the probability of that perturbation increased. 
Statistical analysis showed a reliable difference in elbow kinematics as 
a function of probability in the movement period (0–400 ms after per-
turbation onset; repeated-measures ANOVA, F(3,19) = 59.75, P < 10−6).

It is unlikely that participants had been making binary guesses in 
line with the most likely perturbation on individual trials, causing 
the average to show a graded response, as the distribution of elbow 
velocity inversion times following perturbation onset generally tended 
towards slower responses as perturbations became less likely, showing 
unimodal distributions (see Extended Data Fig. 1 for individual partici-
pant distributions). Indeed, these distributions did not significantly 
differ from a unimodal distribution for any participant or probability 
(Hartigan’s dip test on extension conditions, all P > 0.13), although 
we may not have the statistical power to fully exclude this possibility 
in all participants.

We specifically chose mechanical perturbations that evoked stretch 
reflexes because the various components of the stretch reflex involve 
different neural circuits33. The short-latency component, measured as 
muscle activity occurring 20–50 ms after muscle stretch, is generated 
entirely by spinal circuits33. The long-latency component, measured as 
muscle activity occurring 50–100 ms after muscle stretch, includes a 
contribution from motor cortical areas via the transcortical feedback 
pathway24,34. Thus, if motor cortical circuits are set in accordance with 
sensory expectations, long-latency stretch reflexes should be sensi-
tive to the probabilistic information about the direction of the future 
mechanical perturbation. Indeed, previous studies using a similar 
approach have shown that the long-latency stretch reflex is shaped by 
many parameters that influence preparatory activity in motor cortical 
areas in the context of self-initiated movements26–29.

As expected, our mechanical perturbations evoked excitatory or 
inhibitory stretch reflex responses starting around 20 ms after muscle 
stretch, depending on whether the perturbation lengthened or short-
ened the muscle (Fig. 1d and Extended Data Fig. 2). Notably, stretch 
reflex responses were initially insensitive to probability information, 
which emerged in a graded manner approximately 70 ms after muscle 
stretch, within the long-latency epoch associated with the transcortical 
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Fig. 1 | Long-latency stretch reflexes are sensitive to sensory expectations. 
a, Human participants were seated in the KINARM exoskeleton robot, allowing 
presentation of visual stimuli, tracking of the arm and application of mechanical 
forces to the shoulder and elbow. Image credit: Erika Woodrum, Erika Woodrum 
Art, Ltd. b, Participants held their hand at a small central target while resisting  
a background load and were shown a peripheral goal target. On single trials 
participants received one of five visual cues indicating the probability that the 
upcoming mechanical perturbation would flex or extend their elbow joint and 
thus push their hand into or out of the goal target. After a variable delay, a 
perturbation drawn from the displayed probability distribution was applied 
and participants had to respond to the perturbation by moving their hand into 
the goal target quickly and accurately. Note that the five visual cues ultimately 
map onto eight experimental conditions because three of the visual cues (that 
is, 25%/75%, 50%/50% and 75%/25%) lead to two possible perturbations. c, Mean 
elbow kinematics across participants (n = 20) showed that participants 
responded to the perturbations in a graded manner, in which the speed with 
which participants moved to the target depended on the cued probability of 
each perturbation. Middle, the mean-subtracted elbow kinematics. Right, the 
mean hand kinematics. d, Mean biceps muscle activity measured via surface 
electromyography (EMG) as a function of perturbation direction and probability 
cue. Note that the initial excitatory response to extension perturbations in the 
short-latency reflex (SLR) window is the same for all probability cues, but that 
the subsequent excitatory response in the long-latency reflex (LLR) and voluntary 
windows is scaled by the probability cues. a.u., arbitrary units. e, Mean muscle 
responses were significantly modulated by probability cues in the long-latency 
reflex and voluntary windows (repeated-measures ANOVA, P < 0.001).
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feedback pathway (Fig. 1e). We found no reliable effect of probability 
in the short-latency epoch (short-latency reflex, 20–50 ms after per-
turbation onset; repeated-measures ANOVA, F(3,19) = 2.35, P = 0.08). 
By contrast, we did find a reliable effect of probability in both the 
long-latency (long-latency reflex, 50–100 ms; F(3,19) = 7.55, P = 0.0002) 
and voluntary (100–150 ms; F(3,19) = 18.28, P < 0.0001) epochs. Note 
that this modulation did not reflect anticipatory modulation of muscle 
activity prior to the perturbation35, as there was no reliable effect of 
probability on muscle activity immediately prior to muscle stretch 
(background, −200 to 0 ms; F(3,19) = 0.86, P = 0.46).

Together, these results show that participants prepare perturbation 
responses on the basis of sensory expectations and suggest that this 
process engages motor circuits via the transcortical feedback pathway.

Sensory expectations shape neural activity
Our finding that long-latency stretch reflexes are sensitive to sensory 
expectations strongly suggests motor cortical involvement but cannot 
establish a direct link to its preparatory state. To directly test whether 
sensory expectations shape preparatory activity in motor cortical 
areas, we trained two macaque monkeys in a similar version of the 
task performed by human participants (Fig. 2a and Methods). In this 
version, monkeys returned their hand to a single central target when 
perturbations flexed or extended their elbow joint. Unlike human par-
ticipants, who were verbally informed about the probabilistic nature 
of the cues and enacted the association immediately, monkeys learned 
to associate the visual cues with probabilities through experience over 
several months.

After training, monkeys were very good at the task, completing a 
large percentage of initiated trials correctly (monkey M: 89.1 ± 4.1%, 
monkey P: 93.2 ± 1.9%; mean ± s.d. over sessions) and rarely starting 
their response before perturbation onset (monkey M: 7.3 ± 3.1%, mon-
key P: 5.4 ± 1.6%). Similar to human participants, monkeys showed a 
clear effect of the probability cue on their elbow kinematics in the 
400 ms following the perturbation (Fig. 2b; one-way ANOVA of single- 
trial elbow angle over probability conditions, monkey M: extension  
F(3, 16424) = 79.6, P < 10−6, flexion F(3, 16274) = 169.3, P < 10−6; monkey 
P: extension F(3, 7099) = 61.8, P < 10−6, flexion F(3, 7054) = 35.5, P < 10−6), 
demonstrating that they learned to prepare for future perturbations 
on the basis of the probability cue. Also similar to human participants, 
it is unlikely that these differences were caused by guessing what per-
turbation would occur on individual trials, since the distribution of 
elbow velocity inversion times following elbow perturbations did not 
significantly differ from a unimodal distribution (Hartigan’s dip test, 
trials pooled across sessions and each condition tested separately; 
monkey M: all P values > 0.81; monkey P: all P values > 0.64; see Extended 
Data Fig. 3 for individual distributions).

Having established that monkeys use probabilistic cues to prepare 
their responses to mechanical perturbations, we recorded single neu-
rons from multiple brain areas to assess how neural population activity 
supported this preparation. To do so, we developed a new recording 
setup allowing parallel single neuron extracellular recording using 
Neuropixels probes (Methods). In both monkeys, we recorded from 
four areas potentially involved in this preparation (Fig. 2c): primary 
somatosensory cortex (S1), primary motor cortex (M1), dorsal premo-
tor cortex (PMd) and dorsolateral prefrontal cortex (dlPFC), record-
ing from 8,141 single neurons in total (see Extended Data Table 1 for a 
breakdown of all recording sessions).

We used demixed principal component analysis (dPCA) to decom-
pose neural population activity into task-related components, including 
probability information (that is, the visual cues), perturbation direction 
(elbow flexion or extension), condition-independent changes, and any 
linear interactions. To fit dPCA, neurons within each brain region were 
pooled across recording sessions. Once these dimensions were found, 
they were used to project simultaneously recorded neurons onto dPCs 

for single trials. Figure 2d shows the single-trial correlation between the 
top probability dimension of each area and the perturbation probability 
throughout the preparation time. Between the cue and perturbation 
time, the top probability dimension was predictive of probability to 
some extent in each area, however, there were clear differences across 
areas. Notably, PMd and dlPFC showed a single-trial correlation with 
probability around 100 ms after the cue was presented, followed by 
ramping probability information in M1. By contrast, representations 
in S1 were very small and ramped up latest during preparation.

To visualize the nature and extent of these representations, we plot-
ted the condition-averaged neural population activity of each area 
projected into the top dPC of each factor (Fig. 2e,f). During prepara-
tion, conditions corresponding to identical visual cues overlap in the 
probability dimension, leading to five distinct clusters of traces. These 
probability representations were clearest in PMd and M1, reaching their 
peak shortly before the perturbation and then decreasing through-
out the movement period. As expected, the probability dimensions 
represented only probability information and did not delineate what 
perturbation was actually applied, demonstrating that probability 
information was linearly separable from perturbation information. We 
next considered how the neural geometry was structured. Although 
dPCA did not look for any particular ordering of the cues, the top 
probability dimension clearly ordered these cues by the probability 
magnitude, especially in M1 and PMd. The top perturbation dimension 
clearly separated the two perturbation directions in all areas except 
in dlPFC, where representation of perturbation direction was small.  
A supplementary analysis confirmed that perturbation direction infor-
mation was evident earliest in S1, followed by M1 and PMd (Extended 
Data Fig. 4a).

Also notable is that all areas showed dominant condition-independent 
signals, which vary across time but not in relation to other task vari-
ables. These varied across areas, with S1 and M1 showing the sharp-
est responses to the perturbation, while higher order areas (PMd and 
dlPFC) showed less sharp responses to the perturbation and greater 
ramping during preparation. The origin of the condition-independent 
signal at perturbation onset is unclear (see Discussion), since the major-
ity of sensory inputs from the periphery would be directional and show 
an opposite response for different elbow perturbation directions.

To summarize these results across all dPCs, we examined the total 
variance explained by each factor (including interactions and residual 
variance) across areas and monkeys (Fig. 2g,i). We found a clear gradient 
of probability information across areas, with probability information 
least dominant in S1 and becoming more dominant in M1, PMd and 
dlPFC. Conversely, we found the reverse gradient for perturbation 
information, from most dominant in S1 to least dominant in dlPFC. The 
interaction of probability and perturbation explained only a very small 
amount of variance overall. Notably, condition-independent dimen-
sions represented the majority of variance explained in all areas, high-
lighting the importance of these time-varying signals and in line with 
previous work during self-initiated movements36,37. A supplementary 
analysis showed that condition-independent perturbation responses 
were generally evident earlier in S1 than in M1 and PMd (Extended Data 
Fig. 4b). Residual variance not captured by dPCA was very small, with 
the exception of dlPFC, suggesting that the remaining variance is either 
not linearly separable or related to other factors not experimentally 
controlled.

Finally, if the probability dimension causally relates to the behav-
ioural response to the perturbation, we would expect that fluctuations 
in the probability dimension on single trials would affect behaviour on 
the same trials. To test this idea, we used the single-trial projections 
of neural activity onto the first probability dimension and correlated 
them with elbow velocity in the first 150 ms following the perturbation 
period (Fig. 2h,j). In previous analyses, some probability information 
was present in dlPFC and S1. However, we did not observe any clear 
correlation between single-trial fluctuations in probability information 
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and subsequent elbow velocity after the perturbation. By contrast, 
neural activity immediately before the perturbation in both M1 and 
PMd significantly predicted elbow velocity after the perturbation on 
single trials, suggesting that the probability representation in these 

areas may directly modulate rapid responses to perturbations, a result 
consistent with their key role in the transcortical feedback pathway.

Given the widespread presence of sensory expectation signals in 
multiple cortical areas, we extended our recording setup to enable 
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task performed by human participants, using a non-human primate version of 
the KINARM exoskeleton robot, needing to return to a central target after having 
their arm displaced out of the target by an elbow perturbation. Image credit: 
Erika Woodrum, Erika Woodrum Art, Ltd. b, Mean elbow kinematics across 
recording sessions showed clear scaling by probability cue in both perturbation 
directions. c, Single neurons were recorded over sessions from four cortical 
areas: S1, M1, PMd and dlPFC. d, dPCA was performed across the single neurons 
of each area to disentangle task-related signals at the population level. Projections 
onto the top probability demixed principal component (dPC) were used to 
predict probability magnitudes on single trials pooled across all sessions of 

each area. Thick coloured lines indicate correlations significantly greater than 
chance, where chance level was obtained by randomly shuffling probability 
conditions and correlating with the true probability condition (one-sided 
permutation test, P < 0.001, 10,000 iterations). e,f, Top dPCs are plotted for 
each task factor (probability, perturbation, condition-independent) across 
areas for monkey M (e) and monkey P (f). dPCs are normalized to the maximum 
value of each task factor pooled across areas. g, Summary of total variance 
explained per task factor in each area for monkey M. h, Mean prediction of single- 
trial elbow velocity in the 150 ms after the perturbation by the top probability 
dPC, performed separately for each perturbation direction and averaged, 
chance level calculation as in d. i,j, The same analyses as in g (i) and h ( j), for 
monkey P.
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the use of 4.5 cm Neuropixels38 in monkey P, to target subcortical and 
cortical medial wall structures. Thalamus is particularly interesting, 
given the rich and differentiated input and output connectivity of 
its various nuclei. We targeted the ventroposterior lateral thalamus 
(VPL), the ventral lateral posterodorsal thalamus (VLpd), and the 
ventral lateral anterior thalamus (VLa). VPL receives tactile and pro-
prioceptive information from the cuneate nucleus and has dense 
projections to S1 (ref. 39) and M1 (ref. 40), whereas VLpd receives 
primarily cerebellar input and projects to the the supplementary 
motor area (SMA) and PMd/M1 (ref. 41), and VLa receives pallidal 
input and projects to SMA/PMd/M1 (refs. 41,42), motivating us to 
also record from SMA. Performing the same dPCA analysis as in Fig. 2, 
we found that probability information was present in most of these 
areas rapidly after cue presentation (Fig. 3b), reinforcing that this 
information is widespread in the motor circuit. Specifically, VLa 
and VLpd showed an increase in probability prediction in the top 
probability dPC within 100 ms of the cue, followed closely by SMA.  
By contrast, the VPL showed only low levels of prediction much later 
in preparation, similar to what we observed in S1. Note that observing 
low levels of probability decoding later during preparation in VPL 
relative to S1 does not contradict the expected hierarchy of these 
areas, since any preparatory-related probability activity is likely to 
be a consequence of top-down signals.

A summary of variance explained (Fig. 3d) shows that, as in previ-
ous analyses, condition-independent information was by far the most 
dominant. SMA and VPL had the largest perturbation responses, and 
probability information in VPL accounted for less than 0.3% of total 
variance. A supplementary analysis of perturbation responses showed 
that the timing of perturbation information in VPL was similar to S1 
(Extended Data Fig. 4). Visualizing the projections in the top dPC for 
probability (Fig. 3c) confirms that probability information was minimal 
in the VPL. It is noteworthy that the geometry of probability information 
in the other thalamic nuclei and SMA were organized by relative prob-
ability, as observed in other cortical areas (Fig. 2). Post-perturbation 
elbow velocity was weakly predictable from the top probability dPC 
of all these areas close to perturbation time (Fig. 3e), suggesting some 
direct dependence between neural state and subsequent behaviour, 
although this relationship was much weaker than what was observed 
in PMd and M1.

Together, these results point to a strong and widespread representa-
tion of sensory expectations in cortical and subcortical motor circuits 
but not early sensory areas.

Sensory expectations accumulated from experience
In our previous experiments, humans and monkeys were shown a ran-
dom probability cue on each trial, making the visual cue the only source 
of information for forming sensory expectations. Although examples 
like this exist in natural environments, expectations about future sen-
sory inputs can also be discovered through experience interacting with 
the environment. Therefore, we designed an additional experiment to 
investigate the neural representation of sensory expectations acquired 
over multiple trials. In this experiment (Fig. 4a and Methods), monkeys 
received alternating blocks of randomly cued probabilities (presented 
visually) and adaptation blocks where perturbations were drawn from 
a single randomly chosen probability distribution that was not visually 
cued to the monkey (for example, 75% extension). We did not include 
the 100% probability conditions in the adaptation blocks to maintain 
some uncertainty about the underlying distribution. In adaptation 
blocks, the only way to determine the underlying perturbation prob-
ability distribution was by experiencing a succession of perturbation 
trials. In monkey M, we recorded 333 neurons in S1, 399 in M1, 244 in 
PMd, and 1,329 in dlPFC. In monkey P, we recorded 215 neurons in S1, 
586 in M1, 1,629 in PMd, 1,427 in dlPFC, 131 in VPL, 204 in VLpd, 497 in 
VLa, and 413 in SMA.

Both monkeys adapted to the distribution of experienced pertur-
bations, scaling their responses on the basis of the probability of the 
underlying distribution (Fig. 4b,c). To dissect the time course of this 
adaptation, we aggregated all of the visually cued trials across sessions 
(for each monkey and perturbation direction separately) and fit linear 
regressions to predict the probability distribution of each trial on the 
basis of the post-perturbation kinematics (shoulder and elbow velocity 
0–400 ms post-perturbation; L1 regularization coefficient selected 
using Bayesian optimization with 5-fold cross-validation). We used this 
regression fit on the visually cued blocks to predict probability condi-
tions on adaptation trials and assessed performance as the Spearman 
correlation for trials at all points within an adaptation block (Fig. 4d,e). 
For both monkeys, post-perturbation kinematics started showing a 
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significant representation of probability condition 10–20 trials into 
the adaptation block. An optimal Bayesian integrator would reach 95% 
confidence in the most likely probability distribution after around 15 
trials in the case in which each of the 3 distributions are equally likely, 
as was the case in our experiment.

To test which brain areas show a similar representation of sensory 
expectations in the visually cued and adaptation conditions, we 
repeated the previous regression analysis instead using populations 
of neurons in each area to predict probability, training the regression on 

the visually cued blocks and testing on the adaptation blocks (Fig. 4f,g). 
Across monkeys, we found that probability representations in the adap-
tation blocks were only found consistently in PMd and M1, starting 
earlier in PMd, suggesting that these areas either are involved in the 
accumulation of evidence forming particular sensory expectations, 
or receive this information from other unrecorded areas. In monkey P,  
despite some subcortical (VLa and VLpd) and cortical (SMA) areas 
showing probability representations during our visually cued experi-
ment, only SMA and VLpd showed a clear representation of probability 
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monkey P.
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during the adaptation experiment. Of all areas examined, VLpd showed 
a significant representation of probability earliest in the block and did 
not show a significant representation at the end of the block. The sign 
of the significant correlation for VLpd was also reversed, suggesting 
that it may have a different role during visually cued trials and adapta-
tion trials.

Together, these results suggest that some brain regions, most promi-
nently PMd, show similar neural representations of probability during 
visually cued and adaptation trials, and that the earliest representations 
were present in the cerebello-thalamic inputs to cortex.

Sensory expectations emerge in models
Our results demonstrate the strong presence of sensory expectations in 
motor circuits. We next considered the conditions under which neural 
networks learn to represent sensory expectations and how such rep-
resentations improve motor performance. To address this, we used 
our open source toolbox, MotorNet3, to create closed-loop models of 
reaching in which recurrent neural networks actuate realistic muscles 
to control a two-link model of the arm and receive delayed sensory 
feedback (Fig. 5a and Methods).

Matching standard numbers of human participants included in 
behavioural experiments, we trained 32 networks on a random reach-
ing task in which they produced reaches between random points in 
the workspace after receiving unpredictable perturbations delivered 
directly to the joints of the arm model. Paralleling the monkey’s expo-
sure to both everyday movements and the experimental task (Fig. 2), 
network training interleaved iterations of the random task and a  
version of the experimental task similar to the one the monkeys 
performed. During the experimental task, the networks also received 
a probability cue as in the human and monkey experiments. Delayed 
proprioceptive feedback allowed the model to detect displacement due 
to mechanical perturbations applied to the limb. Notably, mirroring 
what we observed empirically in early sensory areas (VPL and S1), we 
included a condition-independent perturbation signal as part of the 
proprioceptive feedback that signalled when a perturbation occurred 
but did not provide information about perturbation direction.

After training, model parameters were frozen, and they were tested 
on a version of the experimental task similar to Fig. 2. Of note, although 
the models were not trained to produce a specific movement trajectory 
or pattern of muscle activity, the models responded more quickly to 
perturbations that were more likely than to perturbations that were less 
likely (Fig. 5b), closely resembling humans and monkeys. The models 
learned this association between probability cues and perturbation 
probability by experiencing many perturbations paired with each visual 
cue, and the same pattern of results was obtained in networks with a 
one-hot input for visual cues (Extended Data Fig. 5), as well as networks 
reaching peripheral targets as in Fig. 1. Behavioural effects were due 
to scaling of muscle responses soon after perturbation onset, starting 
in an epoch akin to the long-latency reflex window due to the sensory 
delays introduced into our feedback loop (Fig. 5b, right).

Decomposing neural activity of the model in the same way that we did 
for monkey data using dPCA revealed very similar dimensions for prob-
ability, perturbation and condition-independent signals as observed in 
the empirical data (Fig. 5c). Notably, the geometry of sensory expecta-
tions was simple and similar to the empirical data, directly representing 
relative probability. To test whether this probability dimension was 
causally responsible for the behavioural effects that we observed, we 
eliminated all neural activity projecting into this dimension by sub-
tracting the appropriate amount of neural activity from each neuron at 
each time point in the trial, without retraining the networks. Figure 5d 
demonstrates that when this dimension was eliminated the scaling of 
kinematic responses by probability was almost completely abolished. 
This effect was quantified by calculating the modulation depth due to 
probability during movement (Fig. 5e; maximum divergence between 

elbow kinematics for 100% flexion and 100% extension conditions in 
−100 to 300 ms around perturbation onset), which confirmed that 
the effect of sensory expectations on motor performance were almost 
completely driven by this dimension.

Finally, it was important to understand what constraints allowed 
the model to take advantage of probability information in its feedback 
responses. To investigate this question, we modified the timing of 
the condition-independent perturbation input by manipulating its 
latency from its original value of 20 ms post-perturbation, without 
retraining the networks (Fig. 5f). The effectiveness of sensory expec-
tations decreased very quickly as the latency increased, showing 
essentially no effect once it was delayed more than about 50 ms, while 
reducing the latency increased the effectiveness of sensory expecta-
tions. Of note, when networks were trained from scratch without the 
condition-independent input to inform them of perturbation onset, 
they were eventually able to correct for perturbations, but they did 
not exhibit responses that scaled with expectations (Extended Data 
Fig. 6). That is, sensory expectations shape feedback responses when 
a perturbation is detected before sensory inputs resolve the ambiguity 
about what perturbation occurred and eliminate the need to respond 
on the basis of prior expectations.

Discussion
Our results demonstrate that humans and monkeys incorporate knowl-
edge about future sensory inputs when preparing a movement and that 
this preparation improves their performance. Neural data show that 
information about sensory expectations is widespread across cortical 
and subcortical areas, generally following a simple neural geometry 
that directly represents the probability of each perturbation direc-
tion. A neural network trained to control a biomechanical model of the 
arm reveals that incorporating sensory expectations into movement 
preparation is advantageous when responding to such disturbances, 
provided that the perturbation is detected early enough to act on sen-
sory expectations before incoming sensory information resolves the 
ambiguity about what perturbation occurred.

The neural representation of sensory expectations is consistent 
with our understanding of motor cortical control19,43. Motor cortex 
has an expansive ability to represent task variables in its preparatory 
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state1, including prior information about goal location44–47 and reward48, 
but we demonstrate here that motor cortical areas directly represent 
expectations about sensory inputs during preparation (Fig. 6, output 
null trajectories). When disturbances do occur, responses are trig-
gered by a condition-independent signal (with a similar profile to the 
condition-independent signal that precedes voluntary movements37) 
that quickly produces a muscle response (Fig. 6, output-potent trajec-
tories). This muscle response proportionally reflects current expecta-
tions about perturbation direction (Fig. 6, muscle activity), similar 
to how goal-directed movements following perturbations reflect a 
continually updating movement plan49. As in self-initiated movements, 
neural activity initially evolves in the neural space on the basis of the 
flow field determined by recurrent dynamics. As sensory information 
about the actual disturbance (in our study, the perturbation direction) 
arrives, the modified flow field directs the neural activity towards the 
trajectory appropriate for the muscle activity necessary to counteract 
the actual perturbation.

In this framework, the straightforward representation of sensory 
expectations in the neural preparatory state can co-exist with dimen-
sions related to other task factors such as goal location, a predic-
tion that can be tested directly in future experiments. Another open 
question is to what extent eye movements have a role in these neural 
representations. Although we did not track eye movements, the wide-
spread presence of sensory expectation signals, as well as the alignment 
between neural data in the visually cued and adaptation experiments, 
suggest that eye movements to visual cues cannot fully explain the 
present results.

In addition to the directional proprioceptive information transmitted 
through cortical areas following perturbations28,29, we found a promi-
nent condition-independent signal upon which feedback responses are 
likely to rely31. The vast majority of information in VPL, the thalamic 
nucleus projecting most strongly to the primary somatosensory cortex, 
was condition-independent, suggesting that this signal could have 
originated in the periphery, spinal cord or brainstem. One possibility 
is that cutaneous receptors, when aggregated together at the level of 
second-order neurons (cuneate nucleus), transiently signal the pres-
ence of a perturbation50. Pacinian corpuscles are a likely candidate, 
owing to their sensitivity to high frequency vibration and the fact that 
their receptive fields cover such large areas, giving them low direc-
tional resolution51. Another possibility is that fusimotor drive through 
gamma motor neurons increases muscle spindle sensitivity such that 
transient vibrations during perturbations in any direction produce a 
condition-independent signal through Ia afferents52. Determining the 
general function of this condition-independent signal and the circuit 
that constructs it is an important area for future work.

Our results have implications for predictive coding, which has 
been proposed as a widespread mechanism for increasing sensi-
tivity to input across the brain53–55. We show that the early sensory 
areas investigated (VPL and S1) show very little predictive coding in 
our task, but very strong condition-independent signals. Predictive 
feedback in early sensory areas has been proposed as a mechanism to 
improve state estimation during movement in the presence of delays56. 
However, in our experiments, there were no ongoing movements 
when perturbations arrived and therefore no corollary discharge 
of motor commands to sensory areas. The presence of the rapid 
condition-independent signal discussed above probably eliminates 
the need for improving state estimation immediately following unex-
pected perturbations, and we see no evidence that sensory predictions 
are used in this case to increase input sensitivity. Furthermore, in a 
supplementary analysis, we found no evidence for a neural represen-
tation of unsigned prediction error, a signal involved in predictive 
coding (Extended Data Fig. 7).

Only a subset of areas showed sensory expectations when these 
expectations were accumulated over trials, namely areas involved with 
motor preparation and execution (SMA, PMd and M1) and VLpd in the 

thalamus, which receives primarily cerebellar input and outputs to 
SMA/PMd/M1 (ref. 41). The presence of probability information earliest 
in the cerebellar thalamus is noteworthy, as the cerebellum has been 
identified as a crucial component of state estimation during action57–59, 
and muscle responses related to the expected duration of a mechanical 
perturbation are eliminated in capuchin monkeys during cooling of 
the dentate nucleus60. Our results suggest that the cerebellum may be 
necessary for initially forming expectations on the basis of experience 
(as in our adaptation experiment), but may have a different role when 
probabilistic information is extracted from sensory inputs (as in our 
visually cued experiment), or once stable sensory expectations have 
been established.

In conclusion, our findings reveal that motor circuit dynamics are 
strongly shaped by sensory expectations and demonstrate a novel 
computational role for preparatory activity in motor circuits1: modu-
lating responses to sensory feedback.
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Methods

Human experiment
Participants. Twenty healthy individuals (13 male and 7 female partici-
pants, 18–35 years of age, 2 left-handed) took part in this experiment. 
All participants reported normal or corrected-to-normal vision and 
no history of neuromuscular impairments. Prior to data collection, 
all participants provided informed written consent. Participants were 
paid for their time and were able to withdraw from the study at any 
time. The study was approved by the Office of Research Ethics at the 
University of Western Ontario.

Apparatus. Participants were seated with their right arm in a KINARM 
robot exoskeleton (Fig. 1a, BKIN Technologies61), allowing flexion and 
extension movement of the shoulder and elbow joints in the horizontal 
plane. The robot can independently apply specific flexion or torques 
at these joints. The two segments of the exoskeleton, consisting of the 
upper arm and forearm, have three adjustable cuff sizes to match the  
dimensions of the participant’s arm. Foam pads were inserted into any 
remaining space between the cuffs to ensure tight coupling of the limb 
to the applied torques. After adjustment of the robot, calibration was 
performed to align a real-time, 0.5 cm diameter cursor on the right index 
fingertip of each participant. The hand-position feedback and visual 
targets of the experiment were displayed in the same horizontal plane as 
the arm movement. These virtual-reality images were projected in front 
of participants at eye-level via an LCD monitor onto a semi-silvered mir-
ror. Before initiating the experiment, an opaque blinder was installed 
beneath the mirror to occlude direct vision of the physical right arm 
during all trials. Kinematic data were sampled at 1,000 Hz.

Experimental procedure. Throughout the duration of the experiment, 
a constant background load of 1 N m extension torque was applied at 
the elbow, pre-exciting the flexor muscles. The use of a background 
load extending the elbow increases the stability and magnitude of 
flexor muscle responses35,62. To initiate each trial, participants moved 
their hand to a target (0.5 cm diameter) representing the external  
angles of 80° and 60° for the elbow and shoulder joints, respectively. 
As instructed, participants tried to exert the minimum force neces-
sary to hold their arm at the home target without co-contraction of 
antagonistic muscles. After 300 ms in the home target, the goal target 
(3.5 cm diameter) appeared for a random period between 400–600 ms 
(Fig. 1b). The design of this task, including the large peripheral target, 
mirrors many previous experiments designed to investigate the role of 
goal information on muscle responses to mechanical perturbations63.  
The goal target was presented at a location that could be reached 
with a 10° pure elbow flexion from the home target. Then the arrow(s)  
indicating the probability of elbow perturbation direction appeared 
for a random period between 800–1,100 ms before the perturbation 
was applied at the elbow. All 5 probability cues were equally likely, 
and randomly selected from a pool of 880 trials. The arrows were cre-
ated with areas directly proportional to the per cent probability. The 
perturbation was then applied (step torque of ±1 N m), which either 
flexed their elbow, moving their hand into the target, or extended their 
elbow, moving the hand away from the target. At the moment the per-
turbation was applied, the probability cues disappeared and visual 
feedback about hand location disappeared for 50 ms. Participants were 
instructed to move to the grey target once they felt the perturbations, 
and to do so in less than 700 ms. If this was achieved, the target changed 
from grey to green. However, if participants took more than 700 ms, 
the target changed from grey to red. This feedback was used to prompt 
participants to move quicker for the next trial if they moved too slowly. 
If participants moved off the home location prior to the perturbation, 
the trial was aborted and repeated later in the experiment. No restric-
tions were implemented on the trajectory of their arm movements. 
Regardless of green or red feedback, after holding their arm at the goal 

target for 400 ms, the torque is returned to the level corresponding to 
the constant background load. Participants then immediately moved 
to the home button to start the next trial.

Participants completed 49 practice trials, which were not included in 
the analysis. As part of the 880 trials, participants randomly received 
10 trials of each condition as a catch trial. During catch trials, the cue 
appeared but the perturbation was never applied. The target auto-
matically turned green after 2 s of holding the home target. Catch trials 
were used to ensure participants were not moving before the onset of 
the perturbation. Rest breaks were provided throughout each experi-
ment at approximately 15–20 min intervals or when requested by the 
participants.

Electromyographic recording. The skin above the muscles of inter-
est was scrubbed using a piece of gauze soaked with rubbing alcohol. 
The EMG electrodes (Delsys Bagnoli-8 system with DE-2.1 sensors) 
were coated with conductive gel (Chattanooga REF4248). The elec-
trodes were taped to the skin surface above the belly of three right 
arm muscles: the short head of the biceps brachii, an elbow flexor; the 
brachioradialis, an elbow flexor; and the medial head of the triceps 
brachii, an elbow extensor. The electrodes were aligned parallel to the 
muscle fibres. A reference electrode was secured on the left clavicle 
of each participant. EMG signals were amplified with a gain of 1,000 
and digitally sampled at 1,000 Hz. The collected EMG data was then 
bandpass filtered at 10–500 Hz using a zero-phase, second-order But-
terworth filter and full-wave rectified.

Muscle activity of elbow flexors were normalized by their mean 
activity from the last 200 ms prior to perturbation onset across all 
trials. Muscle activity of the elbow extensor, medial tricep, was nor-
malized to mean EMG activity during three special trials at the start 
of the experiment. These three trials totalled 11 s with a constant 1 N m 
elbow flexion torque.

Non-human primate experiments
Subjects. Two male rhesus macaques (monkey M, Macaca mulatta, 
10 kg, 15 years old; monkey P, M. mulatta, 16 kg, 11 years old) partici-
pated in the study, which is the standard sample size for electrophysi-
ological experiments in the field. No randomization or blinding was 
undertaken. All procedures described below were approved by the 
Institutional Animal Care and Use Committee at Western University 
(protocol 2022-028).

Experimental procedure. The design of the main monkey experiment 
closely mirrored the human experiment. Throughout the experiment, 
a constant background load of 0.02 N m extension torque was applied 
at the elbow. On each trial, monkeys waited with their fingertip in a 
central target (located under the fingertip when the shoulder and elbow 
angles were 32° and 72°, respectively; target size: 1.2 cm diameter).  
After a variable delay (600–800 ms), one of the five possible probability 
cues appeared randomly. In the monkey experiment, the probability 
arrows were coloured to further differentiate them (dark blue, 100% 
extension; light blue, 75% extension; white, 50% extension; light orange, 
25% extension; dark orange, 0% extension). If at any point before the 
perturbation, the hand went outside the home target, the trial was 
aborted. Trials were excluded from analysis if at any point during the 
delay period hand velocity exceeded 0.5 cm s−1. For monkey P, these 
trials were aborted in real-time, whereas for monkey M they were  
excluded from analysis. After a variable delay of 800–1,200 ms, monkeys  
received one of two unpredictable elbow perturbations (±0.2 N m step 
torque) which served as a go cue to compensate for the perturbation 
and return to the central target. For monkey M, at the time of pertur-
bation onset all visual feedback was frozen until the hand returned to 
the goal target. For monkey P, all visual feedback was frozen for 150 ms 
after the perturbation. After returning to the central target and holding 
the hand there for 700 ms, a liquid reward was given. In both cases the 
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probability cues remained on until the end of the trial. In 10% of trials, 
after 1,200 ms no perturbation was applied and a liquid reward was 
given. In perturbation trials, the amount of liquid given at the end of 
the trial scaled with the speed of the return movement. Trials in which 
the time between the perturbation and the reward exceeded 1.2 s were 
excluded from analysis.

Electrophysiological recording. We performed high-density extracel-
lular recordings using multiple Neuropixels probe versions (Neuropix-
els 1.0: 1 cm length, Neuropixels 1.0 NHP: 1 cm length, and Neuropixels 
1.0 NHP: 4.5 cm length). After training on basic tasks, both monkeys 
were implanted with custom 3D printed titanium implants (accurate 
to 0.2 mm) that were designed to precisely conform to their individual  
skulls as determined by a model obtained using micro-computed  
tomography. Titanium implants were fixed in the skull using a variable 
number of titanium screws and included a built-in recording chamber 
and head post. Neural recording targets were identified by register-
ing the computed tomography to a pre-surgery MRI (3D Slicer), and 
identifying the 3D location of each brain area by warping segmenta-
tions from a composite macaque atlas to the individual MRI of each  
animal (NMT v2 (refs. 64,65), CHARM64,66 and SARM67 atlases, see ref. 68  
for additional thalamic parcellations). The use of skull conforming 
titanium implants allowed us to precisely plan recording trajectories to 
target desired structures. The precision of our implantation technique 
was confirmed post-mortem in monkey M to be accurate to within 
<0.5 mm on the cortical surface. For the S1 recordings in both mon-
keys and for the VPL recordings in monkey P, targeting was tested by 
applying small displacements to the elbow joint in a passive context 
and showing selective responses. The localization of VPL is further 
supported by rapid condition-independent perturbation responses 
not present in other thalamic nuclei (Extended Data Fig. 4). Finally, in 
a separate experiment in monkey P targeting of the medial geniculate 
nucleus was confirmed using passive listening to auditory tones, further 
confirming the validity of our targeting methods.

After monkeys were trained in the experiment, craniotomies were 
performed over the planned recording areas. In monkey M, a large 
craniotomy was performed to expose the entire recording area, while 
in monkey P, small 2.7 mm burr holes were drilled over recording sites 
as needed. In monkey M, a custom holder was designed (Neuronitek) 
for use with 1.0 cm Neuropixels to allow insertion through the dura 
using 2–4 mm retractable guide tubes and actuated with Narishige 
microdrives. In monkey P, we created a new design (Neuronitek) for 
use with the 4.5 cm NHP Neuropixels to allow insertion through the 
dura using 9 mm retractable guide tubes and actuated using a manual 
microdrive. For each recording configuration, we 3D printed a custom 
holder (Formlabs 3B+, Grey resin V4) that aligned the Neuropixels 
along a specific, pre-defined trajectory targeting the areas of inter-
est. Recordings in S1 primarily targeted Brodmann area 1 and area 3b, 
although recordings in monkey P sampled more densely from area 3b, 
and partially from 3a. Recordings in M1 targeted a mixture of gyral and 
sulcal M1, with the majority coming from gyral M1.

Neural data processing. Neural data were recorded from Neuropixels 
probes using SpikeGLX. Neural data were processed using a custom 
processing pipeline (https://github.com/JonathanAMichaels/Pixel-
ProcessingPipeline). For monkey M, action potential stream data were 
first drift corrected using spike localization and decentralized registra-
tion69,70 implemented in spikeinterface71, which was able to accurately 
track vertical probe drift and correct it. Due to the large craniotomy, 
some of these recordings had large drift (0–250 μm). Neural data were 
then processed with Kilosort 2.0 (ref. 72) to further stabilize recordings 
during spike sorting. For monkey P, drift was minimal due to small 
craniotomies (drift 0–15 μm), so we immediately processed the data 
using Kilosort 4.0 (ref. 72), including built-in drift correction. Single 
neurons were considered successfully recorded if they were flagged by 

Kilosort as single neurons using default parameters, and if they were 
stably recorded for the duration of the recording. To determine whether 
neurons were properly isolated over the course of the recording, we 
generated the average firing rates of each neuron for each condition 
of the main experiment (8 conditions) divided up into 5 equal blocks 
of trials, additionally averaging across all time in each trial (200 ms 
before cue onset to 300 ms after perturbation onset), which yielded 
a matrix of 8 × 5 values for each neuron. We then calculated the mean 
index of dispersion for each neuron (variance over time block divided 
by mean over time block, averaged across conditions) to estimate how 
stable each neuron was over the course of the recording. It is important 
to note that this metric does not test neurons for tuning to the task, 
only for reliable responses over the course of the recording. Neurons 
with an index of dispersion below 2 were included in further analysis. 
The majority of neurons had an index of dispersion <1, and shifting this 
threshold ±1 did not affect results.

In general, no set of selection criteria can definitively classify single 
neurons from multi-unit activity, so as an additional control we exam-
ined whether a stricter inclusion criteria of only units with a peak abso-
lute template amplitude in the range typically associated with single 
neurons (150–300 μV) changed our main findings. The dPCA results 
remained qualitatively unchanged despite removing 53–55% of neu-
rons. In general, it is unlikely that the types of analyses presented in this 
work would be very sensitive to the accidental inclusion of multi-unit 
activity, since at the population level linear dimensionality reduction 
techniques find similar results regardless of whether or not data are 
spike sorted at all73.

Demixed principal components analysis. Principal component 
analysis (PCA) is commonly employed to reduce the dimensionality of 
high-dimensional datasets by finding a low dimensional representation 
that captures large amounts of variance using independent linear com-
binations of neurons. For PCA, given a matrix of data X, where each row 
contains the average firing rates of one neuron for all times and task 
conditions, PCA finds an encoder F and an equivalent decoder D, which 
minimizes the loss function L X FDX= || − ||2 under the constraint that 
the principal axes are normalized and orthogonal, and therefore D F= T. 
Unfortunately, data that are represented in this way often heavily mix 
the effect of different task parameters between latent dimensions. We 
would like to extract dimensions that dissociate our specific task con-
ditions. To achieve this, we performed dPCA with 20 latent dimensions29 
using freely available code: http://github.com/machenslab/dPCA.  
In contrast to PCA, dPCA seeks to explain marginalized variance with 
respect to our specific task variables (probability, perturbation, and 
time), instead of merely explaining total variance. Unlike PCA, dPCA 
utilizes a separate encoder and decoder, such that the loss being opti-
mized was L L X F D X λ F D= ∑ = ∑ (|| − || + || || )φ φ φ φ φ φ

2
φ φ φ

2 , where Xφ is the  
marginalization of the full data with respect to each of our task param-
eters of interest and the λ term is a regularization parameter, prevent-
ing overfitting. Marginalizations of X can be obtained by averaging 
over all parameters which are not being investigated and subtracting 
all simpler marginalizations. In our case the marginalizations of inter-
est were probability × time, perturbation × time, time and probability ×  
perturbation × time. The specific value of λ was determined using 5-fold 
cross-validation for each brain area in each monkey, allowing each 
factor to have a different value of λ φ.

dPCA requires data for all combinations of levels of each factor, which 
was not the case for our data, since in the 100% probability conditions 
the opposite perturbation (0% likely) never occurred. To handle this 
small amount of missing data, we used a technique proposed in the 
original dPCA paper and fit a generalized linear model to each neuron 
at each time point, using the task factors (probability and perturba-
tion) as a design matrix. Using this fit, we generated surrogate data for 
the missing conditions to obtain a balanced design. In order to match 
trial-to-trial variability, firing rates included random Gaussian noise 
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that scaled with the standard error of each model coefficient. While 
this simulated data was used for fitting dPCA, in no case was it used 
during analysis or calculation of variance explained.

Motor control model. We trained a number of neural network models 
to control a biomechanical model of the arm by actuating simulated 
muscles during reaching using our previously developed open source 
toolbox, MotorNet3. For all models, the timestep size was 0.01 s, and we 
included a proprioceptive delay (20 ms), a visual delay (70 ms), and a 
muscle output delay (20 ms). We additionally included Gaussian noise 
at all time steps in the proprioceptive signal (s.d.: 10−3), vision signal 
(s.d.: 10−3), and in the muscle activation signal (s.d.: 10−4). Effectors were 
actuated using numerical integration with the Euler method. The arm26 
model used in this study is available under the RigidTendonArm26 
Effector class. It is described briefly below. The skeleton of the arm26 
models follow the formalization proposed in Mussa-Ivaldi et al.74. The 
full formalization of the Hill-type muscles can be found in Thelen75, 
equations 1–7, and with the parameter values used in that study. When 
different parameters were provided for young and old individuals, the 
values for young individuals were used. In the RigidTendonArm26 class 
the moment arms are approximated as described in Kistemaker et al.76, 
equations A10–A12.

Recurrent neural network architecture. All networks consisted of one 
layer of gated recurrent units (GRUs) with 256 units and standard acti-
vations (update/reset: sigmoid, candidate: tanh). Kernel and recurrent 
weights were initialized using Glorot initialization77 and orthogonal ini-
tialization78, respectively. At all time points we included gaussian noise 
in the candidate activation (before nonlinearity, s.d.: 10−3). Biases were 
initialized at 0. Fifty per cent of GRUs (equivalent results if 100%) were 
connected to the output layer of one node per muscle with a sigmoid 
activation function. The output layer’s kernel weights were initialized 
using Glorot normalization, and its bias was initialized at a constant 
value of −3. Because the output activation function is a sigmoid, this 
initial bias forces the output of the policy to be close to 0 at the start 
of initialization, ensuring a stable initialization state. Fifty per cent of 
GRUs (equivalent results if 100%) received task-related and feedback 
inputs and these units were non-overlapping with units connected to 
the output layer. As task-related inputs, networks received a delayed 
vector (70 ms delay) of (x, y) Cartesian coordinates for the start posi-
tion and target position, target size, directional elbow perturbation 
probability (−1 to 1), and a binary cues indicating when the elbow prob-
ability cues was on, resulting in a 7-element input vector. Networks 
also received delayed feedback (20 ms delay) from the environment 
consisting of proprioceptive signals containing muscle length and 
velocity for each muscle, vision of the (x,y) position of the endpoint 
(70 ms delay), and a non-directional perturbation pulse (equal to one 
20 ms after the perturbation, otherwise 0), resulting in a 15-element 
feedback vector.

Network training. Networks received interleaved training on a ran-
dom reaching task and a probabilistic perturbation task. In the ran-
dom reaching task, trials consisted of delayed reaches between ran-
dom locations in the reachable workspace, where movement started  
after an unpredictable mechanical perturbation (random uniform −2 
to 2 N m perturbations shoulder and elbow) and no probability cues 
were given. Target size was randomized (0–10 cm diameter). In the 
probabilistic perturbation task details closely matched the human and 
monkey experiments. The start/end location was 60 degrees shoulder 
and 80 degrees elbow angle, targets were 1.2 cm diameter, and pertur-
bations were −1 or 1 N m elbow perturbations. In all training there was 
no background load and the randomized timing of cues was similar 
to the monkey experiment. Fifty per cent of trials were catch trials 
(no perturbation) to prevent unwanted premature movements. Each 
training iteration consisted of a batch of 64 trials, each 3 s long, and we 

used the Adam79 optimizer with a learning rate of 3 × 10−3. Each task was 
trained for 2,000 iterations.

Networks were optimized using a total loss that was a weighted sum 
of individual loss components, each addressing different aspects of 
the model’s performance:
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where B is the batch size, T is the total number of time steps in an  
episode, xy and target are the current and target cartesian endpoints,  
F is the force applied by all muscles, v is the Cartesian endpoint  
velocity, and h is the hidden activity of the network. Each component  
had a specific weight during training, specifically, λ = 10 ,Cartesian
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The specific values of each of these components was not critical to 
successful training, with a few caveats. The muscle force penalty was 
necessary to prevent the network from simply using high levels of force 
at all times, the spectral penalty was necessary to prevent networks 
from learning chaotic dynamics as a result of the delayed sensory feed-
back, and the jerk penalty sped up training by encouraging networks 
to respond robustly to mechanical perturbations. All networks were 
trained under the same loss function, but were initialized and trained 
under different random seeds, leading to differing initial network 
weights and simulated trials.

Assessing relative model contributions to neural geometry. Due to 
the multicollinearity of the four explanatory models we used in Exten
ded Data Fig. 7, we used Shapley values derived from cooperative game 
theory80,81 to estimate the true contribution of each model. To compute 
the Shapley value φi for each predictor i, we use the formula:

∪∑ S N S
N
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| | ! (| | − | | − 1)!

| |!
⋅ ( ( { }) − ( )),

S N i
i

⊆ \{ }

where N is the set of all predictors, S N i⊆ \ { } represents each possible 
subset of predictors that excludes i, |S| is the size of subset S, and f(S) 
is the performance metric (in our case, R2) achieved by a model using 
only predictors in S. In all cases we used non-negative linear 
least-squares regression82 (N-fold cross-validated across condition 
pairs) to fit the lower triangle the relational dissimilarity matrices 
(RDMs) of models to RDMs of neural data. RDMs were computed as 
the Euclidean distance between all pairs of conditions. For neural data, 
these RDMs were calculated in the high-dimensional neural space using 
the average firing rate of all neurons recorded within each brain area 
(pooled across sessions).

This formula evaluates the change in model performance, 
∪f S i f S( { }) − ( ), when predictor i is added to subset S, and weights each  

marginal contribution, ensuring equal representation of all subset 
sizes. Since Shapley values are calculated across a full set of subsets, 
each predictor’s contribution was normalized to the model’s total per-
formance across all predictors. To match the amount of measurement 
noise between conditions, we took the most conservative approach 
and randomly downsampled all conditions to contain the same number 
of trials. We repeated the entire Shapley value calculation ten times 
with different random subsamples of trials and averaged the result.

For significance testing, after trial averaging we randomly shuffled 
the conditions for each neuron independently and repeated the entire 
Shapley value calculation 100 times, using this distribution as a null 
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distribution. A predictor’s Shapley value was considered significant 
if it exceeded the 99th percentile of this null distribution.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The neural data that support the findings of this study are openly 
available in the Dryad digital repository at https://doi.org/10.5061/
dryad.0vt4b8hbr (ref. 83). Human data will be shared upon reasonable 
request by the corresponding author.

Code availability
Raw neural data were processed using a custom processing pipeline 
(https://github.com/JonathanAMichaels/PixelProcessingPipeline). 
Custom code for data analysis was written in MATLAB and Python and 
is available from the corresponding author upon request.
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Extended Data Fig. 1 | Elbow velocity inversion time distributions in human 
participants. Visualization of the distribution of elbow velocity inversion times 
(i.e. time of maximum elbow joint excursion) relative to perturbation onset 
across all human participants, separated by probability condition. Only the 
extension perturbation conditions are shown, since flexion perturbations 
brought the hand into the target and did not require strong behavioral responses.
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Extended Data Fig. 2 | Perturbation responses in human brachioradialis 
and medial triceps. a, In elbow extension conditions, no significant differences 
were found between probabilities in the background epoch (–200-0 ms before 
perturbation) of the brachioradialis (F(3,19) = 1.57, p = 0.21) or in the short 
latency (SLR, 20–50 ms) response (F(3,19) = 1.73, p = 0.17). In contrast, there was 
a significant effect of probability on EMG activity in the long latency epoch 
(LLR, 50–100 ms) of brachioradialis (F(3,19) = 7.04, p = 0.0004) and during the 
voluntary epoch (100–150 ms) of brachioradialis (F(3,19) = 32.62, p < 0.0001). 
b, In elbow flexion conditions, no significant differences were found between 
probabilities in the background epoch (–200-0 ms before perturbation) of the 
medial triceps (F(3,19) = 0.31, p = 0.82), in the short latency (SLR, 20–50 ms) 
response (F(3,19) = 1.30, p = 0.28), or in the long latency epoch (LLR, 50–100 ms) 
of the medial triceps (F(3,19) = 0.99, p = 0.40). In contrast, there was a significant 
effect of probability on EMG activity during the voluntary epoch (100–150 ms) 
of the medial triceps (F(3,19) = 10.07, p < 0.0001).



Extended Data Fig. 3 | Elbow velocity inversion times distributions in 
monkeys. Visualization of the distribution of elbow velocity inversion times 
(measured as ms after perturbation time) across all monkey sessions, separated 
by probability condition. All neural recording sessions within each monkey 
were pooled together.
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Extended Data Fig. 4 | Timing of perturbation direction detection and 
perturbation detection signals across areas. a, For each brain area, we 
analyzed neural population data to determine the time at which the perturbation 
direction could be detected. For each recording session, we fit a classifier to 
distinguish what perturbation was applied in all trials within a session (SVM, 
5-fold cross-validated, 0 to 150 ms relative to perturbation onset). We analyzed 
the classifier performance across all trials within each area, smoothed the 
result (20 Hz low-pass 4th-order zero-phase butterworth), and determined the 
moment of maximum velocity in the classifier performance (colored dots 
above each plot and corresponding text). b, For each brain area, we analyzed 
neural population data to determine the time at which the perturbation could 
be detected independent of the perturbation direction. For each recording 
session, we fit a classifier to distinguish pre- and post-perturbation times 
across all trials within a session (SVM, 5-fold cross-validated, −150 to 150 ms 
relative to perturbation onset). We averaged the output of the classifier across 
all trials within each area, smoothed the result (20 Hz low-pass 4th-order 
zero-phase butterworth), and determined the moment of maximum velocity in 
the classifier output (colored dots above each plot and corresponding text). 
The classifier output is normalized to zero at the moment of perturbation for 
visualization purposes.



Extended Data Fig. 5 | Models with one-hot probability cue inputs develop 
sensory expectations. We trained 32 recurrent neural networks to control a 
biomechanical model of the arm during reaching, including realistic muscles, 
feedback, and delays, but using one-hot inputs to represent each probability 
cue (separate input channel for each cue) instead of the direct probability 
representation used in Fig. 6. Average kinematics and muscle responses were 
virtually identical to the main results of Fig. 6.
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Extended Data Fig. 6 | Models without a condition-independent perturbation 
signal don’t express sensory expectations. We trained 32 recurrent neural 
networks to control a biomechanical model of the arm during reaching, including 
realistic muscles, feedback, and delays, but omitting the condition-independent 
perturbation pulse included in the results of Fig. 6. Average kinematics of models 
performing the experiment did not scale with probability, nor did muscle 
activation within the long-latency reflex window (50–100 ms post-perturbation). 
The results of Fig. 6 are outlined in gray.



Extended Data Fig. 7 | Probability representations are widespread during 
preparation and are replaced by prediction error and perturbation 
direction representations during movement. a, We compared the ability of 
four potential models to explain neural population geometry by predicting  
the euclidean relational dissimilarity matrices (RDMs) between all pairs of 
conditions in the neural population space as a linear combination of model 
RDMs using non-negative linear least-squares regression. Neural RDMs were 
calculated in the high-dimensional neural space, while model RDMs were 
calculated in the 1-dimensional space of each model. b, Each model’s unique 
contribution to explaining neural geometry was estimated using Shapley values. 
Fits were considered significant (solid bars above plots) if they exceeded the 
99th percentile of the null distribution generated by randomly shuffling 
conditions for each neuron independently and repeating the Shapley value 
calculation 100 times. c, Example mean firing rates for single neurons across 
areas. d, Model fitting results and example neurons for medial wall and 
thalamic areas in Monkey P. In almost all areas investigated, the neural 
population data were organized such that the 100% probability conditions of 
opposite perturbation directions were the farthest away from each other in 
neural space and the other probability conditions were positioned in a graded 
fashion in between these extremes (a, Probability Model), indicating a direct 
representation of relative probability. However, predictive coding theories 
predict that some components of the neural response would represent how 
incongruous perturbations are with expectations (a, Prediction Error Model), 
scaling directionally based on how much the delivered perturbation deviated 
from expectation. Similarly, these theories predict the presence of a signal 
representing how surprising a given perturbation was (a, Unsigned Prediction 
Error Model), as both of these prediction error-related models have been 
shown to be relevant for learning and memory. Responses could also have 
differed purely based on actual perturbation direction (a, Perturbation Model). 
To test the relative contribution of these models to explaining neural data,  
we converted all models and neural population data into euclidean distance 
matrices between all pairs of conditions (relational dissimilarity matrices, 
RDMs) to represent the geometry of each model and the neural population. 
Disentangling the contribution of each of these models to observed neural 
activity is challenging due to multicollinearity that exists between models. To 
overcome this, we used a concept from cooperative game theory to estimate 
the contribution of each model. We used non-negative linear least-squares 
regression to predict the RDM of the neural population at each time point based 
on linear combinations of our model RDMs. Importantly, we exhaustively fit 
every possible combination of models, allowing us to calculate Shapley values, 
which estimate the true contribution of each model to explaining neural data 
(see Methods). During the preparatory period only the Probability Model was 
able to significantly fit the data, and this effect was widespread across cortical 
areas (b). The earliest and strongest representation was in PMd, while the latest 
and weakest was in S1. Probability representations collapsed dramatically 
within the 50–100 ms after the perturbation, and in many areas were replaced 
immediately by the Perturbation Model and the Prediction Error Model. 
Although perturbation direction representations were far more dominant, 
prediction errors were also reliably and significantly present, and can be seen 
in some example single neurons (c, e.g. 4th neuron from the left). Perhaps 
surprisingly, in no case did the Unsigned Prediction Error Model ever significantly 
explain neural geometry, indicating that responses directly related to surprise 
were not present. In Monkey P, we performed the same analysis for additional 
medial wall and thalamic areas (d). Significant linear representations of 
probability were also widespread during preparation in these areas, with the 
exception of VPL. Most of these areas also showed a significant representation 
of the Perturbation Model and the Prediction Error Model, while no area showed 
a significant representation of the Unsigned Prediction Error Model.
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Extended Data Table 1 | Recording session information

Date, number of recorded neurons from each area, number of successful trials, and experiment type for all individual recording sessions across both monkeys.
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