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In Memoriam

Michael Corballis

Emeritus Professor Michael Corballis passed away while this volume on cerebral asymmetries—for which he had agreed to serve as
volume editor—was being developed and he helped in its planning. Michael was a preeminent scholar in human cognitive neuroscience
and neuropsychology. In a career that spanned seven decades, he made significant contributions to various research areas, including
perception, attention, memory and mental time travel, language origins, recursive thought, and mind wandering. Central to his endeavors
were the questions of human uniqueness and the role of hemispheric asymmetry in enabling and shaping the human mind.

Michael was born on September 10, 1936. His university education coincided with the foundation of academic departments of psy-
chology in his native New Zealand, and with the evolution and expansion of neuropsychology internationally. He was among the first
students to study psychology at Victoria University (Wellington) and the University of Auckland before moving to Montreal for his
doctoral training at McGill University. Montreal had emerged as a hub of neuropsychologic thought, and the notion of grounding psy-
chology in the anatomy and physiology of the brain inspired Michael’s early interest in how cerebral lateralization might underlie asym-
metries in perception and action.

Cerebral asymmetry remained a key focus after Michael returned to New Zealand in 1977. He was particularly interested in how
apparently unrelated asymmetries might have common origins or lead to unexpected consequences. In The Lopsided Ape (1991), he
reflected on the strong lateralization of both language and fine motor control, and advanced the hypothesis that language may have
its origin in gesture rather than speech—an idea that would motivate much of his thinking for the next three decades.

Michael authored or coauthored more than 300 scientific articles, 14 books, and many commentaries, published reviews, and
public-interest pieces. His status as a scholar was recognized through numerous fellowships and awards, including the New Zealand Order
of Merit in 2002 and the Rutherford Medal from the Royal Society of New Zealand in 2016.

Aside from his prolific scholarship, Michael will be remembered for his urbane wit, humility, and generosity of spirit. He passed away
peacefully on November 13, 2021, following a brief battle with cancer. He was predeceased by Barbara, his wife of 58 years, and is survived
by his sons Paul and Timothy, and three granddaughters, Simone, Natasha, and Lena.

Photo by Paul Corballis.

Michael Aminoff
Francois Boller
Paul Corballis
Dick F. Swaab
September 2024
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Chapter 23

Cerebellar asymmetries
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Abstract

The cerebellum is a subcortical structure tucked underneath the cerebrum that contains the majority of neurons in the brain,
despite its small size. While it has received less attention in the study of brain asymmetries than the cerebrum, structural
asymmetries in the cerebellum have been found in cerebellar volume that mirror cerebral asymmetries. Larger cerebellar
structures have been reported on the right compared to the left, either for the whole cerebellar hemisphere or the anterior
part of the cerebellum, with the latter accompanied by a left increase in the posterior cerebellum. Cerebellar asymmetries are
considered evolutionary recent and have been observed prenatally and in early development. Both asymmetries in anterior—
posterior divisions and specific lobules have been linked to handedness and cognitive abilities, in particular language. Func-
tional lateralization in the cerebellum varies across motor and cognitive functions, with language activation predominantly
localized in the right hemisphere, contralateral to cerebral activation. Meanwhile, working memory and executive functions
are not lateralized to one hemisphere. New neuroimaging methods and resources, including a symmetric functional atlas of
the cerebellum that enables precision mapping, open novel avenues for exploring cerebellar asymmetries and answering
questions about the developmental timeline, relationships to behavior, and clinical relevance.

INTRODUCTION

i}

The cerebellum, or “little brain,” is a small structure situated
underneath the much larger cerebrum. Despite only making up
10% of the total brain mass, the cerebellar cortex holds 80% of
all neurons (Azevedo et al., 2009) and when fully unfolded has
a surface area of 78% of the neocortex (Sereno et al., 2020).
The cerebellum supports a multitude of functions, including
motor, executive, social, linguistic, and emotional processes.
Studies of functional lateralization, particularly of higher-order
cognitive functions such as language, often prioritize the cere-
brum over the cerebellum. Similarly, studies of structural asym-
metries have largely focused on the cerebrum, leaving many
questions about cerebellar structural and circuitry asymmetries
unanswered. This is partially driven by difficulties in imaging
the cerebellum and a lack of tools necessary for careful investiga-
tions of cerebellar functional asymmetries. Still, studies to date
provide a picture of cerebellar organization that is broadly sym-
metric, but includes fine hemispheric differences, some of which
mirror cerebral asymmetries. Here, we review asymmetries in cer-
ebellar structure, function, and neurochemistry. We also consider

technical challenges in studying cerebellar asymmetries and out-
line recent advances addressing these limitations, enabling future
in-depth studies of cerebellar asymmetries.

STRUCTURAL ASYMMETRIES
Broad cerebellar structure

The cerebellum consists of two hemispheres that are connected
through the vermis, a worm-like midline structure. The cerebel-
lum sits within the posterior fossa and connects to the brainstem
via three pairs of peduncles: the superior, middle, and inferior
peduncle. The inferior cerebellar peduncle and middle cerebellar
peduncle contain mainly afferent projections to the cerebellum
from the spinal cord and the cerebrum, respectively. The inferior
peduncle also contains efferent projections from the cerebellum to
the spinal cord. The superior peduncle primarily transports effer-
ent fibers from the cerebellum, projecting to the cerebrum.
Cerebellar afferents and efferents cross over to the contralateral
cerebral hemisphere in the brainstem. In general, the cerebellum
therefore connects to the contralateral cerebral hemisphere and is
concerned with inputs from the ipsilateral side of the body.

*Correspondence to: Caroline Nettekoven, Department of Computer Science, Western Institute for Neuroscience, Western University, London, ON,
Canada. Tel: +1-519-6612111x86057, Fax: +1-519-661-3613, E-mail: cr.nettekoven @ gmail.com
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The tightly folded cerebellar cortex is commonly divided along
broad anatomic divisions, the fissures, into 10 lobules and
denoted I-X according to the Larsell nomenclature (Larsell and
Jansen, 1973; Schmahmann et al., 2000). Lobules I-V form the
anterior cerebellum, lobules VI-IX the posterior cerebellum,
and lobule X forms the flocculonodular lobe of the cerebellum.
Because lobules VII and VIII are the two largest lobules in
the human cerebellum (Diedrichsen and Zotow, 2015), many
studies split them into two sections (VIIA and VIIB, as well as
VIIIA and VIIIB), and lobule VIIA is split again into Crus
I and Crus II.

Neuroimaging studies have identified gross asymmetries in
cerebellar structure in children (Holland et al., 2014) and across
the adult lifespan (Herve et al., 2006; Fan et al., 2010; Bernard
and Seidler, 2013; Kang et al., 2015). While some found an over-
all larger right hemisphere of the cerebellum (Herve et al., 2006;
Fan et al., 2010; Kang et al., 2015), others reported this volume
increase on the right for only some cerebellar lobules
(Kavaklioglu et al., 2017). However, some studies fail to show
any structural asymmetries in the cerebellum (Gocmen-Mas
etal., 2009; Ertekin et al., 2013). The earliest report of cerebellar
structural asymmetry divided the cerebellum into an anterior and
a posterior section according to coronal MRI slices acquired in
15 right-handed and 8 left-handed participants (Snyder et al.,
1995). The authors found that in the anterior cerebellum, the
right hemisphere was significantly larger than the left, whereas
in the posterior cerebellum the left was bigger than the right.
A similar pattern had previously been described for the neocor-
tex (LeMay, 1976), with right anterior structures (e.g., frontal
pole) extending more anteriorly and left posterior structures
(e.g., occipital pole) protruding more posteriorly. This is despite
the cerebellum primarily projecting to the contralateral cerebral
hemisphere, which could suggest an opposite pattern of
asymmetry.

HANDEDNESS

When first reporting cerebellar structural asymmetry (Snyder
etal., 1995), also found a link to handedness: while all 23 partic-
ipants showed an overall similar asymmetry pattern, it was more
pronounced in right-handed people. A later study of 19 monozy-
gotic female adult twins confirmed some of the structural asym-
metries in the cerebellum, with the anterior cerebellum (lobules
I-V) being larger on the right, but near symmetry in the posterior
cerebellum (lobules VI-VIIB) (Rosch et al., 2018). The anterior
cerebellar asymmetry was stronger in right-handed than left-
handed twins, potentially reflecting an experience-dependent
maintenance of higher growth rates in the right hemispheric cer-
ebellum. However, differences in the definition of regions of
interest between the first report, where sections were divided
by coronal slice, and the more precise definition in the later study
based on a lobular atlas (Diedrichsen, 2006), make a direct com-
parison difficult. Furthermore, the purported relationship between
cerebellar asymmetry and handedness was not replicated in a
large-scale study of 2226 participants (Kavaklioglu et al.,
2017), but a recent investigation of over 37,000 participants

associated handedness with whole-brain asymmetry patterns that
included the cerebellum. Directly comparing left- and right-
handed participants revealed that right-handers showed larger
lobules VIIIA and VIIIB in the right cerebellar hemisphere and
larger Crus I and Crus II in the left cerebellar hemisphere
(Saltoun et al., 2023).

EVOLUTIONARY AND DEVELOPMENTAL STUDIES

Cerebellar structural asymmetry seems to have emerged recently
in evolution, as it is only observed in modern humans—Homo
sapiens—but not in Homo erectus or Homo neanderthalensis
(Zhang and Wu, 2021). This is in contrast to cerebral asym-
metries, which emerged earlier, appearing already in Homo
erectus and Homo neanderthalensis (Holloway and De La
Costelareymondie, 1982; Li et al., 2018).

During gestation, the cerebellum grows more quickly than any
other brain region, increasing 34-fold from weeks 18-39. Early in
gestation, the left cerebellar hemisphere is larger than the right,
but the right shows an accelerated growth curve, nearly overtak-
ing the left by week 39 (Andescavage et al., 2017). During the first
3 months after birth, the cerebellum again shows the fastest
growth, more than doubling in size (Holland et al., 2014). During
this time, the right cerebellar hemisphere is larger than the left.
Cerebellar asymmetry does not depend on sex in the first 3 months
of life (Holland et al., 2014), though there is some evidence for an
interaction between sex and cerebellar structural asymmetries in
children (Isiklar et al., 2023) and young adults (Fan et al., 2010).

RELATIONSHIP WITH MOVEMENT, LANGUAGE, AND COGNITION

Several studies have related cerebellar structural asymmetries to
language, motor, and cognitive functions. Neonatal whole-
cerebellar asymmetry has been found to predict later language
skills (Vassar et al., 2020), with more cerebellar asymmetry being
linked to lower language scores as assessed with the Bayley
Scales of Infant-Toddler Development-III (Bayley, 2006). How-
ever, cerebellar asymmetries in this study were based on rating
scale assessments by radiologists, which differs substantially
from the quantitative techniques used in previous studies
(Holland et al., 2014; Andescavage et al., 2017). In 10-year-old
children, whole cerebellar volume showed no association with
language content, but correlated positively with right gray matter
volume in Crus I/Crus II (Stipdonk et al., 2021). In a cohort of
48 autistic and non-autistic boys aged 6—13 with and without lan-
guage impairment (autistic language impairment or specific
language impairment), only those with impaired language func-
tion showed leftward lobule VIIIA asymmetry, irrespective of
autism diagnosis. Non-impaired boys showed larger right lobule
VIIIA volume, and language performance correlated with lobule
VIIIA asymmetry across groups, with increased volume on the
right relating to higher language scores (Hodge et al., 2010).
Decreased cerebellar volume in the right hemisphere of 32 chil-
dren with cerebellar malformations (aged 1-6) has been linked
to impaired expressive language, as well as cognitive and motor
impairments (Bolduc et al., 2012).



CEREBELLAR ASYMMETRIES 371

In adults, working memory task performance has been found to
positively correlate with gray matter volume in left Crus I (Ding
et al., 2012), and improved timing in musical performance
has been associated with smaller right lobule VI volume (Baer
et al., 2015). Meanwhile, increased volume of the cerebellar
cortex was associated with mild cognitive impairment in a study
of 400 randomly selected older adults (aged 64—70) (Cherbuin
etal., 2010). Asymmetric gray matter reductions and torque have
also been linked to neuropsychiatric disorders such as autism
spectrum disorder, developmental dyslexia (Stoodley, 2014),
and schizophrenia (Szeszko et al., 2003).

Cerebellar damage from injury, stroke, or degeneration has
previously been shown to cause, in addition to the classic motor
impairments, a range of non-motor symptoms. These include
language deficits, anagrammatism, executive function deficits,
and social and affective impairments that were termed the
“Cerebellar Cognitive Affective Syndrome” (Schmahmann and
Sherman, 1998). To our knowledge, there are so far no reports
of Cerebellar Cognitive Affective Syndrome manifesting as later-
alized to a particular hemisphere, although functions that belong
to the symptom set of the syndrome certainly appear lateralized
(see section Task-based asymmetries). Notably, cognitive symp-
toms after cerebellar damage in adults appear milder than in
young children (Glickstein, 1994; Fabbro et al., 2004; Ronconi
et al., 2017) and often result in a decrease in function rather than
a full loss of it (Olson et al., 2023). For example, cerebellar
damage to right Crus I/II appears to not result in aphasia or absence
of speech, but in dysarthria (Ackermann, 2008; Stoodley et al.,
2016) or agrammatism (Silveri et al., 1994).

Deep cerebellar nuclei

The cerebellar white matter envelops the deep cerebellar nuclei,
which lie close to the midline in each hemisphere and receive
the output generated from the cerebellar cortex. The deep cerebel-
lar nuclei then project to the brainstem nuclei and the cerebral
cortex via the thalamus. Only the flocculonodular cerebellar
cortex, lobule X, deviates from this by projecting directly to the
vestibular nuclei in the brainstem. As such, the deep cerebellar
nuclei and the vestibular nuclei are the sole transmitters of the out-
put from the cerebellum. The deep cerebellar nuclei include in
each hemisphere along the medial-to-lateral axis, the dentate
nucleus, the interpositus (consisting of globose and emboliform
nuclei), and the fastigial nucleus.

Few neuroimaging studies have examined the structure of deep
cerebellar nuclei due to their small size and their near invisibility
in standard T1-weighted anatomic images (Diedrichsen et al.,
2011). Only susceptibility-weighted images, which are not part
of standard MRI protocols, provide suitable contrast for localizing
the deep cerebellar nuclei, as these images are sensitive to their
high iron content. A first volumetric comparison of left and
right dentate nuclei reported increased volume on the right in
9 of 10 examined participants (Deoni and Catani, 2007), though
this was not replicated in a later study of 23 participants
(Diedrichsen et al., 2011). In postmortem sections of human

brains, visual comparison of the dentate ribbon revealed left-right
differences in the folding pattern of a single case, but no system-
atic differences.

Cytoarchitecture

While the cerebral cortex is dividable according to its cytoarchi-
tecture, the cerebellar cortical makeup is generally remarkably
uniform. The single output cell of the cerebellar cortex is the
Purkinje cell. Each Purkinje cell receives inputs via two streams.
First, they receive multiple inputs from multiple parallel fibers.
Parallel fibers arise from the densely packed granule cells.
Granule cells receive information via mossy fibers that originate
in the spinal cord, medulla oblongata, and most massively from
the pontine nuclei. The majority of axons exiting the neocortex
for the brainstem either project directly to the pons or send a
collateral there, which projects onto the granule cells (Tomasch,
1969). Granule cells then innervate Purkinje cells via parallel
fibers. Second, each Purkinje cell receives input from a single
climbing fiber, originating in the inferior olivary nucleus, though
a single climbing fiber branches to innervate one to seven
Purkinje cells.

Detailed descriptions of the cerebellar circuit have led to the
development of the Marr-Albus-Ito model of cerebellar function
(Eccles, 1967; Marr, 1969; Albus, 1971; Ito and Kano, 1982).
This model is based on the convergence of the two input types
at the Purkinje cell. First, the many inputs from parallel fibers
are proposed to represent a detailed context. Second, the single
climbing fiber input is proposed to represent an error, or
“teaching” signal. When a Purkinje cell receives climbing fiber
activation (error signal) shortly after activation of a set of parallel
fibers (context), then the synaptic weights of this particular set of
parallel fibers change through long-term depression (Ito and
Kano, 1982). When this set of parallel fibers is activated again
at this Purkinje cell, the Purkinje cell firing is reduced compared
to before. The change in Purkinje cell firing leads to a change in
behavior, a change in output to the deep cerebellar nuclei, and sup-
pression of the climbing fiber input (Medina and Lisberger, 2008).

The Marr-Albus-Ito model explains a wealth of experimental
data, particularly in the motor domain, and has been highly influ-
ential. However, recent studies cast doubt on a universal learning
principle within the cerebellar cortex by painting a more complex
picture of cerebellar circuitry (Beckinghausen and Sillitoe, 2019;
Fujita et al., 2020; Busch and Hansel, 2023). In humans, Busch
et al. (Busch and Hansel, 2023) showed in sagittal slices of three
postmortem human brains that only 4% of human Purkinje cells
have the stereotypic single dendritic branch, while 96% show a
multibranched dendritic branch that bifurcates into multiple pri-
mary dendrites close to the neuron body. In mice, 15% of multi-
branched Purkinje cells also receive multiple climbing fiber
inputs to the different dendritic branches, and some branches
seemed to have locally distinct functional responses to whisker
stimulation. These results show a clear divergence from the pur-
ported regularity of the cerebellar circuitry. The authors also
described an anterior-to-posterior gradient in dendritic branching
patterns, where the majority of Purkinje cells in lobules I-VI had
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normative, single-branched dendrites and the multibranched den-
drites occurred in the majority of lobule VII-X. However, left—
right asymmetries in Purkinje cell branching could not be
detected, as the investigation focused on sagittal slices of the
mid-section of only one hemisphere, precluding a between-
hemispheric comparison.

Summary

Studies of structural asymmetries in the cerebellum have largely
focused on the cerebellar cortex or overall cerebellar volume
rather than the cerebellar nuclei, due to its relative accessibility
in neuroimaging data. Generally, studies find rightward asymme-
try in the cerebellum, with increased cerebellar volume on the
right anterior cerebellum and increased left volume in the poste-
rior cerebellum. Cerebellar asymmetries seem to be evolutionary
recent and appear before birth. Some links with handedness,
cognitive functions, and clinical diagnosis have been reported,
although little consensus has been found. This may in part be
driven by differences in analysis methods and techniques used
to assess cerebellar asymmetry. Some studies have divided the
cerebellum along the anterior-to-posterior axis for asymmetry
analysis (Snyder et al., 1995), others group lobules into cerebellar
zones (Bolduc et al., 2012; Rosch et al., 2018) or use ratings from
radiologists to assess cerebellar asymmetry (Stipdonk et al.,
2021). Establishing consensus on cerebellar asymmetry across
the heterogeneous literature is therefore difficult.

As tools for cerebellar segmentation and atlases for cerebellar
parcellation have been developed, most studies now parcellate the
cerebellum along lobular boundaries (Fan et al., 2010; Bernard
et al, 2015; Kavaklioglu et al., 2017; Isiklar et al., 2023;
Saltoun et al., 2023) based on a probabilistic group atlas of cere-
bellar lobules (Diedrichsen, 2006). This makes comparing results
across neuroimaging studies easier. However, most researchers
are interested in linking observed asymmetries to cerebellar func-
tion, relying on the assumption that different cerebellar-
dependent functions can be localized to different lobules. Map-
ping cerebellar activity across motor and cognitive domains
revealed this is not the case (King et al., 2019). Indeed, cerebellar
activity usually spans several lobules, and one lobule often con-
tains multiple functional regions. Future studies of structural
asymmetry in the cerebellar cortex should therefore use symmet-
ric regions of interest that capture functional regions when
attempting to link structural asymmetries to function. For a dis-
cussion of recent advances in this realm, see section Technical
considerations for studying cerebellar lateralization.

FUNCTIONAL LATERALIZATION

The cerebellum has traditionally been associated with motor
function, though neuroimaging studies show cerebellar activity
during a broad range of behavioral tasks, including those probing
language (Petersen et al., 1989), social cognition (Van Overwalle
et al., 2015), attention (Allen et al., 1997), and working memory
(Marvel and Desmond, 2010). While the cerebellum has been
researched extensively in motor control, the study of the cerebellar
role in higher-order cognitive functions such as language is in its
relative infancy.

Task-based asymmetries

A function is considered lateralized if it engages one hemisphere
of the brain more than the other, of which language function is a
prime example. Right-lateralization of language activation in the
cerebellum, mirroring left lateralization in the cerebrum, is well
established (Amunts et al., 1996; Stoodley and Schmahmann,
2009; Fedorenko et al., 2010; Haberling and Corballis, 2016;
LeBel and D’Mello, 2023). Though most language studies do
not focus on the cerebellum or do not cover the cerebellum during
data acquisition or analysis, there are early reports of functional
lateralization in the right cerebellum during language processing
(Petersen et al., 1989; Raichle et al., 1994).

Using positron emission tomography, Petersen et al. (Petersen
etal., 1989) were the first to show clear lateralized cerebellar acti-
vation during language processing, even when motor demands
were accounted for. Subsequent studies confirmed right cerebellar
activation during language processes such as semantic retrieval
and prediction (Fiez et al., 1996; Moberget and Ivry, 2016;
Lesage et al., 2017).

A meta-analysis of task-based fMRI studies showed that lan-
guage activity primarily occurs in the right cerebellum in lobule
VI, Crus I/Crus II as well as vermal lobule VIIA (Stoodley and
Schmahmann, 2009). On the other hand, left-lateralized activa-
tion was found primarily for spatial tasks, located in lobule VI.
However, both language and spatial tasks showed some weaker,
but consistent bilateral activation, occupying a small cluster in
opposite lobule VL.

To examine the relationship between language lateralization in
the cerebellum and neocortex, Wang et al. (Wang et al., 2013)
analyzed fMRI data acquired while participants performed a
semantic decision task. In the cerebellum, participants showed
strong language lateralization in the right Crus I/Crus II and in
the cerebrum, in the left prefrontal cortex. Language activity lat-
eralization in the cerebellum was correlated with language later-
alization in the cerebrum: right cerebellar task lateralization
correlated with left cerebral task-based language lateralization.
In line with lateralization of language and spatial function,
patients with left-sided cerebellar lesions showed larger impair-
ments in attention and visuospatial tasks, but not language,
fluency, or motor function (Starowicz-Filip et al., 2021). Right-
sided cerebellar lesions, on the other hand, led to impaired lan-
guage and verbal fluency, but also general cognitive deficits,
including memory, attention, and visuospatial functions (Silveri
et al., 1994; Marien et al., 1996; Leggio et al., 2000; Marien
et al., 2000). A detailed analysis of cerebellar lateralization was
recently provided by a voxel-wise comparison of functional pro-
files across 417 tasks probed in seven fMRI datasets (Nettekoven
etal., 2024) (1A). Social-linguistic-spatial regions located in Crus
Iand Crus II (2A) showed low correlations of functional profiles,
indicating strongly lateralized functional responses. On the left,
these regions activated while viewing social and emotional stim-
uli, whereas the right regions showed far less activity in those
tasks. On the right, the cerebellum responded primarily to tasks
involving linguistic information, such as a word reading and the-
ory of mind story reading task or a verb generation task. In con-
trast, cerebellar working memory regions in lobules VI and VII
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Fig. 23.1. Functional lateralization and boundary symmetry of cerebellar functional regions. Functional symmetry calculated as the correlations
between the functional responses of anatomically corresponding voxel in the left and right hemispheres, averaged across participants and within each
functional region (A) reveals bilateral response profiles of multiple demand regions and lateralized responses of social-linguistic-spatial regions.
Boundary symmetry calculated as the correlations of the probabilistic voxel assignments between the symmetric and asymmetric versions of the
atlas (B) shows symmetric boundaries in the motor regions, and asymmetric boundaries in social-linguistic-spatial regions. Reproduced from
Nettekoven C, Zhi D, Shahshahani L, et al. (2024). A hierarchical atlas of the human cerebellum for functional precision mapping. Nat Commun

15: 8376. https://doi.org/10.1038/s41467-024-52371-w.

showed largely bilateral responses (Fig. 23.1A), as indicated by
highly correlated functional profiles across tasks. This was
despite the variety of executive function and working memory
tasks in the task set, including those probing verbal working mem-
ory. Hence, while there might be some lateralization of working
memory and executive function, the majority of tasks activate cer-
ebellar working memory regions bilaterally.

Neuroimaging studies of motor and sensory tasks show senso-
rimotor homunculi on each side of lobules III-VI and lobule VIII
(Stoodley and Schmahmann, 2009). Cerebellar activity is largely
confined to the hemisphere ipsilateral to the moving effector
(Saadon-Grosman et al., 2022), but bilateral for tongue and eyes
(Buckner et al., 2011; Nettekoven et al., 2024). A voxel-wise
comparison of the functional profiles confirmed this pattern of
lateralization in cerebellar motor regions. The left and right
cerebellar hand regions (M3) show low correlations of functional
profiles (Fig. 23.1A). Finally, activity in the oculomotor vermis,
responsible for eye movements and saccades, showed strongly
bilateral responses. Therefore, while some functions are clearly
lateralized in the cerebellum, such as language and social cogni-
tion, others are consistently bilateral like working memory and
executive function, or exhibit laterality that appears effector-
dependent such as motor functions.

In addition to having different functional profiles, boundaries
between functional regions themselves can be asymmetric. The
recent development of a symmetric functional atlas of the
cerebellum (see section Technical considerations for studying
cerebellar lateralization) allowed for the first systematic compari-
son of boundary symmetry in the cerebellum (Nettekoven et al.,
2024). Examining the correspondence between the symmetric
and asymmetric version of the atlas (Fig. 23.1A and B) across
the different regions revealed that regions involved in movement
and working memory functions have highly symmetric
boundaries, i.e., their boundaries fall into the same place on the left
and right. Among the motor regions, the oculomotor vermis M1
and the hand region M3 (Fig. 23.1A) fall particularly similar in left
and right cerebellar hemisphere. Meanwhile, the social-linguistic-

spatial regions have more dissimilar region boundaries between
left-right region pairs, indicated by the low overall boundary sym-
metry in social-linguistic-spatial regions (Nettekoven et al., 2024).

Resting-state connectivity asymmetries

fMRI data acquired at rest has been used to quantify cortico-
cerebellar functional connectivity and examine cerebellar lateral-
ization in the context of cerebral lateralization (O’Reilly et al.,
2010; Buckner et al., 2011; Wang et al., 2013; Wang et al.,
2014). In the cerebellum, resting-state fMRI data from 1000 par-
ticipants demonstrated an approximately homotopic map of cere-
bral connectivity networks (Buckner et al., 2011). Here, each
cerebellar voxel was assigned to the cerebral resting-state network
its resting-state time course correlated with the most (Buckner
etal., 2011). Consistent with viral tracing studies in monkeys dem-
onstrating that cerebral cortical areas project to the contralateral
cerebellum (Kelly and Strick, 2003), cortico-cerebellar connectiv-
ity is strongest between contralateral cerebellar and cerebral
regions, particularly in the motor regions (Krienen and Buckner,
2009; O’Reilly et al., 2010; Buckner et al., 2011). Resting-state
and task-based fMRI data demonstrated a somatomotor map of
the body including foot, hand, and tongue representations in the
anterior cerebellum (Buckner et al., 2011). The task-based maps
revealed that lateralization of somatomotor representations in the
cerebellum varies with body part. While tongue representation is
bilateral, consistent with the bilateral nature of the performed ton-
gue movement, right foot and hand representations are lateralized,
with right hand activation showing the strongest lateralization.
Whether this lateralization depends on handedness to our knowl-
edge has so far not been investigated.

Resting-state connectivity between ipsilateral and contralateral
corticocerebellar regions followed a similar pattern: Hand and foot
regions showed much stronger coupling contralaterally than ipsilat-
erally, whereas tongue regions showed no difference between ipsi-
and contralateral connectivity. This echoes observations for the cere-
bral cortex showing the lowest inter-hemispheric connectivity
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between the two hand regions and the two foot regions, and high cou-
pling for left and right tongue representations (Thomas Yeo
etal., 2011).

Technical considerations for studying cerebellar
lateralization

Studies of functional lateralization often necessitate defining
regions of interest in the left and right hemispheres, which are
matched in location and size to control for spatial differences in
signal-to-noise ratio (Yan etal., 2023). Most researchers have used
anatomic subdivisions into different lobules (Schmahmann et al.,
2000; Diedrichsen et al., 2009) to define regions of interest, taking
advantage of the anatomic symmetry of lobules. However, lobular
boundaries do not reflect functional boundaries in the cerebellum
(King et al., 2019), rendering them unsuitable for functional later-
alization studies. Recently, a symmetric functional atlas has been
developed, using a machine learning model that learns the func-
tional organization of the cerebellum using over 100 participants
across seven fMRI studies (Nettekoven et al., 2024) (Fig. 23.2A
and B). The model was constrained to learn corresponding sym-
metric regions, while the functional responses of the matching
regions could vary between the left and right hemispheres (Zhi
etal., 2025). The symmetric group atlas captured functional orga-
nization 5% less accurately than the asymmetric group atlas, which
represents a small trade-off between the validity of the region
boundaries and practical utility for lateralization studies.

The cerebellum poses many challenges to functional neuro-
imaging, but the study of cerebellar functional lateralization
holds promise for answering fundamental questions about brain
asymmetries. Though it suffers from lower signal-to-noise ratio,
the sources of noise in the cerebellum differ from those in the
cerebrum, driven by different anatomic and technical
constraints. By contrasting and comparing cerebral and cerebel-
lar asymmetries, some consensus on brain asymmetries can be
established, independently of the different noise sources
(Wang et al., 2013).

Symmetric Atlas

Summary

The cerebellum shows clear functional lateralization for some, but
not all, motor and cognitive functions. Language activation is
largely located in the right cerebellar hemisphere, contralateral
to cerebral activation. Cerebellar functional lateralization appears
to be linked to cerebral functional lateralization, handedness, and
lateralization of language function. However, difficulties in align-
ing left and right cerebellar regions of interest for studies of func-
tional lateralization have hindered progress in this line of research.
The recent development of new methods and resources for the
study of cerebellar lateralization could pave the way to more pre-
cise studies of functional asymmetries in the cerebellum.

NEUROCHEMICAL ASYMMETRIES

Few studies of neurochemical asymmetries in the cerebellum
exist, primarily due to the technical challenges in measuring
neurochemicals from the human cerebellum in vivo. Neuro-
chemicals in the brain can be measured noninvasively using
magnetic resonance spectroscopy (MRS). However, the use of
MRS in the cerebellum is impeded by the close proximity of
the cerebellum to two large sources of noise: the brainstem on
the anterior side and the neck on the posterior side. The fat tissue
in the neck emits a signal over 100 times stronger than brain
metabolites (Rothman et al., 1993) and when MRS measure-
ments are collected close to this fatty tissue, imperfect slice
selection pulses can lead to lipid contaminations of the measured
spectrum (Kreis, 2004). Placing an MRS voxel in the small,
curved cerebellar hemispheres at a sufficient distance from fat
tissue while maximizing the gray matter content of the voxel
is therefore difficult. Similarly, areas adjacent to the brainstem
can suffer from high levels of physiologic noise, driven by the
cardiac and respiratory cycles (Brooks et al., 2013), which
induce field inhomogeneities and reduce the quality of the
MRS spectra. However, with the advent of high-field imaging
and improved shimming techniques for reducing field

Asymmetric Atlas

Fig. 23.2. Symmetric functional atlas of the cerebellum allows investigations of lateralization. (A) Functional atlas of the cerebellum with 32 sym-
metric regions. (B) Functional atlas of the cerebellum with 32 corresponding asymmetric regions. The atlas (A and B) across the different regions
revealed that regions involved in movement and working memory functions have highly symmetric boundaries, i.e., their boundaries fall into the same
place on the left and right. Among the motor regions, the oculomotor vermis M1 and the hand region M3 (A) fall particularly similar in the left and right
cerebellar hemispheres. Meanwhile, the social-linguistic-spatial regions have more dissimilar region boundaries between left-right region pairs, indi-
cated by the low overall boundary symmetry in social-linguistic-spatial regions (Nettekoven et al., 2024). Reproduced from Nettekoven C, Zhi D,
Shahshahani L, et al. (2024). A hierarchical atlas of the human cerebellum for functional precision mapping. Nat Commun 15: 8376. https://doi.org/

10.1038/s41467-024-52371-w.
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inhomogeneities, there have been some investigations of cere-
bellar neurochemistry and their hemispheric differences.

In a first investigation study of cerebellar neurochemistry, Rae
et al. (Rae et al., 1998) examined hemispheric differences in cer-
ebellar neurochemical ratios in 14 dyslexic men and compared
them to 15 male controls. In the right cerebellum of dyslexic
men, the authors found decreases in the ratio of choline (Cho)
to N-acetylaspartate (NAA), a commonly used reference metab-
olite (Bachtiar and Stagg, 2013) due to the high concentrations
of NAA in the brain. Dyslexic men also showed significantly
lower levels of creatine (Cr)/NAA in the right cerebellum com-
pared to controls and a significant hemispheric difference in
Cr/NAA concentration, whereas controls showed no hemispheric
difference. The dyslexic group showed contralateral alterations in
the neocortex. In the left temporoparietal lobe, dyslexic men
showed significantly reduced Cho/NAA levels compared to con-
trols and compared to their right Cho/NA levels, where controls
showed equal levels.

Although motor impairments in dyslexia have been linked to
arole ofthe cerebellum in this developmental disorder (Nicolson
etal., 1995), in line with the hypothesis that cerebellar dysfunc-
tion could manifest in incoordination of eye movements during
reading, no association between cerebellar neurochemistry and
handedness or performance on a peg-board test was found.
Nevertheless, the study provided compelling evidence for asym-
metrically altered levels of cerebellar neurochemicals in
dyslexia.

Tracking cerebellar neurochemical concentration over time in
healthy participants has been of recent interest as a means to under-
standing cerebellar plasticity in healthy human function. In particu-
lar, the major inhibitory neurotransmitter y-aminobutyric acid
(GABA)has been suggested to play a fundamental role in cerebellar
plasticity, since it signals information from the sole output neuron
ofthe cerebellar cortex, the Purkinje cell, and has been implicated
in parallel fiber synaptic plasticity (Orts-Del’Immagine and
Pugh, 2018). Jalalietal. (Jalalietal., 2018) were the first to probe

the responsiveness of the GABAergic system in the cerebellum
and attempt to link it to individual differences on a task probing
motor adaptation, where the cerebellum plays a key role
(Diedrichsen, 2005; Graydon et al.,, 2005; Miall and
Jenkinson, 2005). Based on previous work linking anodal tran-
scranial direct current stimulation (tDCS) to reductions in GABA
in the primary motor cortex and motor learning (Stagg et al.,
2009; Kim et al., 2014), the authors tested for changes in GABA
concentration in the right cerebellar hemisphere in response to
right cerebellar tDCS and attempted to link these changes to
adaptation performance. There was no significant change in
GABA, but exploratory analyses revealed a correlation between
late adaptation and stimulation-driven GABA decrease. The
authors noted as one of the reasons for the lack of GABA change
in response to adaptation the long MRS acquisition time of
25min, which might have rendered transient changes in
GABAergic levels undetectable.

In a subsequent investigation of GABA changes occurring in
the cerebellum during adaptation, MRS measurements were
acquired in 9-min blocks from both the left and right cerebellar
hemispheres (see Fig. 23.3A) while participants performed a
right-hand adaptation task in the scanner (Nettekoven et al.,
2022). Isolating adaptation-driven GABA changes revealed
diverging GABA concentration at the right and left cerebellar
nuclei (see Fig. 23.3B) with left cerebellar GABA increasing
and right cerebellar GABA decreasing. The extent of the early
GABA change at the right cerebellar nuclei showed a relationship
with adaptation performance (Fig. 23.3C). Those participants
who showed greater GABA decrease also adapted better. This
relationship was specific to right cerebellar GABA change and
adaptation, as there was no relationship with left cerebellar
GABA change. Though these results present the first evidence
for lateralized neurochemical signatures of cerebellar-dependent
motor behavior of the right hand, further MRSI studies are neces-
sary to provide a full picture of cerebellar neurochemistry and its
role in motor and non-motor functions.
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Fig.23.3. Asymmetric neurochemical changes at cerebellar nuclei during adaptation. Magnetic resonance spectroscopic imaging (MRSI) can be used
to quantify the major inhibitory neurotransmitter GABA in several cerebellar voxels in vivo, as shown for a representative participant (A). Isolating
neurochemical changes in response to righthand adaptation reveals diverging GABA at the left and right cerebellar nuclei (B) and a relationship
between early GABA change at the right cerebellar nuclei and adaptation performance (C). Reproduced from Nettekoven C, Mitchell L, Clarke
WT, et al. (2022). Cerebellar GABA change during visuomotor adaptation relates to adaptation performance and cerebellar network connectivity:
a magnetic resonance spectroscopic imaging study. J Neurosci 42: 7721-7732.
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CONCLUSIONS

Asymmetries have been documented in the structure, function,
and neurochemistry of the cerebellum. Functional asymmetries
are largely confined to the cerebellar hemisphere contralateral
to the cerebrum, while broad structural asymmetries show the
same pattern in the cerebellum and cerebrum. The extent of
cerebellar asymmetries has also been linked to handedness and
performance on lateralized functions, such as language. However,
technical challenges in measuring and analyzing cerebellar
asymmetries have so far hindered thorough studies of cerebellar
lateralization. Hence, several questions regarding the function
and clinical consequences of cerebellar asymmetries remain open.
For example, does the development of functional asymmetries in
the cerebellum precede, parallel, or follow the development of
corresponding cerebral functional asymmetries? To what extent
does cerebellar asymmetry vary with biologic factors such as
age, sex, handedness, and heredity? And what is the relationship
between cerebellar asymmetry and disorders that involve the
cerebellum such as schizophrenia, and how can we use this
knowledge to improve diagnosis and treatment? The develop-
ment of specialized imaging techniques and new tools for the
study of the cerebellum now opens the opportunity to answer
these questions.
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