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A hierarchical atlas of the human cerebellum
for functional precision mapping

Caroline Nettekoven 1,2 , Da Zhi 1,2, Ladan Shahshahani1,
Ana Luísa Pinho 1,2, Noam Saadon-Grosman3, Randy Lee Buckner 3 &
Jörn Diedrichsen 1,2,4

The human cerebellum is activated by a wide variety of cognitive and motor
tasks. Previous functional atlases have relied on single task-basedor resting-state
fMRI datasets. Here, we present a functional atlas that integrates information
from seven large-scale datasets, outperforming existing group atlases. The atlas
has three further advantages. First, the atlas allows for precision mapping in
individuals: the integration of the probabilistic group atlas with an individual
localizer scan results in a marked improvement in prediction of individual
boundaries. Second,weprovide both asymmetric and symmetric versions of the
atlas. The symmetric version, which is obtained by constraining the boundaries
to be the same across hemispheres, is especially useful in studying functional
lateralization. Finally, the regions arehierarchically organized across three levels,
allowing analyses at the appropriate level of granularity. Overall, the present
atlas is an important resource for the study of the interdigitated functional
organization of the human cerebellum in health and disease.

Decades of neuroimaging have shown cerebellar activation in a broad
range of tasks, including motor, social, and cognitive tasks—yet its
contribution to these different functions remains elusive1,2. A major
obstacle to understanding the cerebellar contribution is that the cer-
ebellum consists of a mosaic of functional regions, specialized for
distinct roles3. It is still common to use the anatomical subdivision into
different lobules4,5 to define regions of interest, even though lobular
boundaries do not align with boundaries in functional specialization3.

There are several existing maps based on resting-state or task-
based functional Magnetic Resonance Imaging (fMRI) data3,6,7 that
parcellate the cerebellum into functional regions. These functional
atlases outperform anatomical parcellations at predicting functional
boundaries on an independent task set, with a task-based parcellation
based on a large multi-domain task battery (MDTB) being particularly
powerful3. Nonetheless, parcellations based on single datasets usually
show some distinct weaknesses: For example, the MDTB parcellation3

does not delineate the foot or mouth motor region very well, likely
because of the absence of those movement types from the task set.
Any single dataset and analysis approach will necessarily emphasize

some features over others. To address these shortcomings, we have
recently developed a Bayesian Hierarchical method that combines
information across datasets into a single parcellation8. In this study, we
apply this model to seven large task-based datasets to derive a com-
prehensive cerebellar functional atlas.

Another important limitation of existing group atlases is that they
ignore the large inter-individual variability in functional brain
organization9–13. This problem is particularly relevant for the cerebellar
cortex, where many functionally heterogeneous regions are packed
into a relatively small volume3,14,15. Multiple groups have therefore
pursued a precisionmapping approach, using localizing data to define
functional regions at the individual level10–12,15. To enable such precise
and fine-grained analysis, the present atlas is based on a probabilistic
framework, which allows the user to use even limited individual data to
optimally tailor the atlas to an individual8,16. We evaluated this
approach carefully by showing the utility of the personalized parcel-
lation at predicting boundaries and functional specialization in the
same individual in different tasks, as compared to both the group atlas,
and a parcellation solely based on individual data.
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The cerebellum plays a key role in lateralized functions (i.e.,
language17) and shows lateralized developmental trajectories18. The
study of lateralization, however, is complicated by existing functional
atlases, as they have asymmetric boundaries with ambiguities in cor-
respondence between between left and right regions. We therefore
developed a version of the atlas with symmetric boundaries and

matching hemispheric parcel pairs. Importantly, we did not constrain
the functional profiles to be the same across hemispheres, enabling us
to study functional lateralization. The comparison to an asymmetric
version of the atlas also allowed us to assess whether this symmetry
constraint is adequate, or to what degree the spatial organization is
truly asymmetric.
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Finally, questions about cerebellar function will benefit from
being tested at different levels of granularity. Formany anatomical and
patient studies, it is oftenmost appropriate to summarizemeasures in
terms of broad functional domains (e.g., motor vs. social-linguistic-
spatial regions), whereas more detailed functional studies require the
definition of finer region distinctions (e.g., separate hand, foot, and
tongue regions within the motor domain or separation between social
and linguistic domains). We therefore created the atlas with a hier-
archical organization of functional regions where the boundaries of
the broad domains remain the same at each level of granularity.

Results
Different fMRI datasets reveal a similar, but not identical, cere-
bellar organization
A common functional atlas across different datasets onlymakes sense,
if we assume that there is a robust functional organization that remains
the same across tasks.However, the cognitive state of the brain (rest or
specific tasks) likely influences how different functional regions work
together. Therefore, parcellations based on different datasets may
highlight different functional boundaries. As a first step, we therefore
sought to characterize similarities between parcellations based on
single datasets, using task-based and resting-state data.We trained our
probabilistic parcellationmodel8 on seven task-based and one resting-
state datasets (Supplemental Table. 1) in isolation and then compared
the resultant parcellations (Fig. 1a).

The parcellations overall showed clear similarities, but also some
dataset-specific differences. A smooth boundary between motor
regions in lobule I-VI and cognitive regions in lobule VII was present in
all parcellations (e.g. between the magenta and pink regions in MDTB
and Demand dataset in lobule VI). On the other hand, the ability to
distinguish regions within motor and cognitive regions differed
between datasets. For example, the somatotopic dataset only tested
individual body movements, and therefore resulted in a clear soma-
tomotormap, but did not delineate cognitive regions in lobule VII well,
as can be seen by the fragmented pattern in Crus I/II and lobule IX. In
contrast, the Demand dataset delineated regions involved in working
memory and executive functions, but did not lead to a clear somato-
motor map. Parcellations based on resting-state data (HCP) showed
consistent boundaries in regions related to the default network
(lobules VII) but appear to delineate other regions (e.g. motor)
less finely.

To quantify these similarities, we calculated the adjusted Rand
Index (ARI) betweenparcellations at different levels of parcel granularity
(10, 20, 34, 40 and 68 regions). The indices were averaged across
granularities and normalized by the within-dataset ARI (Fig. 1c, see
methods). Overall, the resultant reliability-adjusted ARIs were positive
across all dataset pairs (One-sample t-test of the between-dataset ARIs

averaged across granularities t27 = 17:885,p= 1:696× 10�16), indicating
that there are clear commonalities across all different task and resting
state datasets10,19,20.

To assess the similarity of the resulting parcellations better, we
visualized the reliability-adjusted ARIs usingmulti-dimensional scaling
(Fig. 1b). Unsurprisingly, task-based datasets that test similar task
domains (i.e., working memory andmulti-demand dataset) resulted in
similar parcellations. The Somatotopic and the resting-state (HCP)
parcellation occupied two other, opposing poles in the space of
parcellations.

Parcellations based on datasets that included a large range of
cognitive tasks (MDTB, MDTB-Highres, and IBC) occupied a middle
position, suggesting that such parcellations can well capture stable
features of functional boundaries across tasks. Indeed, when we
compared the ARI for each specific task-based parcellations, we found
that they weremore similar to the parcellation derived from theMDTB
dataset than to one derived from the HCP dataset (paired t-test:
t149 = 9:605,p=2:672 × 10�17; Fig. 1d). Testing each set of task-based
parcellations separately confirmed that all, except for the Nishimoto
parcellations (t24 = � 0:838,p=0:410) were significantly more similar
to the MDTB than the HCP (resting-state) parcellations (MDTB-High-
res: t24 = 16:404,p= 1:523× 10�14; IBC: t24 = 3:513,p= :0017; WM:
t24 = 4:727,p=8:318× 10

�5; Demand: t24 = 3:262,p= :0033; Somato-
topic: t24 = 12:538,p= 5:015 × 10�12). As indicated by the opposing
poles occupied by Somatotopic dataset and HCP resting-state dataset
(Fig. 1b), this difference was largest for the Somatotopic dataset, sug-
gesting that rest and single-limb movements reveal quite dissimilar
boundaries.

In sum, this analysis shows that the resting-state parcellation
captures many task-based boundaries, but also differs from a parcel-
lation that delineates somatotopic motor regions. This is in line with
previous observations that resting-state data do not always reveal
motor regions of the cerebellum clearly7,21. In practice we found that
the inclusion of resting-state data into the fused atlas tended to pre-
vent a clear delineation of somatomotor regions. For the final atlas we
thereforedecided to rely on task-baseddata only given the goal here of
comprehensively mapping motor and non-motor cerebellar regions.

Dataset fusion improves prediction of functional boundaries
Our Hierarchical Bayesian Parcellation framework8 allows for data
fusion by modeling each dataset separately and then combines them
iteratively into a common group atlas. In this process, each dataset is
weighted by a measure of its reliability (see methods, Hierarchical
Bayesian parcellation framework).

To verify that the fusion of datasets through our framework sys-
tematically improved on single-dataset parcellations, we adopted a
leave-one-dataset-out approach. We trained the fusion parcellation on

Fig. 1 | Building a functional atlas of the cerebellum across datasets.
a, Parcellations (K = 68) derived from each single dataset (multi-domain task bat-
tery dataset, MDTB; high-resolution multi-domain task battery dataset, Highres-
MDTB; Nishimoto dataset, individual brain charting dataset, IBC; working memory
dataset, WM; demand dataset, Demand; somatotopic dataset, Somatotopic;
Human Connectome Project dataset, HCP). The probabilistic parcellation is shown
as a winner-take-all projection onto a flattened representation of the cerebellum32.
Functionally similar regions are colored similarly within a parcellation (see meth-
ods: parcel similarity) and spatially similar parcels are assigned similar colors across
parcellations. Dotted lines indicate lobular boundaries. b, Projection of the
between-dataset adjustedRand Index (ARI) of single-datasetparcellations into a 2d-
space through multi-dimensional scaling (see methods: Single-dataset parcella-
tions and similarity analysis of parcellations). c, Within-dataset reliability of par-
cellation, calculatedas themeanARI across the 5 levels of granularity (10, 20, 34, 40
and 68 regions). Errorbars indicate SE of the mean across the five granularity pairs.
Dots show individual reliability values (n = 10). d, Reliability-adjusted ARI between
each single-dataset parcellations and the multi-domain task battery (MDTB; task-

based) and Human Connectome Project (HCP; resting parcellation) parcellation.
Errorbars indicate standard error of the mean across the five levels of granularity.
Dots show individual similarity values (n = 25). Paired two-tailed t-tests were cal-
culated between the ARI of each single-dataset to theMDTB parcellation and to the
HCP parcellation at each granularity: MDTB-Highres: t24 = 16:404,p = 1:523 × 10�14;
IBC: t24 = 3:513,p = :0017; WM: t24 = 4:727,p =8:318× 10�5; Demand:
t24 = 3:262,p= :0033; Somatotopic: t24 = 12:538,p= 5:015 × 10

�12. ** p<0:01, ***
p<0:0001. e, Distance-Controlled Boundary Coefficient (DCBC) evaluation of the
symmetric and asymmetric atlas averaged across granularities evaluated on the
group map (left) or on individual maps derived with that atlas (right). Errorbars
indicate SE of the mean across subjects. Gray connecting lines show individual
subjects (n = 111). For visualization purposes of the subject data, the subject mean
was subtracted and the group mean added. f, DCBC evaluation of the symmetric
groupmap and of individual maps derived from themodel with 10, 20, 34, 40, and
68 regions. Shaded area indicates SE of the mean across subjects. Source data are
provided as a Source Data file.
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all task-based datasets except one and tested its ability to predict
the functional boundaries within that left-out dataset. This ability
was quantified using the Distance-Controlled Boundary Coefficient
(DCBC) which compares the correlation between within-parcel voxel-
pairs to the correlation between voxels-pairs across a boundary,
while controlling for spatial distance22, with higher values indicating
better performance. We found that the fused group atlas out-
performed single dataset parcellations averaged across granularities
(t110 = � 4:466,p= 1:936× 10�5; Fig. 1e left).

In addition to providing a winner-take all group map, our frame-
work can also provide individual parcellations by integrating subject-
specific data (see methods: individual precision mapping). This
ability critically depends on the group atlas not only having appro-
priate boundaries, but also quantifying the uncertainty across parti-
cipants adequately. We found that individual parcellations based on
the fused atlas outperformed those derived from single dataset
(t110 = � 2:564,p= :0171; Fig. 1e right), confirming the superiority of the
fused atlas, both when using a winner-take-all projection or a prob-
abilistic parcellation to derive individual maps8.

Comparing symmetric and asymmetric atlases
To enable the study of hemispheric specialization, we initially con-
strained our atlas to have spatially symmetric regions across the left
and right cerebellar hemispheres, while allowing different functional
profiles. To determine howmuch this constraint forced the groupmap
to deviate from the true functional organization, we also estimated an
asymmetric version of the atlas without using the symmetry constraint
(see methods, Symmetry constraint).

We compared the ability of the asymmetric and the symmetric
atlas to predict functional boundaries, again adopting a leave-one-
dataset-out approach. For the group DCBC, we found a small, but
significant difference between the asymmetric and symmetric atlas
across levels of granularity (10-68 regions; t110 = � 2:344,p= :0201)
(Fig. 1b). This advantage was larger at the individual level
(t110 = � 5:023,p= 1:981 × 10�6). Overall, however, the predictive
power of the symmetric atlas was only 5% (group) or 14% (individual)
smaller than the asymmetric versions. Given themany practical uses of

the symmetric atlas for controlling for region size and location in
lateralization studies, we provide both symmetric and asymmetric
versions of the final atlas.

Basemap for hierarchical atlas outperforms existing
parcellations
Instead of choosing a fixed number of regions, we used three nested
levels of resolution, linked in a hierarchical scheme. This allows the
user to analyze their data at different levels of granularity in a con-
sistent fashion. To decide on the “base map” of this hierarchy, we
examined the predictive performance of the fusion atlas across
the tested levels of granularity at the group and individual levels
(Fig. 1f). We found that the performance of the group map saturated
early, reaching its best value at 20 regions. However, this peak was
not significantly different from the finest granularity of 68
regions (t110 = 2:783,p= :0063). In contrast, the ability to predict
boundaries in the individual increased monotonically, with the finest
granularity outperforming the next lower granularity of 40 regions
(t110 = 7:584,p= 1:143 × 10

�11). We therefore based the hierarchical atlas
on the map with the finest granularity of 68 functional regions.

The fused atlas based on all datasets significantly outperformed
existing parcellations in predicting boundaries tested on all data-
sets. Across all subjects of all evaluation datasets, both the sym-
metric and the asymmetric atlas base map resulted in a higher
average DCBC than existing anatomical (Lobular5:), task-based
(MDTB3: and resting-state parcellations (7 and 17 regions7: 10
regions6:), all t110>3:545,p<5:788 × 10�4 (see Supplemental Fig. 1)

We then clustered the 34 regions per hemisphere of the base-
map into 16 regions per hemisphere according to the functional
similarity between regions (see methods: parcel similarity and
clustering). Finally, we organized these 16 regions into 4 broad
functional domains. Based on their functional activation profiles, we
denoted these four functional domains as motor (M), action (A),
multi-demand (D), and social-linguistic-spatial (S) (Fig. 2c). At the
medium level, we numbered the regions within each domain from
medial to lateral (Fig. 2d). Finally, the finest level was annotated with
a lowercase letter (a-d). In the following description of the regions,

Fig. 2 | Cerebellar functional atlas at three levels of granularity. a Medium
granularity with 32 regions; 16 per hemisphere. The colormap represents the
functional similarity of different regions (see methods: parcel similarity and clus-
tering). b Fine granularity with 68 regions; 34 per hemisphere. c Coarse granularity
with four functional domains. The symmetric version of the atlas is shown, for the

asymmetric version, see Fig. 4. dHierarchical organization based on the functional
similarity of regions, depicted as a dendrogram. The label of each region indicates
the functional domain (M,A,D,S), followed by a region number (1-4), and a lower-
case letter for the subregion (a–d).
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wewill focus on themedium level, as it provides a good compromise
between precision and succinctness.

Characterization of functional regions
Each functional region is characterized by its response profile across
datasets and its spatial distribution across individuals. In describing
the functional profile, we focused on responses estimated from
subject-specific regions in theMDTB dataset (seemethods: Functional
profiles for the MDTB dataset), supplemented by more domain-
specific datasets for the motor and demand regions (Somatotopic,
Demand, WM).

Motor regions
Regions that exhibited a clear preference for movements of a specific
body part were grouped into the motor domain. All regions had a
superior (lobules I–VI) and an inferior (lobule VIII) aspect. We also
found a third representation of these body-part-specific regions in the
posterior vermis, consistent with recent results at the individual sub-
ject level21.

M1 encompassed the oculomotor vermis, which responded most
strongly to saccades (Fig. 2). Even when correcting for the number of
saccades, the area was further activated when participants had to read
text (Theory-of-Mind), watch a movie (animated movie), or search for

visual stimuli (spatial map and visual search), likely due to the atten-
tional demands of these tasks. Previous work has shown that this
region also has a clear retinotopic organization23. M2 comprises a lat-
eral and a vermal part. The lateral section showed strong responses to
tonguemovements in the somatotopic dataset. In contrast, the vermal
componentwas activated bymultiple different bodilymovements, but
otherwise was functionally most similar to the lateral M2. The M3
regions were selectively activated movement of the ipsilateral hand
(Supplemental Fig. 2). Finally,M4wasmost activated bymovements of
the lower body, including flexion and extension of the foot (Highres-
MDTB), as well as contraction of the gluteal muscles (Somatotopic).

Action regions
Directly adjacent to the motor regions lie the action regions, which
were activated during action observation and motor imagery tasks. A1
and A2 both comprised spatially separate superior and inferior sec-
tions. A1 can be found medially to the hand region in lobule VI and at
the border of VIIIa/VIIIb. A2 lies laterally adjacent to the superior hand
region M3, and at the border of lobule VIIIa/VIIIb. In contrast, A3 pri-
marily occupies the inferior cerebellum (Fig. 3), located at the border
of lobules VIIIa/VIIIb.

Although both motor and action regions activated during move-
ment execution, only the action regions activated when observing

Fig. 3 | Cerebro-cerebellar connectivity models. a Matrix shows the correlation
between observed and predicted cerebellar activity patterns for each test dataset
(rows). Connectivity models were trained on each training datasets (columns)
separately. Evaluation was cross-validated across subjects when training- and test-
dataset were identical. b Correlation between observed and predicted activity

patterns, averaged across test-datasets. The Fusion model used the average con-
nectivity weights across all task-based datasets (excluding the HCP resting-state
data). c Average connectivity weights between each cerebellar region (row), and
eachof the 15 resting-state networks as described indu2023?. Source data are provided
as a Source Data file.
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actions without execution: In the MDTB dataset, they showed strong
responses to an action observation task (video actions in Fig. 7). A1
appeared to be particularly involved where spatial simulation is
required (strong responses during spatial map and mental rotation
tasks). Meanwhile, A2 seems to be a classic action observation region,
with little response to tasks that do not involve action observation or
execution. In contrast, A3 was also activated during imagined move-
ments (motor imagery).

Multiple-demand regions
Tasks involving executive control, including updating, shifting and
inhibition, consistently activated regions in lobules VI andVII. Basedon
work by Duncan et al.24, we labeled these regions the multi-demand
domain (D for short). D1 occupied the most medial portion of Crus I
and II. Further out in the hemispheres, the demand region formed a
“shell” around the more central social-linguistic-spatial domain
(Figs. 4b, 5). Here, D3 formed the outermost layer and D2 the inner-
most, with D1 being interspersed between. The regions (especially D2)
also had a repeated representation in lobule IX (Fig. 3). This is con-
sistent with a 3-fold representation7. Intriguingly, we found also a
vermal section of D3, both in lobule IV and IX. D4 was the smallest
identified region. Functionallymost similar to D1, it occupied themost
lateral portion of the demand regions.

Consistent with the characteristics of the cortical multi-demand
system25, all regions showed significant activation during executive
tasks (n-back, switch and stop tasks), and increased activity especially
with high difficulty. Nonetheless, there was some functional speciali-
zation across the regions. In the MDTB dataset, D1 appeared to be
involved strongly in spatial tasks, such as the mental rotation, and
spatial map task. D1 and D4 were strongly engaged in the n-back task.
In contrast, D2 andD3were specifically activated by the digit span task

tested in the WM data set—with D2 more active during backwards
recall and D3 showing strong increases with working memory load.

Social-linguistic-spatial regions
The regions in hemispheric lobules Crus I and Crus II, located laterally
to the D1 region, were activated by tasks involving social and linguistic
processes. They also showed high activity during rest, consistent with
the description of this area as the cerebellar node of the default
network7. We identified four regions, each spanning both sides of the
horizontal fissure, with S1 being the most medial and S4 most lateral
(Fig. 2). S3 overlapped substantiallywith S2 and S4 and therefore could
only be reliably differentiated from these two regions at the level of the
individual (see 5a). In the volume (Supplemental Fig. 4) S1 occupies the
depth of the horizontal fissure, and S4 the most lateral tips of Crus I
and II. A third representation of S2 and S4 canbe found in lobules IX. S1
and S2 also occupy sections in the inferior vermis (VIIIb and IX, Sup-
plementary Fig. 4). While all regions shared some overall similarity in
their response profile, there were clear inter-regional and inter-
hemispheric differences. The mean evoked responses for the MDTB
dataset (Supplemental Fig. 2) showed right S1 to be primarily involved
in linguistic processing, with highest activation during verb genera-
tion. S2was strongly engaged in social processing,with highest activity
during a theory-of-mind task on the right and during an animated
movie on the left. S2, S3, and S4 showed high levels of activity during
rest. S4 and S5 appeared to be particularly involved in imagination and
specific forms of self-projection (Supplemental Fig. 6a, b), showing the
highest activation during the spatial and the motor imagery tasks,
which require the participant to imagine themselves walking through
their childhood home and playing a game of tennis, respectively. In
contrast to S4, S5was also active during a spatial workingmemory task
(Spatial Map) and did not appear to be engaged in linguistic processes

Fig. 4 | Functional lateralization and Boundary asymmetry in the cerebellum.
a Symmetric atlas winner-take-all map. b Asymmetric atlas winner-take-all map.
c Functional lateralizationquantifiedas the correlations of the functional responses
of anatomically corresponding voxel of the left and right hemisphere, averaged

across subjects andwithin each functional region.dBoundary symmetry calculated
as the correlations of the probabilistic voxel assignments between the symmetric
and asymmetric version of the atlas.

Article https://doi.org/10.1038/s41467-024-52371-w

Nature Communications |         (2024) 15:8376 6

www.nature.com/naturecommunications


(Verb generation)(Supplemental Fig. 6c, d). S5 was also activated by
the action observation task, such that it functionally takes up an
intermediate position between the social-linguistic-spatial and action
domain. When comparing these regions to the recently described
subdivision of the default network26, S4 and S5 appear more similar to
default network A (associated with remembering and scene con-
struction), and S2-S3 to default network B (theory of mind).

Cerebral connectivity patterns characterize distinct regions
The cerebellum does not work in isolation—indeed, given the uniform
cyto-architecture of the cerebellum, functional specialization arises
from the different patterns of connectivity. We therefore character-
ized each cerebellar region by determining the areas of the cerebral

cortex that most likely provide input to this area. To do so, we esti-
mated an effective connectivity model, aiming to explain the data in
each cerebellar voxel as a linear combination of cortical regions27. For
the task-based dataset, we used the condition-averaged profiles, for
the resting-state data, the preprocessed time-series. We fitted the
models individually per subject and dataset. To validate these con-
nectivity models, we tested them in how well they could predict the
cerebellar activity patterns for each other dataset, using only the
corresponding cortical activity patterns (see methods: Cortical
connectivity).

The average correlation between the predicted and the observed
activity patterns (Fig. 3a) were significantly higher than zero for all
training / test combinations. One notable exception was the model

Fig. 5 | The functional atlas improves individual precisionmapping. a Individual
parcellations from three participants, using 320min of individual data. The region
colors correspond to the atlas at medium granularity (32 regions). b Map of the
average inter-subject correlations of functional profiles. Correlations are calculated
betweenanypair of subjects in theMDTBdataset, corrected for the reliability of the
data (seemethods: Inter-individual variability). cGroup probabilitymap for regions
S1 and S2 (left and right combined) show the overlap of regions.dDCBC evaluation

(higher values indicate better performance) on individual parcellations (blue line)
derived on 10–160min of individual functional localizing data, compared to group
parcellation (dashed line) or the combination of group map and individual data
(orange line). Shaded area indicates SE of the mean across subjects. e Equivalent
analysis usingprediction error (seemethods, lower is better). Shadedarea indicates
SE of the mean across subjects for all datasets apart from MDTB-Highres (n = 103
for each bar). Source data are provided as a Source Data file.
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estimated on the Somatotopic dataset, which generally performed
more poorly in predicting the other data sets. Connectivity models
generally showed the highest predictive accuracy on the dataset they
were trained on, even though this evaluation was cross-validated
across subjects.

Averaged over all evaluation datasets (Fig. 3b), the model trained
on the MDTB dataset performed best—with the other models being
nearly equivalent in their performance (with the exception of Soma-
totopic dataset). To fuse across datasets, we simply averaged the
connectivity weights across models. We found that average prediction
performance was slightly better if it did not include the HCP dataset
(0.396 vs. 0.394, t102 = � 1:51,p=0:1349). The final Fusion model (last
bar in Fig. 3b) significantly outperformed the best individual con-
nectivity model (MDTB, t102 = � 7:340,p= 5:322 × 10�11). Taking into
account the noise ceiling of this prediction given by the reliability of
the cerebellar and the cortical data (see methods: Cortical con-
nectivity), the model achieved a prediction accuracy of R=0:6840,
meaning that it predicted on average 47% of the explainable variance.

The weights of these connectivity models for each individual
region (Supplementary Fig. 7, 8, 9) clearly showed connectivity with
the expected cerebral regions in the contralateral hemisphere. For
example, the left cerebellar hand region showed the highest con-
nectivity with the hand region of the right primary motor cortex and
somatosensory cortex, and vice versa for the right cerebellar hand
region (Supplementary Fig. 7c).

To summarize these weight maps in terms of standard cortical
networks,we averaged theweightswithin the 15 resting-state networks
described indu2023? (Fig. 3c). This analysis showed the expected con-
nectivity between M1 and visual and dorsal attention networks,
betweenM2-M3 and the Somatomotor and premotor networks, D1-D4
to the dorsal Attention network A and control networks, and S1-S5 to
language and default networks.

Functional lateralization and boundary asymmetry
The symmetric version of our atlas forced the boundaries between
parcels to be the same across hemispheres. Nonetheless, the func-
tional profiles for the left and right parcels were estimated separately
(see methods: Symmetry constraint). Therefore, hemispheric differ-
ences in functional specialization were captured by the model. To
investigate these differences, we correlated the functional profiles of
corresponding left and right voxels (Fig. 4c). We observed low func-
tional correlations between left and right hand regions (M3). This was
mainly causedby task sets that isolated left- vs. right-handmovements.
Such task-dependence can be clearly seen in the foot motor region
(M4), which appear functionally symmetric in the MDTB-Highres
dataset, which included bilateral foot movements, and functionally
asymmetric in the somatotopicdataset included separate left and right
movement conditions (Supplemental Fig. 10).

In contrast, the multi-demand regions consistently show high
functional correlations across left and right hemispheres for all data-
sets, even though the task sets included different executive functions
and working memory tasks, using verbal and non-verbal material.
While there might be some functional lateralization within this
domain, our results suggest that their response profiles are largely
symmetric and that it may be difficult to find strongly lateralized tasks
in this functional domain. In contrast, the social-linguistic-spatial
regions showed much lower functional correlations with substantial
differences between left and right response profiles. Therefore, some
functions are clearly lateralized in the cerebellum, reflected indifferent
functional profiles for left and right regions.

Additionally, it is also possible that boundaries between func-
tional regions themselves are asymmetric. We therefore estimated an
asymmetric version of the atlas with the same functional profiles per
region, but without the constraint on symmetry. Overall, the asym-
metric atlas was similar to the symmetric atlas (Fig. 4a). However,

closer inspection revealed some key differences between the left and
right hemispheric parcels of the asymmetric atlas, with the biggest
difference observed among the social-linguistic-spatial and multiple-
demand regions. When we compared the region size between the left
and right regions in the asymmetric atlas (Supplemental Fig. 11), S3 and
S4 had larger regions on the right, while S2, A2, and D1 were bigger on
the left.

Finally, we calculated an index of boundary symmetry (see
methods: Boundary symmetry) by correlating the parcel probabilities
from the asymmetric and symmetric atlas. We found high boundary
symmetry in motor and demand regions and low boundary symmetry
in social-linguistic-spatial regions. Specifically, among the motor
regions the oculomotor vermis M1 and the hand region M3 (Fig. 4c)
showed high boundary symmetry. All demand regions showed high
boundary symmetry with the exception of D2. In the social-linguistic-
spatial regions, we observed generally low boundary symmetry, indi-
cating that for these regions an asymmetric atlas may be most
appropriate.

Individual precision mapping through integration of
localizer data
The fusion atlas reveals several finely inter-digitated regions that have
not beenwell described before and that have only been localized at the
single-subject level using large quantities of individual data15. However,
with the probabilistic framework, the atlas can be used to identify
these regions in individual participants even withmore limited data. In
this section, wewill describe the approach of personalizing the atlas to
individuals, i.e., using the atlas for precision mapping10–12.

We first characterized the spatial pattern of inter-individual
variability to understand where in the cerebellum individual localiza-
tion would offer the greatest utility. For each voxel, we calculated the
Pearson’s correlation between the functional profiles of all possible
pairs of subjects in the MDTB dataset (methods:Inter-Individual
variability). Whilemotor regions showed consistent functional profiles
across subjects (e.g. hand regions M3 and eye regions M1 in Fig. 5b),
the social-linguistic-spatial regions were more variable. Only voxels in
the core of the S1 region were relatively consistent across individuals;
the lateral regions, and especially the boundary to the multi-demand
regions demonstrated large inter-individual variability. Consistent
with the heightened inter-individual variability in the social-linguistic-
spatial regions, our atlas shows considerable overlap in the group
probability maps for region S1 and S2 (Fig. 5c). Hence, the study of
these regions in Crus I and II and their differentiation from demand
regions will benefit most from precision mapping of individuals.

For individual functional localization, a common approach is to
acquire functional data from the individual to define individual
regional boundaries28–30. However, a substantial amount of functional
data is necessary for deriving a parcellation thatperformsconvincingly
better than a groupmap3,8,14. We quantified this problem here by using
10min-160min of imaging data from the first session of theMDTB data
set to derive individual parcellations. We then evaluated these par-
cellations onhowwell they separated functional regions (DCBC, higher
DCBC indicating better separation; Fig. 5d) and predicted the func-
tional profiles (prediction error, lower error indicating better predic-
tion; Fig. 5e). We found that 20 min of individual data were necessary
to be just as good as our symmetric group atlas, and 40 min to sig-
nificantly outperform the group map on both criteria (DCBC:
t23 = 2:981,p=0:0067, Prediction error: t23 = � 2:869,p=0:0087).

The probabilistic framework, however, allowed us to optimally
combine evidence from the individual data with the probabilistic group
map (see methods: Individual precision mapping). The final estimate of
the model using only 20 min of functional localization data out-
performed both the individual data (DCBC: t23 = 11:468,p= 5:43× 10�11;
Prediction error: t23 = � 9:098,p=4:414× 10�9) and the group map
(t23 = 3:395,p=0:0025). The integrated estimate even improved
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individual parcellations based on as much as 160 mins of data
(DCBC: t23 = 5:838,p= 5:989× 10�6, Prediction error: t23 = � 3:798,
p=9:288× 10�4). Thus the present atlas offers both the advantage of a
consistent group map, as well as the possibility to obtain precision
individualized mapping of brain organization.

Discussion
Summary
In this study, we developed a comprehensive functional atlas of the
human cerebellum featuring several important advances: First, using a
Hierarchical Bayesian Model, we integrated data across seven large
task-based datasets, thereby achieving amore complete coverage. The
present group atlas outperforms existing task-based3 and resting-
state7 atlases in predicting functional boundaries across functional
domains. Second, by enforcing boundary symmetry but letting func-
tional responses vary between hemispheres, our symmetric atlas ver-
sion is particularly suited to study functional lateralization in the
cerebellum. Third, the atlas is hierarchically organized, allowing for a
consistent description of the cerebellum at different levels of granu-
larity. Finally, the probabilistic group atlas can be combined with a
short localizer scan to improve functional precision mapping of indi-
viduals. As compared to the existing winner-take-all group atlases, this
approach paves the way to a detailed analysis of small subregions in
the future.

Three-fold organization of the human cerebellum
Consistent with previous studies7,15,31, we found overall a three-fold
spatial organization of the cerebellum. For most regions, we found a
primary representation located between lobule I and Crus I, a sec-
ondary representation between lobule Crus II and lobule VIIIb, and a
tertiary representation in lobule IX or X. The ordering of the regions
was mirrored around the horizontal fissure, such that the demand
region formed a shell around the social-linguistic-spatial regions, and
the action andmotor regions a shell around the demand regions.While
regions S2-S4 appeared on the flatmap32 to be spatially contiguous, the
volumetric view revealed 9 that these regions too have anatomically
distinct primary and secondary representations, separated by the
horizontal fissure. This observation exemplifies the importance of
considering how regions are distributed on a fully unfolded cerebellar
cortical sheet33 instead of solely relying on the crude approximation
that is offered by our flatmap visualization32.

The group atlas also shows a third representations of cognitive
regions in lobule IX. No third motor representation was found in the
cerebellar hemispheres. Instead, a third representation of the motor
regions in the inferior vermis has recently been described at the indi-
vidual level using deep phenotyping approaches21. Our atlas, which
included these data within its training set, now clearly shows this
representation both at the group and the individual level 8.

Damage to the primary motor representations leads to more
severe deficits than damage to the secondary motor representation34.
Based on this observation, it has been speculated that there are func-
tional differences between the three representations31. So far, how-
ever, a definite demonstration of distinct response profiles among the
three representations has remained elusive. Two lines of evidence cast
doubt on a strong functional dissociation between these representa-
tions. First, our analysis of functional regions generally grouped the
three representations together, implying a significant degree of shared
functional profiles across datasets. Second, tracing studies have shown
that a single axon from the inferior olive can branch into multiple
climbing fibers35 and innervate different regions in non-contiguous
lobules36. Similarly, most ponto-cerebellar mossy fibers project to
multiple lobules37. This suggests that all three representations, despite
their spatial separation, may receive very similar, or even shared,
climbingfiber andmossy fiber inputs. Therefore, it is not clearwhether
the multiple representations of the same functional region can be

functionally distinguished. To facilitate further investigations, we
provide an atlas version, in which each region is subdivided into a
superior (lobule I–Crus I), inferior (Crus II–VIIIb), tertiary (lobule
IX–lobule X), and vermal sections (vermis VII–vermis X). With one
exception (S5), this subdivision separates the spatially non-contiguous
aspect of each region.

Functional insights
Although the spatial pattern of most regions adheres to a three-fold
organization, our atlas reveals that several regions deviate from this
principle, suggesting a more complex cerebellar functional organiza-
tion. First, not all functional regions have all three representations, for
example A3 and S5 only have an inferior representation, whereas M1
only has a superior representation (Supplemental Fig. 3a). Second,
some regions with a primary and secondary representations are spa-
tially connected in the volume (e.g., S1, Supplemental Fig. 3a). Future
neuroimaging studies might reveal a parsimonious organization or
more spatial complexity, as has been suggested by intensive within-
individual mapping15.

Furthermore, while our atlas confirms the well-known functional
regions of the cerebellum, it also uncovers regions that have not been
reported or only recently identified. We describe two previously
unreported regions in lobules VIII and IX, notably A3 which is engaged
during spatial simulation and S5 which activates when constructing an
imagined scene or engaging in specific forms of self-projection. Fur-
thermore, the atlas revealed 5 medial-to-lateral organized regions in
Crus I and II. A similar detailed subdivision has only been achieved at
the individual level using several hours of scan time15,26. This work
showed that the default network can be divided into two parts, one
that is associated with remembering and scene construction (network
A), the other that is associated with mentalizing (network B). Our atlas
captures this distinction, with S4 showing some correspondence with
default network A, and S2 and S3 with default network B.

However, it is not clear a-priori that there should be 1:1 corre-
spondence between the regions identified in this atlas and cerebral
resting-state networks. Our atlas is basedondata that is task-based and
comes from the cerebellum only. It therefore offers a different and
complementary approach to resting-state atlases, in which the net-
works are defined on the cerebrum, and the cerebellum subsequently
labeled according to the best-matching network7.

Individual precision mapping
Studying finely inter-digitated regions is difficult when using group-
level atlases. Inter-individual variability is generally high in the
cerebellum14, and our analysis (Fig. 5d) shows that the location and
arrangement of the multi-demand and social-linguistic-spatial regions
are especially variable across individuals. High inter-individual varia-
bility has been a long-standing finding for language regions. Despite
this variability, the spatial pattern of the language network, its degree
of lateralization and responsiveness are relatively stable within indi-
viduals over time38,39. These results stress the importance of using an
individualized approach when studying cognitive regions of the
cerebellum40–42.

The classic approach to individual localization is to run a short
localizer scan (often 10 min)29, based on the assumption that these
individual-level boundaries reflect the subject’s organization better
than boundaries defined by a group map, or through localization
using resting-state network estimates43. However, experience sug-
gests that substantial amount of scan data are required to predict
individual functional data better than the group map. We confirm
this by showing that the probabilistic group map provided by our
atlas is as good as 20 min of individual data (Fig. 5d), rendering
individual localization based on only 10 minutes of data suboptimal.
Increasing the individual scan time15 often is not feasible, especially
in the clinical context.
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Similarly to the Bayesian model proposed by Kong et al.16, our
atlas offers an alternative, by optimally integrating even limited indi-
vidual data (10-20 minutes) with the probabilistic group map. This
integration yields a probabilisticmapof regions in the individual that is
better than both group and individual map.

To apply this approach to a new subject in a new study, one needs
to acquire some independent individual localization data (see below).
Our framework can then be used to train a new dataset-specific
emission model that characterizes—for each cerebellar region—the
average group response on the tasks contained in that localizer scan.
The final individual parcellations are obtained by combining the data
likelihood with the probabilistic group map (see methods: Group and
individual parcellations). This method enables the use of individual
functional localization in studies for which the time with each indivi-
dual is restricted. Even for longer localizer scans, our approach leads to
significant improvement than using the individual data alone. The
code and documentation for individual precision mapping is available
at github.com/DiedrichsenLab/HierarchBayesParcel (https://doi.org/
10.5281/zenodo.12976154).

An important consideration for a precision mapping approach
remains thedecisionofwhether to use task-basedor resting-state data,
and—if using the former—which localizer tasks to include. For many
purposes, it seems advisable to include a set of anchor tasks able to
activate each region of interest. We observed that task-based datasets
that focused on a narrow functional domain resulted in precise esti-
mates of boundaries for regions of that domain at the expense of
region boundaries for other domains (Fig. 1a).

In addition to tasks that tap into the domain of interest, it is likely
beneficial to include tasks that activate spatially neighboring regions.
For example, when aiming to study the language regions of the
cerebellum29, adding tasks that activate the neighboringmulti-demand
regions may help to obtain a more precise estimate of the functional
boundary between social-linguistic-spatial and multi-demand regions,
which appear especially variable. The development of a principled
approach to design optimal task-sets for functional localization
remains an important question for future research.

Overall, functional precision mapping will likely be increasingly
important in the future to study the function of smaller, more variable
subregions, study brain connectivity9,44, targeted neuromodulation45–47,
and individualized diagnostic and prognosis.

Lateralization
The cerebellum’s importance in lateralized higher-order functions,
particularly language, has reignited interest in lateralization studies
of the cerebellum18. Studies of hemispheric specialization are
most easily performed using a functional atlas that has regions
matched in size and location across hemispheres, while as closely as
possible representing functional boundaries. Prior studies that
examined hemispheric differences in cerebellar development18 or
neurochemistry48 had to rely on anatomical parcellations, even
though these are not good descriptions of functional subdivisions3.
Our symmetric atlas addresses this gap, and we show that the sym-
metry constraint had only a relatively small impact on its ability to
identify functional subdivisions.

Cerebro-cerebellar connectivity
For each of the cerebellar regions, our framework also provides a
cerebral connectivity pattern. We showed that a model that integrates
data across diverse task-based dataset outperforms our previous
model that was only trained on the MDTB dataset27. These patterns of
cerebral connectivity not only provide an additional description of the
identified regions but have two further practical applications.

First, being able to identify a cerebellar region by its cerebral
pattern of connectivity allows the use of resting-state data to localize
these regions in single individuals7,15. This enables the extension of the

atlas to patient groups and young children and allows users to leverage
the broadly available resting-state datasets.

Secondly, the independent identification of the cerebral regions
that communicate with each cerebellar region is an important pre-
requisite for further studies that investigates the functional differences
between cerebral and cerebellar areas within the same functional
module49. We therefore believe that the present atlas will provide an
important resource for the study of the human cerebellum going
forward.

Methods
Datasets and data organization
We used seven task-based and one resting-state fMRI datasets (see
Supplemental Table 1). All studies were approved by the respective
institution’s medical ethical committees or review board. Each of the
first four datasets comprised a broad battery of tasks tapping into
cognitive, motor, perceptual, and social functions: (1) The Multi-
Domain Task Battery dataset (MDTB,3), (2) a high-resolution version of
the MDTB (High-res MDTB; not yet published), (3) the Nakai & Nishi-
moto dataset50, and the (4) The Individual Brain Charting (IBC)
dataset51,52. We also included three further datasets to obtain a better
description of the motor and executive functions: (5) the working
memory (WM) dataset49 which included finger movements and a for-
ward / backwards digit span task; (6) theMulti-Demanddataset25 which
included a no-go, n-back, and task-switch task; and (7) the Somatotopic
dataset21 which probed foot, hand, glutes, and tongue movements.
Finally, we used the resting-state fMRI dataset Unrelated 100 subjects,
which is made publicly available in the Human Connectome Project
(HCP) S1200 release53.

Sex and gender were not considered in the study design. and only
sex, but not gender was recorded based on self-report. However, the
final atlas samplewas approximately balanced for sex (60males and 51
females). Study demographics are reported in Supplemental Table 1).

The task-based datasets were preprocessed as described in ref. 8.
For each run and condition, we estimated one contrast image, and
divided it by the root-mean-square-error from the first-level GLM to
obtain a normalized activation estimate for each condition. These
values served as the input data for all subsequent analyses. No
smoothing or group normalization was applied at this stage. For the
HCP resting-state data, we used minimally preprocessed time series54.
The preprocessing pipeline included correction for spatial distortion
and head motion, registration to the structural data, cortical surface
mapping, and functional artifact removal54,55. This resulted in 1200
time points of processed time series per imaging run per cerebellar
voxel of the standard MNI152 template56. To obtain resting-state
functional connectivity (rs-FC) fingerprints of the cerebellar voxels, we
used a group Independent Component Analysis (ICA). We applied the
group-ICA implemented in FSL’s MELODIC57 with automatic dimen-
sionality estimation to the temporally concatenated functional data of
all subjects, sessions and runs, and selected the top 69 signal com-
ponents. We then regressed the 69 group network spatial maps into
each subject’s data, resulting in 69 subject-specific network time
courses. The cerebellar rs-FC fingerprints were calculated as Pearson’s
correlations of the cerebellar voxel time series with each cortical net-
work time course.

Using a unified code framework (available at github.com/die-
drichsenlab/Functional_Fusion), the data were then extracted in two
atlas spaces. For the cerebellum, we computed the non-linear morph
into the Symmetric MNI152NLin2009aSym template (http://nist.mni.
mcgill.ca/?p=904). The functional data were resampled to a group
space of 18290 cerebellar gray-matter voxels with an isotropic reso-
lution of 2mm. During this step, we only considered voxels within the
individual cerebellarmask, taking care to exclude any signals from the
directly abutting neocortical regions. For interpolation of functional
signals within the cerebellum we used a Gaussian kernel of 2mm
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standard deviation. For the cortical-cerebellar connectivity models,
the same data were projected onto individual surfaces, which are
aligned to the symmetric freesurfer32LR template56.

Hierarchical Bayesian parcellation framework
To integrate different datasets into a unified probabilistic parcellation
atlas, we utilized a recently developed Hierarchical Bayesian
Frameworkfor fulldetails 8. In short, the framework integrates different fMRI
datasets,Ys,n, recorded in different sessions (n) fromdifferent subjects
(s). The model assigns each of the possible brain locations in each
individual to one of K functional parcels, with Us

k,i = 1 indicating that
the ith voxel is part of the kth parcel. Themodel estimates the expected
value of these parcel assignments, which provides a probabilistic
parcellation for that individual.

The model consists of two parts: First, a collection of dataset-
specific emission models that specify the probability of each observed
dataset given the individual brain parcellation, p Ys,njUs� �

. Here, we
used a van-Mises-Fisher mixture model, in which each parcel had a
mean vector vnk for each session, and a separate concentration para-
meter for each sessionκn , Model Type 2, see 8. Each emission model therefore
had the parameters θn

E = fvn
1 ,:::,v

n
k ,κ

ng.
The second component, the arrangement model, specifies the

group probability of each brain location belonging to a specific parcel.
Here we used a model that treated each voxel independently, with
p Us

k,i

� �
= softmax ηk,i

� �
. The KxP arrangement model parameters

θA = fη1,1,:::g could therefore be estimated by averaging across all the
individual probability maps. During this integration step, the con-
centration parameter for each dataset effectively determines the
weight by which an individual contributes to the overall group map.

The parameters of the spatial arrangement models and the
emission models were estimated together using an EM-algorithm. We
used 5000 different random starting values to avoid local minima. For
computational reasons, the initial fitting and evaluation was done
using a 3mm isotropic voxel resolution—the final selected model was
upsampled to 2mm and used as a starting value to refit to the higher
resolution data.

Symmetry constraint
To achieve spatially symmetric parcellations, we developed a version
of the arrangementmodel, where parcels 1:::K=2 were restricted to the
left hemisphere, and parcelK=2 + 1,:::,K to the right. The assignment of
voxels to parcels was symmetric—that is if the left hemisphere voxel
was assigned to parcel 1, the corresponding right hemispheric voxel
was assigned to parcel K=2 + 1. As a consequence, symmetric brain
locations were assigned to corresponding parcels. The mean func-
tional profiles vnk , however, were estimated separately for the left and
right hemispheric parcels. This allowed us to derive a spatially sym-
metric parcellation of the cerebellum, while still capturing the func-
tional specialization of each hemisphere.

To construct a corresponding asymmetric atlas, we removed the
symmetry constraint, now allowing left and right-hemispheric voxels
to be assigned to non-matching parcels. However, to retain the same
number of regions, we retained the constraint that one half of the
regionswere in the left, the other half in the right hemisphere. Tomake
the asymmetric atlas comparable to the symmetric version, we also
used the fitted emission models (mean functional profiles) from the
symmetric model, only refitting the arrangement model without the
symmetry constraint. This resulted in an asymmetric version of the
atlas in which the regions had the same functional profiles as in the
symmetric version.

Group and individual parcellations
After fitting the parameters fθA,θ

1
E ,:::,θ

N
E g, the model can be used to

derive both a groupand individualparcellationmaps.Theprobabilistic
group parcellation is based only on the arrangement model, which

directly specifies pgroup =p Uð Þ for each voxel and parcel. Each indivi-
dual parcellation is based on some individual training data, Yn

s . The
data-only parcellation only depends on the corresponding emission
model, with pdata,s / p Yn

s jUs

� �
. In contrast, the full individual parcel-

lation integrates the probability from both emission and arrangement
model pindiv,s / p Yn

s jUs

� �
p Us

� �
, using Bayes rule. For visualization and

evaluation, both group and individual probabilistic parcellation were
transformed into hard parcellations by assigning each voxel the parcel
with the highest probability.

Individual precision mapping
Our model provides a probabilistic group map (spatial arrangement
model) and a probabilistic estimate of parcel membership based on a
specific individual data set (using a dataset-specific emission model).
By integrating these using Bayes rule, an optimal estimate of brain
organization for a new individual can be obtained8. For the analysis
presented in Fig. 5, we used 1-16 runs of data from the first task set of
theMDTBdataset as training. The individualmapswere then evaluated
on the second task set, which contained 8 overlapping and 9 novel
tasks3.

To apply this approach to new subjects with individual localizing
data that is different from the task sets included in our atlas, the user
would first estimate a new emission model from the data of all indi-
viduals in the study. This new dataset-specific emission model can be
used to localize regions in new individuals, given their data.

Single-dataset parcellations and similarity analysis of
parcellations
To compare the differences between parcellations derived from dif-
ferent datasets, we trained the model on each dataset separately,
estimating parcellationmaps with 10, 20, 34, 40 and 68 regions. As an
index of parcellation similarity, we calculated the adjusted Rand Index
(ARI) between the winner-take-all voxel assignments of the resulting
parcellations. The ARI was calculated across all 5 levels of granularity,
resulting in a 5x5 matrix of ARIs for each dataset pair. Different data-
sets are differently reliable which could affect the similarity of two
datasets. We therefore estimated the reliability of the parcellation by
averaging the ARIs between different levels of granularity within each
dataset, with the idea that reliable datasets should result in parcella-
tions that are consistent across granularities. We then divided the ARI
(also average across levels of granularity) between two datasets by the
geometric mean of the two average within-dataset ARIs. This index
served as a reliability corrected measure of correspondence between
parcellations.

Statistical tests to compare the similarity of two data set pairs
were performed using a paired t-test, using reliability-corrected ARIs
for the unique 25 different granularity pairs as independent
observations.

Finally, we used classic multi-dimensional scaling to visualize the
structure of similarities between different parcellations.We calculated
the first two eigenvectors of the square matrix of adjusted between-
dataset similarities. The space defined by these two vectors optimally
reproduces the overall similarity structure, with the dissimilarity (1-
ARI) between two datasets reflected in the Euclidean distance between
the two.

DCBC evaluation
To assess how well a given parcellation can predict functional
boundaries in the cerebellum, we utilized the Distance-Controlled
Boundary Coefficient (DCBC)22. This metric compares the correlation
between voxel-pairs within a parcel to the correlation between voxel-
pairs across a boundary, while accounting for spatial distance. Our
evaluation included both the group parcellation (DCBC group) and
individual parcellations (DCBC individual) obtained from this
group atlas.
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Both group and individual DCBC were calculated in a cross-
validated fashion, leaving out the test dataset during training of the
overall model. The group DCBC was calculated by deriving a winner-
take-all parcellation from the group probability map and evaluating
the ability of these group-based boundaries to predict functional
boundaries in each individual.

To calculate the DCBC for individual parcellations, we used a
localizer-like approach for individual precision mapping (see methods:
individual precisionmapping): One half of the test dataset served as the
localizer data. First, we estimated a dataset-specific emission model for
the localizer dataset across all subjects. Then, we used the localizer data
from one specific subject to estimate the individual boundaries (see
methods: group and individual parcellations). Hard-parcellated indivi-
dual boundaries were derived using a winner-take-all approach on the
subject’s resultant individual probability map. These were then tested
for their ability to predict functional boundaries in the secondhalf of the
subject’s data.We then reversed the role of the two halves of the test set
averaged performance across the two within-subject cross-validation
folds. To make the evaluation of group-based and individual-based
boundaries comparable, we also calculated the group DCBC by splitting
each subject’s data in half and then averaging the performance across
the two halves after individual DCBC calculation. A higher DCBC value
indicates better performance of the parcellation.

Prediction error evaluation
To assess the ability of a given parcellation to predict functional
responses in individual held-out data, we calculated a prediction error.
Using the same localizer-like approach as for the individual DCBC, we
first derived the individual parcellations from one half of each dataset,
and converted these to winner-take all maps. We then used the data
fromN � 1 subjects of the second half to estimate themean functional
profiles (vk) for each region. For each voxel in the Nth subject, we then
used the profile of the assigned region as a prediction and calculated
the prediction error as one minus the cosine similarity of prediction
and data vector. When averaging these results across voxels, we
weighted each cosine error by the length of the data vector to ensure
that voxels with high signal strength would influence our evaluation
more than noisy voxels8.

Parcel similarity and clustering
To develop a hierarchically organized system of maps, we started with
the symmetric map with 68 parcels (34 per hemisphere) as our base.
For clusteringwederived a functional similarity indexbetweenparcels.
We first averaged the estimatedmean response vectors for eachparcel
and session vnk across the left and right hemisphere, and then calcu-
lated the cosine similarity between each pair of parcels. We then took
the weighted average of these cosine-similarities across sessions and
datasets, with the weight of each session set to product if the disper-
sion parameter κn and number of subjects for that session Nn.

We then iteratively merged the smallest parcels into the func-
tionally most similar parcel, until all parcels had at least one voxel win
the winner-take-all assignment, resulting in 32 parcels (16 per hemi-
sphere). When merging parcels, we summed their probability maps to
obtain the probability of a voxel to belong to the combined parcel. The
emission models for the combined model were then refit to the data,
keeping theprobabilities in the arrangementmodelfixed. In a last step,
we grouped the 32 parcels (again, based on their functional profiles)
into 4 domains. The labels for each parcel then followed the organi-
zation of Domain-Region-Hemisphere-Subregion.

The colormap for our functional atlas was based on the weighted
cosine similarity of the functional profiles (see above). We used clas-
sical multi-dimensional-scaling to represent these similarities in a
3-dimensional space. This arrangement was then projected into RGB
space.We used 3 spatial anchor points (motor region = green, demand
= red, social linguistic = yellow) to achieve a consistent color scheme

across parcellations (i.e. Figure 1a). As a result, the similarity of color of
different parcels can be directly interpreted as an approximation of
their functional similarity.

Functional lateralization and Boundary symmetry
To study lateralization, we assessed the symmetry of the functional
profiles of left-right voxel pairs. For this, we calculated the cosine simi-
larity of the functional profiles of each voxel pair. Functional profiles
were obtained by averaging the estimated mean response vectors for
each voxel in each session. The cosine similaritieswere thenweightedby
the session weight κn and the number of subjects Nn, for session n.

To investigate left-right boundary symmetry in the cerebellum, an
asymmetric version of the atlas was estimated (see methods: Sym-
metry constraint). An index of boundary symmetry was calculated as
the correlation between the parcel probability vectors of the asym-
metric and the symmetric atlas for each voxel, either for the group
map, or for the individual parcellations. For visualization, the corre-
lation values within all datasets, excluding the Nishimoto and IBC
dataset due to the relatively low reliabilities, were averaged across
individuals.

Cerebral cortical connectivity
Connectivity models were fitted for each individual (and dataset)
separately. As described in King et al.27, we parcellated the cerebral
cortex into 1876 parcels using a regular icosahedron. For task-based
data we used the normalized activity estimates, for the resting-state
data, the preprocessed time series (see methods: Datasets and data
organization). These data were averaged across all voxels in each
cerebral ROI, forming the NxQ matrix X: The same data was
extracted for each cerebellar voxel in atlas space. The connectivity
weights were then estimated to form the best predictive model
Y=XW using Ridge-regression. The ridge coefficient was tuned for
each dataset separately to yield the best prediction performance on
all the other datasets.

For evaluation, we averaged the connectivity weight across all
subjects in each training dataset. For each individual in the evaluation
dataset, we used the cerebral cortical activity measures and the aver-
age connectivity weights to predict the individual cerebellar activity
patterns. We then calculated the cosine similarity between the pre-
dicted and observed cerebellar activity27.

When evaluating a connectivity model on the same dataset it was
trained on, we adopted a leave-one-subject out approach. For each
individual, the connectivity weights were averaged across all other
individuals in that dataset, and then applied tomake the prediction for
that single subject.

Finally, we investigated if an integration across all datasets would
increase the predictive power of the connectivity model. For this we
simply averaged connectivity models across all task-based datasets,
always taking care to leave the particular evaluation subject out of the
averaging of the connectivity weights.

Functional profiles for the MDTB dataset
To characterize the functional profile of each cerebellar region, we
calculated the mean task response of all parcels in the MDTB dataset.
These functional profiles were the normalized activation estimates
(see methods: Dataset and Data Organization), averaged across the
individualized regionswithin each individual. To account for activation
that can be explained by the motor aspects of each task, we used the
number ofmovements in each condition (left hand presses, right hand
presses and saccades per second) as a covariate alongside regressors
that coded for each condition separately3. The columns of the design
matrix and the average functional profiles were z-normalized across
conditions. We estimated a linear model using ridge regression (L2
regularization) to arrive at a final estimate for the motor features and
task-activations.
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Inter-individual variability
To quantify inter-individual variability in the cerebellum, we calculated
Pearson’s correlation coefficient of each voxel’s response profile pair-
wise between all subjects within the MDTB dataset. To account for the
measurement noise, we derived two independent estimates for each
subject and voxel: one from the first half, the other from the second half
of the data. Correlations were computed on the concatenated two
profiles and the reliability was calculated by correlating the two inde-
pendent estimates of the response profile within each subject. The inter-
subject correlation was normalized by dividing each value by the square
root of the product of the two subject’s reliabilities. For purposes of
visualization of each voxel’s inter-individual variability, we averaged the
inter-subject correlation values across subjects and divided it by the
reliability averaged across subjects, obtaining a single value per voxel.
These voxel values were projected to the flatmap.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw fMRI data used in this study have been deposited in the
openneuro database under accession code ds002105 [https://doi.org/
10.18112/openneuro.ds002105.v1.1.0] for MDTB, ds005148 [https://
doi.org/10.18112/openneuro.ds005148.v1.1.0] for WM, ds002306
[https://doi.org/10.18112/openneuro.ds002306.v1.1.0] for Nishimoto
and ds000244 [https://doi.org/10.18112/openneuro.ds000244.v1.0.0]
for IBC. For the HCP dataset, raw and preprocessed data is available at
https://www.humanconnectome.org/study/hcp-young-adult/data-
releases. The MDTB-Highres and Somatotopic dataset have not yet
been openly released. The fMRI-derived data generated in this study
are provided in the Supplementary Information and the Source Data
file (https://github.com/DiedrichsenLab/ProbabilisticParcellation/
blob/main/data/source_data.xlsx).

Code availability
For a practical example on how to generate individual cerebellar par-
cellations using a new dataset, see https://hierarchbayesparcel.
readthedocs.io/en/latest/indiv_parcel.html The code for the hier-
archical Bayesian parcellation framework is available at https://github.
com/DiedrichsenLab/HierarchBayesParcel. The organization, file sys-
tem, and code for managing the diverse set of datasets is available at
https://github.com/DiedrichsenLab/Functional_Fusion. The code for
building the atlas and generating the results and figures in this paper is
publicly available as the GitHub repository https://github.com/
DiedrichsenLab/ProbabilisticParcellation. The code for connectivity
modeling is available at https://github.com/DiedrichsenLab/cortico_
cereb_connectivity. For a tutorial on how to apply the connectivity
model to new data to make predictions, see https://github.com/
DiedrichsenLab/cortico_cereb_connectivity/blob/main/notebooks/0.
Application_example.ipynb.
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