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Abstract  

Natural behaviour unfolds as a continuous stream of actions. Because these typically 
occur in rapid succession, the brain must prepare multiple future actions while the current 
movement is ongoing – a process that we call online planning. Here we review the 
behavioral evidence for online planning and discuss possible neural implementations that 
would support such parallel preparation and allow for a partial dependence and partial 
independence between diYerent planning processes. Finally, we argue that training on 
specific sequences accelerates online planning, thereby improving performance while 
retaining the ability to modify sequences online. Online planning therefore provides a 
unifying account of how both unpredictable and well-learned sequences are produced, 
and how training leads to skillful and coordinated performance and behavioral flexibility.  
 

Highlights 

• Multiple future actions are planned during an ongoing movement 
• Future actions are planned, at least to some degree, independent of each other 
• Plans can influence each other to provide biomechanically eYicient transitions 

between actions 
• Improvements in online planning account for a large part of motor sequence 

learning 

 



Online planning – coordinating sequences of actions 
To study behavior, most experiments are structured into discrete trials. Each trial starts 
with the presentation of a stimulus, followed by some internal processing (here denoted by 
planning), and finally the response. A short interval between trials ensures that the system 
can reset, making each trial independent of the previous one (Fig. 1a). This discrete trial 
structure greatly simplifies the analysis of the behavior of interest. 

 

Figure 1. Online planning. (A) In classical experiments, planning (P) and response (R) phases 
associated with different actions are separated in time. (B) In real-world behavior like making a cup 
of tea, planning future actions occurs in parallel to the ongoing execution of current actions. 

However, real-world behaviors are much more complex. Movements typically follow each 
other in rapid succession and may even overlap (Fig. 1b). Moreover, movements are often 
co-articulated, such that the current movement is shaped to allow for smooth transition to 
the next movement [1–3].   

In this article, we argue that to execute movement sequences smoothly, the nervous 
system must rely on online planning: simultaneously preparing future movements while 
controlling the ongoing movement. Planning and executing at the same time requires a 
delicate coordination between diYerent neural processes. On one hand, the planning of 
future actions must occur independently from the execution-related processes, so that it 
does not interfere with the ongoing movement. On the other hand, the diYerent processes 
need to interact, for example, when the current movement is co-articulated to enable a 
smoother transition to the next [4].  
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Empirical evidence for online planning 
What is the evidence that online planning occurs? One indication comes from human gaze 
behavior during natural object manipulation. Humans typically fixate on the object relevant 
to the current action. However, in a sequence the gaze often shifts to the next task-relevant 
object even before the current object is reached  – likely to gain information to plan the next 
movement [5–7]. This suggests that the intake of sensory information and planning of the 
next action overlaps with controlling the current action (Fig. 1b).  

A second important piece of evidence comes from studies in which participants 
produce random movement sequences, with each movement element indicated by an 
external cue. By varying the number of cues that can be seen ahead, one can infer how 
many movements into the future participants plan. For example, Ariani et al. [8] used a 
finger sequence task, cued by digits on a screen. Participants could view only a fixed 
number of digits ahead into the future (viewing window, Fig. 1a). Performance increased 
with increasing viewing window sizes, demonstrating that participants indeed planned 
ahead. However, showing additional digits did not lead to any further performance 
improvements, suggesting that the planning horizon was limited to three movements (Fig. 
1b). Similarly, Bashford et al. [9] used a continuous control task in which the participants 
kept a cursor on a moving path (Fig. 1c). With increasing viewing window size the 
performance increased, until it plateaued at about 12cm (Fig. 1d). Both studies therefore 
indicate that participants planned either a finite number of movements or a finite time 
ahead.  

Is this size of the planning horizon fixed, or can it be improved? In both studies, two 
changes occurred after multiple days of training on random sequences or tracks: First, the 
planning horizon increased slightly as participants were able to use information further 
ahead. More importantly, the trained participants showed larger performance benefits from 
the same advance information – the diYerence between the two groups was larger for large 
as compared to small viewing windows (Figs. 1b and 1d). This shows that, while trained 
participants were able to plan a single movement faster, the main improvement with 
training arose from the ability to smoothly coordinate the planning processes of multiple 
future movements.  

The final piece of evidence for online planning is the co-articulation of movements 
within a sequence. For example, in a sequence of reaching movements, each reach is 
curved to minimize changes in movement acceleration when going from one to the next 
target [1,10]. In speech production, syllables are articulated such that they blend more 
smoothly into the next [11]. When spelling letters using the American sign language, hand 
gestures are changed depending on the letter that comes after [3]. For such changes to 
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occur, future movements need to be planned to the degree that they can influence how the 
current movement is executed.  

  
Figure 2. Estimating the planning horizon using viewing window experiments. (A) In a finger-
sequencing task [8], participants could see a variable number of digits ahead of the current press 
(gray box). Viewing window sizes (w) from 1-3 are shown. With each press, a new digit was revealed. 
(B) Movement time for random 14-digit sequences decreased as a function of viewing window size 
and as a function of training (day1 vs. day 5). (C) In a car-driving task, a cursor needed to be kept on 
a continuously moving path [9]. The path was shown to the participants using a viewing window of 
different size. (D) Time spent on path increased as function of viewing window size and as function 
of training (expert vs. naïve).  

What exactly is planning? 
In this paper, we use the term “planning” for the entire cascade of processes that unfold 
between the presentation of the imperative cue and the onset of the movement. This 
includes the sensory processes that lead to the identification of the stimulus, the selection 
of the next action based on that stimulus, and the preparation of the motor system to 
produce the selected movement accurately. Which of these processing stages are 
performed during online planning?  
 The fact that movements are co-articulated to biomechanically optimize sequence 
transitions [12] clearly argues that at least the next two future actions are planned to a 
motoric level before their execution begins, as it is important to know how to do the next 
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movement if one is to optimize the current one. On the other hand, speed benefits from 
online planning (Fig. 2) could arise at any stage that requires processing time. How long 
each stage takes, will strongly depend on the exact paradigm. Action selection, for 
example, can be either slow or fast, depending on the complexity of the mapping between 
stimuli and responses (S-R mapping). When actions are cued with symbols or numbers 
(e.g. using the numbers 1-5 to indicate the fingers from thumb to pinkie [13]), reaction 
times often exceed 400ms [8,14,15]. In contrast, when reaching movements are cued by 
the presentation of spatial targets directly in the workspace of the subject, actions can be 
initiated within 200ms [10,15–17]. This suggest that the mapping between spatial targets 
and reaching movements is very direct and does not require a time-consuming S-R 
mapping process [18–20]. The fact that the eYective planning horizon (the window size for 
each participants still show behavioral benefits) appears to be somewhat shorter for 
sequences of spatially-cued reaching movements than for numerically-cued finger 
movements suggests that some part of online planning is indeed concerned with action 
selection.  

This idea is supported by a recent paper on the pre-planning of action sequences 
[22]. While the reaction time to initiate sequences usually increase with the number of 
sequence elements [8,21], this paper showed that such reaction time cost is absent when 
reaching movements are spatially cued. 

As for action selection, the complexity of “motor planning”, the specification of the 
exact movement parameters once the action is selected [23,24], can vary widely across 
paradigms. For spatially-cued reaching movement it has been argued that the motor 
system can be brought into the correct initial state almost instantaneously [17]. On the 
other hand, the initiation of a complex multi-finger hand movements (chords) takes 
~270ms longer than the initiation of a single finger press, even when the cues and the 
number of action choices are matched across these two situations [25]. The fact the online 
planning benefits for chords is larger than for single finger movements suggest that online 
planning at least partly can help specify the exact movement parameters. The same study, 
however, also compared the neural activity when two planning processes overlapped, to 
when they could be performed sequentially. The extra activity for overlapping (online) 
planning occurred in posterior parietal regions and was independent of the motoric 
complexity of the actions [25], suggesting that this extra neuronal activity was associated 
with parallel processes of response selection rather than of movement planning.  
 In summary, it is likely that online planning is concerned both with “cognitive” action 
selection and “motoric” action planning, with the former likely being the more costly in 
terms of processing time and neural activity. However, it has also become increasingly 
clear that action selection and motor planning are tightly interlocking and temporally 
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overlapping processes [26]. For example, dorsal premotor cortex represents the movement 
direction of multiple action choices simultaneously, even before a decision is made 
[27,28]. Thus, it may be diYicult to always cleanly separate “cognitive” and “motoric” 
processes, and both may be important for the development of sequential motor skills.  

Pre- vs. online planning  
Although we focus here on online planning as a new window onto sequential movements, 
the idea that sequences are pre-planned before movement onset has a long history 
[12,21]. Behaviorally, it can be shown that movement sequences that can be pre-planned 
are executed more quickly [14,29]. Neurally, at least the first two movement elements of a 
sequence can be decoded from the pre-movement activity in prefrontal and parietal areas 
[30,31], and can be elicited with stimulation [32]. Such findings have lend support to the 
competitive queuing hypothesis [33], according to which all movement elements of a short 
sequence are prepared in parallel before the first movement starts, with a gradient of 
activation from the first to the last movement ensuring that the elements are executed in 
the correct order. Thus, for sequence pre-planning, it is relatively well established that 
multiple future movement can be planned in parallel. If this is the case, then the critical 
question becomes to what degree online planning relies on the same processes as 
preplanning, with the only diYerence that these would now occur during movement 
execution, and not before initiation.   

Several lines of evidence seem to suggest that sequence pre- and online-planning 
are indeed tightly related. For instance, the capacity of pre- and online planning appears to 
be very similar. In finger-sequences, participants online plan approximately 3 movements 
ahead [8]. Similarly, when participants are allowed to pre-plan long sequences of 
movements, they are faster in executing the first 3 presses of that sequence, but then slow 
down to the same speed as when they were not able to prepare the sequence [15]. 

A recent fMRI study in humans [34] directly compared the neural processes 
underlying pre- and online planning by contrasting complex with simple sequences. Before 
movement start, complex sequences engaged premotor and parietal areas more than 
simple sequences, likely related to the increased demand on pre-planning. The same areas 
were also more activated during the execution of complex sequences, likely reflecting the 
larger demand on online-planning. The two diYerence patterns matched remarkably well, 
arguing that the same set of areas were involved in both processes.  

Other evidence, however, suggests that there may be diYerences between 
movement pre- and online planning. When deciding between two possible reaching 
movements, participants bias their decision based on biomechanical factors. This bias is 
smaller when movements are planned online than when they can be pre-planned [4]. 
DiYerence could also be observed in the beforementioned fMRI study - while the neural 
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activity for pre- and online-planning was highly correlated, the match was not perfect [34], 
suggesting that there are some subtle diYerences between the two processes.  

Independent vs. interdependent online planning  
If multiple future actions are planned in parallel, are they planned independently, or do 
their planning processes depend on one another (Fig. 3a)? In the extreme, multiple 
movements could be planned as an inseparable unit (see text box chunked vs. continuous 
planning), such that it is not possible to change one without re-planning the other. This 
prediction was tested directly using perturbation in a finger-sequence tasks [35] and a 
spatial reaching task [36] where the cue for the action two ahead (+2, Fig. 3b,c) was 
changed during execution of the current action (+0). Consistent results emerged from both 
paradigms: while the perturbation delayed reaction to the +2 action -indicating that 
participants had to replan that action- the +1 action was not delayed. If the +1 and +2 
action had been planned together as a unit, the +1 action should have been aYected as 
well.  These findings clearly show that the two movement plans were at least partially 
independent.  

 
Figure 3. Independent vs. interdependent planning of future actions. (A) During the execution of the 
current (+0) action, the planning processes for the next two future actions (+1, +2) overlap. How do 
they interact? (B) Probing future planning processes using perturbations in the finger-sequence task 
[35]. When the participants press the current key (+0) the digit for the action two ahead (+2) is 
changed (dashed arrow). (C) Arm-reaching task [36]. When the participants reach the current target 
(+0) the spatial for the reach two ahead (+2) jumps to a new location. 

Future movements plans, however, also must have the ability to interact with each 
other. The simple fact that movements are often co-articulated suggests the planning of 
the +2 movement influences the planning of the +1 movement (Fig. 3a). Such co-
dependence could be arising in two ways. One possibility is that there is unintended 
crosstalk between the two movement plans, biasing the +1 movement to become more 
similar to the +2 movement. In general, however, this does not often seem to be the case. 
For example, in reaching, if the second target is directed to the right, the first movement will 
be curved to the left. In hand spelling, signers often emphasize the diYerences between 
subsequent letters to make the transition between them clearer [3]. These findings indicate 
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that the motor system actively optimizes the transition between movements, rather than 
simply mixing future movement plans [16,37]. Either way, however, it is very clear that there 
is a partial dependence between the planning processes of future movements.  

Neural architectures for online planning 
How are multiple planning processes implemented in neuronal population, such that they 
do not infer with ongoing execution processes? And how can they interact with each other, 
while still retaining partial independence?  

Our current understanding of how sequential actions are represented in the brain 
relies heavily on single-neuron recordings in non-human primates. A set of early studies, 
by Tanji and colleagues, demonstrated that single neurons in the supplementary motor 
areas (SMA) and the dorsolateral prefrontal cortex (dlPFC) encode not only the upcoming 
movement but also the specific order of movements within a sequence [38,39]. For 
instance, when macaques produced a three-movement sequence of hand actions (e.g., 
push-turn-pull), specific SMA neurons fired selectively when a particular action occurred 
in a specific sequence, but not when the same action was executed in a different 
sequential context.  

These findings fit with a hierarchical model of sequence representation where 
frontal regions represent abstract sequence information independent of kinematics, and 
then transfer that information to other motor cortical areas as required for the execution of 
each action separately. Such a strict hierarchical organization would easily accommodate 
parallel planning and execution. However, many electrophysiology studies suggest that 
both planning- and execution-related activity occurs in the same cortical areas [40], and 
even in the same neurons [41,42]. This mixed selectivity has made it hard to explain how 
the brain prepares future actions while simultaneously executing current movements. 

 
Figure 4. Neural architecture for online planning. (A) In neuronal state-space analysis, the 
population activity of n neurons is plotted as a neural trajectory in n-dimensional space. (B) In this 
space, planning-related information is encoded in neuronal dimensions that are orthogonal to the 
neural dimensions that encode execution-related information [43]. We hypothesize that different 
future movements are encoded in dimensions that a almost, but not fully, orthogonal from each 
other.  
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The analysis of neural population activity using a state-space approach [44] 
provides an important insight. In this framework, the firing rate of each neuron represents 
one dimension in a multidimensional neural state space. The instantaneous activity of the 
entire population maps to a specific coordinate that evolves dynamically through this 
space (Fig. 4a, see [45] for review). A key feature of the neural activity before and during 
reaching movements is that planning and execution processes evolve in orthogonal 
subspaces in this multi-dimensional neural state space [45,46] (Fig. 4b). Downstream 
neurons, therefore, can be insensitive to activity in the planning subspace, allowing the 
brain to prepare a movement in primary motor cortex without triggering premature muscle 
activity. 

Zimnik and Churchland [43] recently showed how the motor system also exploits 
this orthogonality to handle online planning during sequential arm movements. By training 
NHPs to perform two reaches, either as two elements in isolation or in rapid succession as 
part of a sequence, they found that the same planning and execution subspaces were 
engaged during isolated movements and during sequence production. Specifically, while 
the first reach was being executed, there was activity in primary and premotor cortices 
along the same neural dimensions as when the second movement was prepared in 
isolation. This finding suggests that orthogonal subspaces allow the motor system to 
control the current movement, while simultaneously preparing the next movement in the 
same brain area without interference.  

Although such independent subspaces account for the capacity of online planning, 
it leaves open many questions. For example, how are the planning processes for two future 
movements (movement +1 and +2 in Fig. 3) organized? When two planning processes 
occur together, the two movements are often co-articulated, which requires that the two 
planning processes to interact with each other. A model with strict independence between 
planning subspaces cannot explain this.  

Here we suggest that activity related to the future planned movements may occur in 
separable, but not perfectly orthogonal, subspaces (Fig. 4b). We suggest that these 
planning subspaces are close to orthogonal to allow for replanning of one movement 
without disrupting the other (as shown in the target-change experiments). However, the 
overlap of the two neural dimensions may allow enough interactions to produce a 
coarticulated movement. Such modular but nonetheless interacting subspaces have been 
shown to provide a powerful mechanisms in perceptual and cognitive tasks [47,48]. Testing 
this proposed model requires neural data for longer sequences with overlapping 
movements that demand online planning during execution. 



Consequences for sequence learning 
If online planning is the main mechanism by which unpredictable sequences are 
performed, then it has profound consequences for our understanding of how repeated 
sequences are learned. The “classical” view is that a well-learned sequence may become 
represented as a single eYector-specific motor program, possibly encoded in primary 
motor cortex [49,50], with longer sequences being broken up into movement chunks (see 
text box) that are similarly encoded [51]. Apart from the fact that there is very little evidence 
for the dedicated representation of sequences in primary motor cortex [52–57], this idea 
also has diYiculty explaining how the movement-by-movement planning of novel 
sequences transitions to a qualitatively diYerent control of well-trained sequences.  
 Online planning oYers a fresh perspective here: The training of specific sequences 
does not replace online planning as the main mechanism for sequence generation, but 
rather it makes online planning faster. The formation of a sequence memory begins with the 
first trial - this early trace can be seen already in the second execution of the same 
sequence, which is faster than the first [58,59]. This improvement does not only occur 
when the entire sequence is repeated, but also when small parts of a sequence (4 or more 
elements) reoccur [60]. This finding suggests that the memory trace supporting repetition 
eYects operates on very similar time horizon as online planning.  

With further repetitions, learning gains accumulate. For learned sequences both 
pre-and online planning becomes faster [15]. This suggest that the memory is closely 
associated with the planning process itself, allowing the system to more quickly recall the 
required elements and coordinate them within a sequence. The main evidence for this is 
that the first elements of even untrained sequences, if they can be pre-planned, can be 
executed as quickly as for trained sequences [61]. The main improvements with learning 
occur for later elements in the sequences that need to be planned online under time 
pressure [15]. 

As was the case after a single repetition, the longer lasting sequence memory also 
seems to consist of small sub-elements of the sequence. When 4-6 items of a learned 
sequence are embedded within a random sequence, they are executed with the same 
speed as when they occurred within that trained sequence [10]. Importantly, these short 
repeated subsequences are executed faster regardless of their position in the original 
sequence - there is no evidence that they need to align with pre-defined chunks that the 
participant has learned (see text box, chunked vs. continuous planning). Thus, it is possible 
that the memory traces, like online planning process, act in a continuous manner.  

Overall, we think therefore that it is unlikely that the motor system completely 
transitions from a continuous online planning process for novel sequences to a discrete 
memory representation for learned sequence or chunks. Rather, we hypothesize that the 



ONLINE PLANNING   
 

12 

control system that uses online planning basically remains the same – and that the newly 
formed memory trace acts upon this process, accelerating the planning and hence the 
performance of trained sequence [35]. How exactly motor sequence memories are used in 
online planning, how they are selected and integrated, is an important question for future 
research (see Outstanding questions).  
 The idea that expert performance is supported by motor memories which are being 
flexibly assembled trough a continuous online planning process also explains another 
important feature of motor skills: while some skillful actions are generated so fast that they 
appear habitual and fixed [62–64], it is general hallmark of motor skill that experts can 
flexibly recombine trained elements into new complex actions [65]. For example, 
musicians can play the same melody with a diYerent rhythm or emphasis to suit the 
desired musical expression. Indeed, experiments have shown that the timing and serial 
order of motor sequences has a modular, flexible representation in pre-motor and parietal 
areas [66–68], that then can be combined during sequence execution.  
 Does sequence training always lead to sequence representations that are flexible 
and modular? A series of studies in rats suggest that the neural representation of a 
sequence may diYer depending on the context that it is learned in. If a rat learned a 
sequence of 3 level presses in isolation, the representation relied ultimately on subcortical 
areas and was highly automatic. If the same sequence was learned in the context of other 
sequences, combined with the requirement to switch flexibly between them, it relied on 
cortical representations [69,70].  

For most sequences important for human motor skills it therefore seems likely that 
similar control processes are at work both for novice and expert performance, with online 
planning providing the behavioral flexibility to react to novel goals.   

Concluding remarks 
Most everyday actions are not produced in isolation, but rather in tight temporal proximity 
with each other. The resulting action sequences are often malleable and can be adjusted 
on the fly to fit the current goals and environmental conditions. For example, a basketball 
player leading the ball down the field needs to adjust their running, dribbling, and passing 
actions based on the movements of other players on the field. We argue that the skillful 
production of such flexible action sequences is an ecologically important and fundamental 
problem, likely more important than the production of fixed action sequences that has 
received the majority of attention in the literature [71,72]. Thus, a theory of sequential 
action should start from an understanding of how flexible action sequences are produced - 
including the process of online planning. We believe that this perspective provides novel 
insights into the well-studied problems of sequence learning and chunking, and provides 
an avenue for understanding the neuronal underpinnings of sequential actions. It is an 
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open and fascinating question to what degree the principles outlined here also apply to the 
domain of language production and to the organization of behavior on longer timescales.  

Outstanding questions  

• When and how is information passed from planning to execution processes? 
After each elementary movement, the execution process needs to be made ready to 
perform the next movement. Is this information transmission continuous or does it 
occur in a phasic fashion?  

• How are multiple planning processes implemented neurally? Which areas are 
involved and how is information updated as the sequence proceeds? Parallel 
recordings in multiple neural regions, and the analysis of communication between 
diYerent neural subspaces should provide novel insight here.  

• How does training on a specific sequence change online planning? What form 
do sequential memories take? How are they organized as to avoid interference when 
learning multiple similar sequences?  

• Is online planning continuous or chunked? Chunking is often inferred from the 
temporal organisation of sequence production. However, if learned sequences are 
really controlled in a chunked fashion, the neural state in the controlling areas 
should change much more on boundaries between chunks than within a chunk.  

• Do the principles of online planning also apply to language? The production of 
syllables, words, and sentences has similar computational requirements as 
sequences of finger and arm movements. Is the human brain using the similar 
mechanism across motor systems, or did the language system develop a 
specialized mechanism?  

• Does online planning occur for longer time horizons of actions? To organize 
behaviour, goals and subgoals need to be maintained and updated during ongoing 
behavior over much longer time spans. Do the principles that guide the online 
planning for the fast motor sequences also apply to behavior that unfolds over 
minutes or hours?  

Text Box: Continuous vs. chunked planning  

In this paper we summarize evidence that future movements are not planned 
independently, but that their planning processes partly influence each other. Such co-
dependence could occur in two ways. First, movements could be continuously planned 
with fixed horizon into the future [9], and diYerent movement plans could interact within 
this planning window. As one movement is completed, movement plans are continuously 
updated such that the sequence can be executed without interruption. In this scenario, the 
planning horizon could span a specific number of actions, or it could slowly diminish into 
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the future, such that actions further into the future influence the current movement less 
than those that follow immediately. In control theory this type of mechanism is called 
receding horizon planning [73], and provides a powerful - yet computational eYicient -  way 
to optimize sequences of movements.  
 Alternatively, planning of future movements could occur in discrete or chunked 
fashion – with a group of movements being planned together, then executed, after which 
the next chunk of movements in planned [74,75]. Because the planning of a new chunk 
takes time, there should be longer time-gaps between chunks than between movements 
within a chunk [76,77] – indeed this is the measure by which chunking is commonly 
defined. It has been suggested that chunking is a mechanism to save cognitive resources 
for planning [16]. Furthermore, chunks may be the basic unit of motor memory – it has 
been shown if learned chunks re-occur in the context of a new, random sequence, 
participants perform these faster [53,76].  
 While there is substantial neural and behavioral evidence for chunking [51,53], a lot 
of issues remain. The temporal gaps between diYerent movements are often dictated by 
biomechanical requirements. Once accounting for these diYerence, the chunking 
structure for individual subjects seems to change during learning [78], including the merger 
of smaller into larger chunks, but also the recombination of elements into new chunks 
[79,80]. Currently, there is no model of chunking or hierarchical action organisation that 
would be able to support such flexibility without the loss of the acquired motor skill. 
Furthermore, perturbation experiments [35,36](Fig. 3) show that changing one single 
movement does not lead to the entire chunk having to be replanned. Finally, the inclusion 
of small “snippets” of trained sequence in a new random sequence appears to lead to 
faster performance, without these snippets necessarily having to align with chunk 
boundaries [10,60] .  
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