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Representational similarity analysis of activation patterns has become an increasingly important tool for studying
brain representations. The dissimilarity between two patterns is commonly quantifiedby the correlation distance
or the accuracy of a linear classifier. However, there aremany differentways tomeasure pattern dissimilarity and
little is known about their relative reliability. Here, we compare the reliability of three classes of dissimilarity
measure: classification accuracy, Euclidean/Mahalanobis distance, and Pearson correlation distance. Using simu-
lations and four real functional magnetic resonance imaging (fMRI) datasets, we demonstrate that continuous
dissimilaritymeasures are substantiallymore reliable than the classification accuracy. The difference in reliability
can be explainedby two characteristics of classifiers: discretization and susceptibility of the discriminant function
to shifts of the pattern ensemble between runs. Reliability can be further improved through multivariate noise
normalization for all measures. Finally, unlike conventional distance measures, crossvalidated distances provide
unbiased estimates of pattern dissimilarity on a ratio scale, thus providing an interpretable zero point. Overall,
our results indicate that the crossvalidatedMahalanobis distance is preferable to both the classification accuracy
and the correlation distance for characterizing representational geometries.

© 2015 Published by Elsevier Inc.
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Introduction

It has become increasingly popular to analyze functional magnetic
resonance imaging (fMRI) data using multi-voxel pattern analysis
(MVPA). In MVPA, activation patterns are analyzed using either classifi-
cation (Cox and Savoy, 2003; Haxby et al., 2001) or representational
similarity analysis (RSA, Kriegeskorte et al., 2008). Both approaches
quantitatively measure the dissimilarity of fMRI response patterns for
pairs of conditions. All possible pairwise dissimilarity values of an ex-
periment can be assembled in a pairwise decoding accuracy matrix or
representational dissimilarity matrix (RDM).

One important decision in RSA is the choice of dissimilaritymeasure.
Popular dissimilarity measures are the percentage of correct pairwise
classifications (accuracy) and continuous distance measures, such as
the Pearson correlation distance, the Euclidean distance, and the
Mahalanobis distance. In this paper we provide a careful evaluation of
the reliability of these dissimilarity measures, i.e. how reliable a mea-
sure is over replications of the experiment.
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In evaluating reliability, it is important to consider the inferential
aim of the analysis. One hypothesis that a researcher may want to test
is that the patterns associated with conditions A and B are more similar
than those associatedwith conditions C andD. This hypothesis concerns
only the ranks of the dissimilarities. A more specific hypothesis would
be that the dissimilarity between the patterns for conditions A and B
is twice as large as the dissimilarity between the patterns for C and D.
Here it is necessary that the dissimilarity measure have a meaningful
zero point, with zero indicating that the two patterns are not different.
However, distances, by definition, are non-negative and always larger
than zero if estimated from noisy data. Thus, even if the true patterns
are not different, the estimated distance will be larger than zero. The
noise creates a positive bias, which will rise with the noise level. As
we will show in the results, the bias can be removed by crossvalidation
(Allefeld and Haynes, 2014; Nili et al., 2014; Kriegeskorte et al., 2007).
Crossvalidated distance estimator are unbiased, i.e. their expected
value equals the true distance and is zero if the two patterns are not dif-
ferent (see Crossvalidation section). As a consequence, crossvalidated
distance estimators enable us to interpret ratios between distances.

In this paper, we compare the reliability of the Euclidean distance,
theMahalanobis distance, and the correlation distance and study the in-
fluence of univariate andmultivariate noise normalization on RDM reli-
ability. We also consider crossvalidated versions of the Mahalanobis
distance (including the linear-discriminant t value; Nili et al., 2014;
Kriegeskorte et al., 2007). Finally, we compare continuous distance
measures to classification accuracies from linear discriminant analysis
easures for multi-voxel pattern analysis, NeuroImage (2015), http://
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(LDA) and support vector machines (SVM). Overall, our results strongly
suggest the use of continuous crossvalidated distance estimators with
multivariate noise normalization to measure brain representational
dissimilarities.
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Materials and methods

The Euclidean distance

In RSA,wewant to calculate thedistance between the activation pat-
terns bk and bj, corresponding to two of k = 1,…,K conditions. An acti-
vation pattern usually consist of the regression coefficients from a
general linearmodel (GLM),which represent the response of the voxels
p= 1,…,P to condition k. The Euclidean distance between two patterns
in a P-dimensional voxel space, with the activity of each voxel forming a
separate dimension, is defined analogously to the familiar distance in
two dimensions. The squared Euclidean distance d2 between the two
row vectors bk and bj is:

d2Euclidean bk;b j
� � ¼ b j−bkk

�� 2 ¼ b j−bk
� �

b j−bk
� �T ¼ cBBTcT ð1Þ

where the last term represents a compact form obtained by
assembling the activation patterns into a K × P Matrix B and applying
a 1 × K contrast vector c, which contains zeros except for cj = 1 and
ck = −1.

To visualize the pattern distances, imagine each pattern as a vector
extending from the origin to point bk, where the origin of the pattern
space is usually determined by the implicit baseline estimate of the
GLM. The Euclidean distance between the endpoints of two vectors is
independent of the origin (Figs. 1A,B). This might be advantageous if
the baseline was not reliably estimated or if it cannot be meaningfully
defined.
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Mean pattern
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Fig. 1. Euclidean and angle-based distance inMVPA. (A) An fMRI pattern space laid out by
two voxels (v1 and v2; note that the typical pattern space will often have N50 dimen-
sions). Two pattern vectors extend from the origin. The Euclidean distance is the distance
between the patterns. The cosine distance (as well as the Pearson correlation distance)
measures pattern dissimilarity as a function of the angle enclosed by the vectors.
(B) Shifts of the origin (i.e. the fMRI baseline) of the pattern space influence the angle
(red) between the two vectors and hence the correlation distance, but not the Euclidean
distance (gray). (C) Changes in the length of the two vectors (multiplicative scaling) influ-
ence the Euclidean distance (red) between the two vectors, but not the angle (gray).
(D) Themean pattern of the two conditions has been subtracted (cocktail blank removal).
The two vectors now extend in opposite directions from the origin, causing the cosine of
the angle (red) and the correlation to become−1.
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The Pearson correlation distance

Another measure of the similarity of bk and bj is their Pearson corre-
lation r. The correlation is related to a slightly simpler measure, which
can be more easily understood graphically: the cosine of the angle be-
tween the vectors (Fig. 1A). The cosine can be obtained by normalizing
bk and bj by their respective L2-norms and subsequently calculating
their inner product. We can then obtain a distance measure (known
as cosine distance) by taking the complement:

dCosine bk;b j
� � ¼ 1−

bk;b j
� �
bkk k b j

�� �� ¼ 1− cos ∠bk;b j
� �

: ð2Þ

The inner product detects congruent trends between bk and bj (i.e.
when bp,k tends to be high, bp,j tends to be high as well, and vice
versa). The normalization makes the cosine distance, unlike the
Euclidean distance, invariant to changes in scaling (or length) of b
(Fig. 1C).

The correlation distance is equivalent to the cosine distance after

subtracting the mean value from each voxel pattern. If b is the voxel
mean and 1 is a 1 × P row vector of ones, the correlation distance is de-
fined as:

~b k
¼ bk−bk1 ~b j ¼ b j−bj1dCorrelation bk;b j

� �
¼ 1−

~bk;
~b j

D E
~bk

��� ��� ~b j

��� ��� ¼ 1− cos ∠~bk;
~b j

� �
ð3Þ

The cosine and correlation distance are zero if two normalized pat-
terns are identical. In the cosine similarity, only vector length is divisive-
ly normalized. In the correlation distance, the mean is first subtracted
before divisive length normalization, making it invariant to both chang-
es in the mean and variance of bk across voxels. Importantly, both the
cosine and correlation distancedependon the implicit baseline estimate
of the GLM (Fig. 1B). Therefore, shifts in the origin will affect the overall
distance structure.
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The effect of mean pattern subtraction (cocktail-blank removal)

Before submitting the patterns to MVPA, it is common practice to
subtract the mean pattern, i.e. the mean across conditions for each
voxel, from each response pattern (Misaki et al., 2010; Op de Beeck,
2010; Pietrini et al., 2004; Williams et al., 2008, 2007). This normaliza-
tion step is sometimes called “cocktail-blank removal”. Removal of the
mean pattern has a very different effect from removing the mean
value (i.e. the mean of each condition, averaged across voxels, Eq. (3)).
Mean pattern subtraction effectively moves the origin of the pattern
space to lie in themeanpattern of all conditions (Fig. 1D). The reasoning
behind this normalization step is that the response patternsmay share a
common component, which will increase all correlations and hence de-
crease the correlation distance. Mean pattern subtraction removes the
influence of this common response pattern. However, the change in or-
igin will cause unrelated patterns to be negatively correlated (Garrido
et al., 2013; Diedrichsen et al., 2011). In the extreme case of only two
conditions, the angle between them will always be 180 degrees and
the cosine of the angle (and also the correlation) will be −1 (Fig. 1D).
This can change the representational structure substantially, even
when only considering the ranks of the distances. Unlike the correlation
distance, the Euclidean distance is unaffected by mean pattern
subtraction, as it does not depend on the origin of the coordinate system
(Fig 1D).
easures for multi-voxel pattern analysis, NeuroImage (2015), http://
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Fig. 2. Crossvalidation prevents the inflation of distance estimates by noise. Each line
shows the average estimate squared Euclidean distance for a true squared Euclidean
distance (ranging from zero to two) for different noise levels. Shaded error bars indicate
standard error of the mean of 100 samples. (A) The non-crossvalidated distance estimate
grows with increasing noise. (B) The crossvalidated distance estimate is robust against
noise inflation.
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Univariate and multivariate noise normalization

An important step in multivariate fMRI analysis is to take into ac-
count that signal from individual voxels is corrupted by different levels
of noise. That is, some voxels may show higher signal variations than
other voxels. Furthermore, noise is also spatially correlated across
neighboring voxels (Friston et al., 1994; Zarahn et al., 1997).

An estimate of the structure of the noise can be obtained from the
residuals of the first-level GLM. After the GLM estimation, the model
residuals R, a T (number of time points) × P (number of voxels) matrix,
contain the aspect of the data unexplained by the model. From these
errors we can estimate the P × P variance-covariance matrix Σ:

Σ ¼ 1
T
RTR: ð4Þ

One option is to normalize each voxel by the standard deviation (σp)
of its residuals, i.e. the square root of the diagonal of Σ.

bþk;p ¼ bk;p
σp

ð5Þ

This means that response estimates in bk from noisier voxels will be
down-weighted. The same aim is achieved by using t values instead of
regression estimates, which has been shown to increase classification
performance of linear support vector machines (Misaki et al., 2010).

The second option is to not only suppress voxels with high error var-
iance, but also to take into account the noise covariance between voxels.
This leads to the multivariate extension of Eq. (5), which results in spa-
tial pre-whitening of the regression coefficients:

b�
k ¼ bkΣ

−1
2: ð6Þ

In this study, we estimate the covariance structure and apply noise
normalization to each imaging run separately. One detail to consider is
that the number of voxels may exceed the number of acquired volumes,
which renders Σ rank-deficient and therefore non-invertible. To mend
this, Σ is regularized by shrinking it towards the diagonal matrix,
using the optimal shrinkage factor, i.e. the factor that minimizes the ex-
pected squared loss of the resultant covariance estimator (Ledoit and
Wolf, 2004).

Multivariate noise normalization renders the noise component of
the voxel response patterns approximately independent and identically
distributed. Note, however, that spatial correlations due to voxel-by-
voxel correlations in the true signal (Diedrichsen et al., 2011) will not
be removed — hence noise-normalized patterns may still show consid-
erable correlation structure.

Note further that computing the squared Euclidean distance on
multivariately noise-normalized response patterns results in the
squared Mahalanobis distance:

d2Euclidean b�
k;b

�
j

� �
¼ b�

j−b�
k

� �
b�

j−b�
k

� �T

¼ b jΣ
−1

2−bkΣ
−1

2

� �
b jΣ

−1
2−bkΣ

−1
2

� �T

¼ b j−bk
� �

Σ−1 b j−bk
� �T

¼ cBΣ−1BTcT

¼ d2Mahalanobis bk;b j
� �

:

ð7Þ

In the analyses presented here, we computed the Euclidean and the
correlation distance on unnormalized, univariately (Eq. (5)), and
multivariately (Eq. (6)) noise-normalized response estimates. Some
methods (LDA, LDC, LDt; see Crossvalidation section and Pattern classi-
fiers section) include multivariate noise normalization implicitly.
Please cite this article as: Walther, A., et al., Reliability of dissimilarity m
dx.doi.org/10.1016/j.neuroimage.2015.12.012
E
D
 P

R
O

O
F

Crossvalidation

A problem for estimating distances from noisy data is that even if
two patterns are in truth identical, the distance between the estimated
patterns will be larger than zero, because noise makes the pattern esti-
mates dissimilar.

To illustrate this, we simulated multiple instantiations of two ran-
dom patterns with a true squared Euclidean distance ranging from
zero to two. In each instantiation, we added varying degrees of i.i.d.
noise to the patterns. We then calculated the squared Euclidean dis-
tance of these noisy patterns (Fig. 2A).

For very low levels of noise, the observed distances reflected the true
distances accurately. For increasing levels of noise, however, the dis-
tance estimates increased independent of the true distance between
conditions. Therefore, though the rank-order of distances can be
interpreted, a value of zero and hence the ratio between distances is
not meaningfully defined.

As a remedy, it has been suggested to split the data into independent
partitions A and B and to validate the difference between k and j across
them (Allefeld and Haynes, 2014; Kriegeskorte et al., 2007; Nili et al.,
2014):

d2Euclidean;crossvalidated bk;b j
� � ¼ b j−bk

� �
A b j−bk
� �T

B ¼ cBAB
T
Bc

T : ð8Þ

Because noise is independent between A and B, the expected value
of this estimate is zero if there is no systematic difference between the
patterns for condition k and j. This is because the measured difference
vectors (bk − bj) will point in random directions for each partition
and will thus be close to orthogonal in a high-dimensional space.

Crossvalidated estimates of the distance (Fig. 2B) therefore do not
grow with increasing noise, and their expected value reflects the true
distance between patterns. This endows the distance estimate with a
meaningful zero point, enabling us to statistically test whether two pat-
terns show significant differences. Furthermore, the distance estimates
now faithfully reflect the underlying distance structure, allowing us, for
example, to test the hypothesis that one distance is twice as big as anoth-
er distance. Such a test would bemeaningless on non-crossvalidated dis-
tances, as the answer would largely depend on the noise level.
easures for multi-voxel pattern analysis, NeuroImage (2015), http://
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Crossvalidation can also be applied tomultivariately noise-normalized
data, resulting in a crossvalidated estimate of the Mahalanobis distance
(Eq. (9)). For reasons explained in the next section, we term this distance
estimate linear discriminant contrast (LDC), as it closely relates to standard
linear discriminant analysis (see Pattern classifiers section):

d2Mahalanobis;crossvalidated bk;b j
� � ¼ b j−bk

� �
AΣ

−1
A b j−bk

� �T
B

¼ cBAΣ
−1
A BT

Bc
T

¼ LDC bk;b j
� �

:

ð9Þ

Moreover, it has been suggested to normalize the LDC by an estimate
of its standard error (Kriegeskorte et al., 2007; Nili et al., 2014). The
resulting linear discriminant t value (LDt) can be used as an inferential
measure of stimulus dissimilarity (for further details, see Appendix).

In this paper, we estimate the crossvalidated measures (LDC and
LDt) in a leave-one-run-out crossvalidation, where one run was
assigned to dataset A, and the remaining runs to dataset B. The distance
estimates are then averaged across all possible crossvalidation folds.1

Pattern classifiers

Instead of directly estimating a distance measure between patterns,
a number of fMRI studies have used pairwise classification accuracy as a
proxy for pattern dissimilarity (e.g. Haxby et al., 2011, 2014; O'Toole
et al., 2005; Pereira et al., 2009). Here, chance performance of classifica-
tion corresponds to a zero distance.

One widely used classification approach is linear discriminant anal-
ysis, LDA (Fisher, 1936). LDA estimates a linear classification boundary
under the assumption that the vectors bk and bj have a multivariate
Gaussian distribution with separate true 1 x P mean vectors and the
same P x P within-class variance-covariance matrix Σ.

The Fisher discriminant rule is

v ¼ wbT ð10Þ

where

w ¼ b j−bk
� �

AΣ
−1
A : ð11Þ

is the1× Pweight vector determining optimal classification. If v is larger
than a criterion value c, the observation is assigned to class k, otherwise
to class j.

If the test dataset B only consists of one observation of the two clas-
ses, and we subtract the mean pattern from both the training and the
test dataset, then both observations will be correctly classified if

b j−bk
� �

AΣ
−1
A b j−bk

� �T
B N0 ð12Þ

and incorrectly if this value is negative. Note that the classification
function (Eq. (12)) is equivalent to the crossvalidated Mahalanobis dis-
tance, LDC (see Crossvalidation section). However, in LDA the discrimi-
nant is only used to make a binary decision for each response pattern,
which then is converted into a classification accuracy. Therefore, the lin-
ear discriminant classification accuracy is tantamount to a discretized
conversion of the LDC.

Another popular class of classification algorithms in fMRI are sup-
port vector machines (Ben-Hur et al., 2008; Cox and Savoy, 2003;
Vapnik, 1995). Like LDA, SVM constructs a decision boundary between
two classes.While the decision hyperplane can also be non-linear, it ap-
pears that the linear form yields higher performance in fMRI (Misaki
et al., 2010). Unlike LDA, linear SVMs determine the classification
boundary by maximizing the margin between the hyperplane and the
344

345

346

347

1 This procedure lead to exhaustive crossvalidation, i.e. all possible crossvalidation folds
are used. Other exhaustive schemes, such as considering all possible half-splits or all pos-
sible pairs of individual runs, will yield identical results.
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closest training point on either side of it. This ensures that both classes
are separatedwithmaximumclearance. Like LDA, the SVMdiscriminant
determines the class assignment whose accuracy is indicated by a
percentage value. In this study, we used the LIB-SVM library (Chang
and Lin, 2011) to perform the SVM analyses.

Like for the crossvalidated distances, classification accuracies were
computed using a leave-one-run-out crossvalidation scheme, in which
in each crossvalidation fold the classifier was trained on the data from
all but one run, and then tested on the data from the remaining run.
Classification accuracies were then averaged across crossvalidation
folds. Before submitting the response patterns to the classification
routine, we performed mean pattern subtraction for each run, which
slightly increased classification accuracy, as it removes potential
shifts of the whole pattern ensemble across imaging runs (dataset
1: +4.58%, 2: +4.45%, 3: +0.17%, 4: +0.16%).

RDM reliability analysis

A key requirement of a good dissimilarity measure is that it is reli-
able. Depending on the conclusions we wish to draw, however, the
measure should replicate well on an ordinal scale (with preserved
ranks), interval scale, ratio scale, or even in terms of its absolute
magnitude.

We assessed reliability using split-half reliability estimates. To this
end, we divided the data into two independent splits of odd and even
runs: four runs per split for dataset one, two, and four; three runs per
split for dataset three. The dissimilarity measures were then computed
in each split. For the Euclidean and the correlation distance, we aver-
aged the fMRI response patterns of each condition over runs before
computing the distances. For the crossvalidated measures, we per-
formed leave-one-run-out crossvalidation within each half of the data
(see Crossvalidation section and Pattern classifiers section). Ultimately,
we obtained two 1 × Q vectors of dissimilarities, m1 and m2 (corre-
sponding to split one and two), where Q = K(K − 1) / 2 pairwise dis-
tances for K conditions.

We computed four measures of RDM reliability: Spearman correla-
tion, Pearson correlation, Pearson correlation with fixed intercept, and
one minus the proportion of residual sum-of-squares. The Spearman
correlation measures the correspondence between the RDMs in terms
of their ranks, i.e. on an ordinal scale. The Pearson correlation assesses
the stability of the relationship on an interval scale. However, bothmea-
sures are mean-centered and therefore do not penalize any offset in the
average distance across the two halves. Therefore, they do not provide
information as to whether ratios of distances remain stable.

To assess their reliability, we computed a Pearson correlation that
does not mean-center the values. Unlike the Pearson correlation, this
measure is therefore not shift-invariant, but “fixes” the intercept of
the regression line between the RDMs to zero. Finally, we computed
the sum of squared differences between the Q distances from each
split and divided them by the overall sums-of-squares of m1 and m2:

1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXQ
q¼1

m1q−m2q

� �2

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXQ
q¼1

m2
1q þm2

2q

� �vuut
: ð13Þ

Anydifference betweenm1 andm2,may it be scaling or constant off-
set, will therefore reduce this reliability measure.

The last two reliability measures are only meaningful if the distance
measure has an interpretable zero point, as they can change dramatical-
ly with an added constant value. We therefore only applied them to the
crossvalidated measures (LDC, LDt, LDA, and SVM).

RDMs and split-half reliability measures were computed for each
region-of-interest (ROI) of each subject (see fMRI data section). We
easures for multi-voxel pattern analysis, NeuroImage (2015), http://
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then compared the RDM reliability across the four datasets using paired
t tests with false discovery rate (FDR) at 5%.

fMRI data

Weused four datasets from three independent fMRI experiments for
the RDM reliability analysis. All experiments differed considerably with
regards to paradigm (number and type of stimuli, number and length of
trials per stimulus, number and length of baseline trials), data acquisi-
tion (number of subjects, number of functional runs, number of scan-
ning sessions), scanning parameters (TR, volumes per run, voxel size),
and functional regions considered (visual or motor areas, number of
voxels included, see Fig. 3).

Dataset 1 & 2: Contralateral and ipsilateral finger representations in the
primary motor and sensory cortex

The full study is described in Diedrichsen et al. (2013). Six partici-
pants underwent scanning while performing unimanual finger presses
with the left and right hand. Finger presses were executed against an
MRI-compatible keyboard andmeasuredby a force transducermounted
underneath each key. Imaging data were acquired on a 3 T Siemens Trio
with a 32-channel head coil. Eight functional runs of 126 volumes each
using a 2D echo-planar imaging sequence (TR = 2.72 s) at voxel size
2.3 × 2.3 × 2.3 mm were recorded for each participant. Each trial was
8.16 s long, and each of the ten fingers was probed three times per
run, resulting in 30 trials per run. The sequence of the fingers was
fully randomized. In addition to these task-related trials, each run
contained five randomly placed baseline trials of five or six TR length
during which the subject was asked to rest. Anatomical ROIs were de-
fined based on the probabilistic cytoarchitectonic maps aligned to the
subject-average cortex surface reconstruction generated using
Freesurfer (Dale et al., 1999; Fischl et al., 2008). Here, we use two ROIs
which carry the most prominent neural representations of individual
finger movements: the primary motor cortex M1 (Brodmann area
4) and the primary sensory cortex S1 (Brodmann areas 3a, 3b, 1, and
2). The average number of voxels across subjects was 757 (standard de-
viation 36 voxels) in M1, and 1492 (standard deviation 132 voxels) in
S1.

While finger representations in M1 and S1 are predominantly acti-
vated during movements of the contralateral hand, they can also be ac-
tivated to a lesser degree during movement of the mirror-symmetric
fingers on the ipsilateral hand (Diedrichsen et al., 2013). Ipsilateral fin-
ger representations have a lower signal-to-noise ratio than their contra-
lateral equivalents. We exploited this for our comparison by dividing
the data into a contralateral and an ipsilateral dataset.We then evaluat-
ed a total of 12 hemispheres (six subjects × two hemispheres) for each
contralateral (dataset 1) and ipsilateral (dataset 2) digit representation.
U
N
C

1

Sample size 12

Number of ROIs 2

ROI (functional contrast or anatomical mask) M1/S1

Corresponding average ROI sizes 1,492/757

Number of runs 8

Number of conditions 5

Number of trials per condition 3

Number of timepoints per run 123

Study type motor

Brief description contralateral
finger presses

Fig. 3. The four fMRI datasets used in the RDM reliability analysis. Four fMRI datasets were anal
24 conditions, set 3 and 4). The condition-sparse datasets came from a motor experiment (set
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Dataset 3: Representations of visual objects at varying orientations
In this so far unpublished experiment, ten participants were pre-

sented with a total of 72 unique images of real-world objects. Each
image belonged to one of three categories, namely faces, places, and
leaves. From each category, two exemplars were displayed at 12 differ-
ent orientations (0°, 30°, 60°, …,330°). All stimuli were grayscale,
histogram-equalized, confined to a circular aperture, and presented at
a retinal size of ten degrees visual angle. Before scanning, participants
were familiarized with the stimuli. They learned to assign each exem-
plar to a predefined group (either A or B). The A/B labels were learned
for the upright orientation of faces and places. For leaves, a random ori-
entationwas chosen for the learning phase. Imaging datawere acquired
on a 3 T Siemens Trio with a 12-channel head coil. Six functional runs
containing 312 volumes each were measured using a 2D echo-planar
sequence (TR = 2 s) with a voxel size of 3 × 3 × 3.75 mm. In each
run, all 72 stimuli were presented twice in a random sequence, with a
total of 144 trials per run. Each trial was 4 s long (SOA = 4 s). In each
trial the image was displayed for one second and a gray background
was presented for three seconds. Each one second presentation
consisted of an image being flashed ON-OFF-ON-OFF-ON, where ON
corresponds to the presentation of the image for 200ms and OFF corre-
sponds to the presentation of the gray background for 200 ms. In each
trial subjects saw three flashes of the same image and were asked to re-
spond during or after the presentation of the images if the displayed
image was A or B. Additionally, each run contained 48 baseline trials
(1 TR each) in which only a fixation cross was shown.

Functional ROIswere defined on independent data from a functional
localizer experiment. The localizer images were recorded in one func-
tional run of 203 volumes at TR=2 s. The experiment contained images
of four categories, faces, places, objects, and scrambled objects. Catego-
ries were presented at random in three blocks of 36 images each. Each
image came with a superimposed fixation cross. While undergoing
scanning, participants were asked to fixate and perform a one-back
task. Two functional ROIs were defined in each hemisphere by their re-
spective contrast: the fusiform face area, FFA (faces N places; Kanwisher
et al., 1997) and the parahippocampal place area, PPA (places N faces;
Epstein and Kanwisher, 1998). Both ROIs contained 84 voxels. Addition-
allywe defined the human inferior-temporal cortex in each hemisphere
by drawing an anatomical mask on the group-average cortical surface
and backprojecting it into the single subject volume. This ROI comprised
the 183 most responsive (by the contrasts all stimuli N baseline) voxels
within the mask.

Dataset 4: The effect of categorization on visual object representations
In this as yet unpublished study, 17 participants underwent scan-

ning in two separate sessions, each with four functional runs of 96 vol-
umes. In each run, participants were presented with 24 images of real-
Data set

2 3 4

12 10 17

2 3 3

M1/S1 FFA/PPA/IT FFA/PPA/LOC

1,492/757 84/84/183 232/266/372

8

5 72 24

3

6 8

2 2

123 304 96

motor object vision object vision

ipsilateral
finger presses

visual presentation
 of faces, places &

leaves

visual presentation
of animate &

inanimate objects

yzed: two condition-sparse (5 conditions, set 1 and 2) and two condition-rich sets (72 and
1 and 2), while the condition-rich datasets were experiments on object vision (3 and 4).

easures for multi-voxel pattern analysis, NeuroImage (2015), http://
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world objects belonging to two categories (animate and inanimate)
with 12 stimuli each. Stimuli were presented on a gray background at
~5 degrees visual angle (depending on the exact shape). A run
contained 48 stimulus trials duringwhich one of the imageswas flashed
three times in a 500 ms ON, 500 ms OFF sequence. Each stimulus was
presented during two trials and each trial lasted 3 s (SOA 3 s). In addi-
tion, each run contained 12 baseline trials during which only the gray
background and a fixation cross were presented for 3 s. Trial order
was randomized in each run. Participants were instructed to either cat-
egorize a stimulus based on the one previously shown (session one) or
to complete a visual fixation task (session two).We used data fromboth
sessions, yielding eight runs per subject. Each session also included a
functional localizer of two runsduringwhichparticipants viewed blocks
of images depicting faces, houses, objects, and scrambled objects. Three
functional regions were defined whose size varied between subjects:
FFA (mean: 232; standard deviation: 47), PPA (mean: 266; standard de-
viation: 66), and the lateral occipital complex, LOC (mean: 372; stan-
dard deviation: 61), defined by the functional contrast objects N

scrambled objects (Grill-Spector et al., 2001).
Functional EPI images covering the entire brain were acquired on a

3 T Siemens Trio scanner using a 32-channel head coil (2D echo-
planar sequence, 32 slices, 3 mm isotropic resolution, inter-slice
gap = 0.75 mm, TR = 2 s). For each participant we also obtained a
high-resolution (1 mm isotropic) T1-weighted anatomical image
using an MPRAGE sequence.

fMRI simulations

To confirm our empirical results, we also generated artificial fMRI
data with a range of known signal-to-noise ratios (SNR). We simulated
fMRI patterns for one condition-sparse and one condition-rich design. In
the condition-sparse design, the number of conditions (5), trials (3),
subjects (6), functional runs (8), time points per run (123), and the ex-
perimental design of the simulation were matched to dataset one and
two. In the condition-rich design, the number of conditions (72), trials
(2), subjects (10), functional runs (6), time points per run (304), and
the experimental design corresponded to dataset three (see Dataset 3:
Representations of visual objects at varying orientations question). We
simulated fMRI regression coefficients for the P voxels of one ROI by
drawing random K × 1 vectors (K being the number of conditions)
from a multivariate Gaussian with mean zero and variance-covariance
matrixG.G determined the true similarity structure between the exper-
imental conditions. The coefficients were then assembled in the K × P
matrix Btrue. To generate fMRI timecourse data, we multiplied Btrue

with a design matrix X and added random Gaussian noise. We then
step-wise increased the noise variance from 2 to 1000 times the signal
variance. In the first sets of simulations the number of voxels was
fixed to P = 123, in a third set we varied the numbers of voxels in the
ROI across a range from 33 to 1419 voxels. In this simulation the noise
level was adjusted such that the reliability of distances based on univar-
iate noise normalization remained approximately constant.

In all simulations, noise was correlated across neighboring voxels,
which is important to assess the performance of multivariate noise nor-
malization under realistic conditions. The correlation between voxels i
and j depended on their Euclidean distances δi ,j and fell off as a Gaussian
kernel with standard deviation s:

corr i; jð Þ ¼ exp −
δi; j
2s2


 �
ð14Þ

For large values of s, the noise of neighboring voxels becomes highly
correlated, for small values of s neighboring voxels become indepen-
dent. In our simulations, s equaled 0.9.

The simulated fMRI patterns were submitted to the same analysis
pipeline as the experimental data. Each simulation was repeated 1000
times and results were averaged across repetitions.
Please cite this article as: Walther, A., et al., Reliability of dissimilarity m
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Results

The RDM split-half reliability scores and corresponding inference re-
sults are presented in Figs. 4 and 5 for all datasets. The datasets are
sorted by their average RDM reliability (Pearson split-half correlation),
fromhighest in dataset one to lowest in dataset four. Fig. 6 shows the re-
sults for the simulated fMRI datasets.

All distances and classifiers were applied to the response patterns
after no, univariate or multivariate noise normalization. In summary,
our results suggest that a) multivariate noise normalization improves
the reliability of all dissimilaritymeasures; b) Euclidean and correlation
distance are not significantly different in RDM reliability. However, the
presence of category-selective univariate activation, the correlation
distance tends to be numerically more reliable; c) crossvalidated dis-
tances do not lead to decreased reliability as compared to their non-
crossvalidated counterparts; d) discretized classification accuracies are
a significantly less reliable dissimilarity measure than continuous
distances.

Multivariate noise normalization enhances the reliability of the dissimilar-
ity measures

To statistically assess the influence of univariate and multivariate
noise normalization, we pooled reliability scores across the Euclidean
and the correlation distances.

Euclidean and correlation distance RDMs computed after univariate
noise normalization produced significantly higher RDM reliability than
their unnormalized counterparts in two out of four datasets for both
Spearman and Pearson split-half correlations (Fig. 5, row “Noise nor-
malization (univ. vs. none)”). This shows that accounting for noise con-
tributions of individual voxels already has a positive effect on the
distance estimates.

Multivariate noise normalization also takes into account the
multivariate noise structure by down-weighting voxels with high
noise correlations. Compared to the univariate noise normalization,
multivariate normalization of the activation patterns always resulted
in numerically higher reliability scores in the real fMRI data (Fig. 5,
row “Noise normalization (multiv. vs. univ.)”). The difference in RDM
reliability was significant or near significant in almost all datasets at un-
corrected thresholding (p b 0.05). One comparison survived the FDR
correction. These findings were replicated by our simulations, in
which multivariate noise normalization improved RDM reliability of
all measures over univariately normalized patterns (Fig. 6A). This effect
was present for both distance measures and classifiers as well as for
both the condition-sparse and the condition-rich design, although
more sustained in the former.

Together, these results clearly show that normalizing by the esti-
mate of the full noise covariance Σ stabilizes the distance estimates
more effectively than univariate normalization.

Optimal shrinkage safeguards the multivariate noise normalization

When multivariate noise normalization is applied to large ROIs, the
number of voxels can easily be higher than the number of time points
(e.g. see the section Dataset 1 & 2: Contralateral and ipsilateral finger
representations in the

primary motor and sensory cortex), resulting in a rank-deficient
estimate of Σ. To attain invertibility, we used optimal shrinkage of Σ to-
wards a diagonal noise matrix (Ledoit andWolf, 2004).With increasing
number of voxels the shrinkage algorithm will regularize the noise co-
variance matrix more, and in the extreme case will converge to a diag-
onal covariance matrix, thus turning multivariate into univariate noise
normalization.

Across experiments the average shrinkage was between 6%–16%,
with the highest values for experiment 1 and 2, in which the number
easures for multi-voxel pattern analysis, NeuroImage (2015), http://
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Fig. 4. RDM split-half reliability analysis of four fMRI datasets. We assessed the RDM split-half reliability of all dissimilarity measures using Spearman correlation, Pearson correlation,
Pearson correlation with fixed intercept, and the residual sum-of-squares (see RDM reliability analysis section). The latter two measures were only applied to the crossvalidated
dissimilarity measures (LDC, LDt, LDA, and SVM). The bar graphs show the RDM reliability scores of the dissimilarity measures using no normalization (none), univariate, and
multivariate normalization. Error bars indicated standard errors across subjects and ROIs. Note that the y-axes are on different scales for different datasets.

Data set (N)

1 (12) 2 (12) 3 (10) 4 (17)

Spearman RDM reliability

Noise normalization (univ. vs. none)

Noise normalization (multiv. vs. univ.)
Correlation distance vs. Euclidean (multiv.)

LDC vs. Mahalanobis

Distance (LDC & LDt) vs. accuracy (LDA & SVM)

0.001

0.058

0.857

0.885

0.03

0.428

0.037
0.817

0.03
0.002

0.005

0.031

0.176

0.739

<0.001

0.115
0.312

0.11

0.657

0.017

Pearson RDM reliability

Noise normalization (univ. vs. none)

Noise normalization (multiv. vs. univ.)
Correlation distance vs. Euclidean (multiv.)

LDC vs. Mahalanobis

Distance (LDC & LDt) vs. accuracy (LDA & SVM)

0.002

0.056

0.623

0.365

0.029

0.315

0.042
0.942

0.031
0.001

0.004

0.007

0.051

0.898

<0.001

0.109
0.166

0.162

0.961

0.113

Pearson RDM reliability (fixed intercept)

Distance (LDC & LDt) vs. accuracy (LDA & SVM) 0.984 0.014 <0.001 0.085

Distance (LDC & LDt) vs. accuracy (LDA & SVM) 0.163 0.092 <0.001 0.103

/Residual SSQ Total SSQ1-

Comparison (reliability measure)

p < 0.05 (uncorrected)FDR < 5%

Fig. 5. Crossvalidated continuous distance estimates using multivariate noise normalization are most reliable. The table shows p values for comparisons of the RDM reliability measures
(Fig. 4). Each row lists a comparison for a given RDM reliability measure. Each column lists one of the four fMRI dataset. Valueswere computed using paired t tests. Light red: significantly
greater RDM reliability at an uncorrected threshold of p b 0.05. Dark red: significant after an FDR correction at 5%.
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Fig. 6. RDM reliability analysis of simulated fMRI data. The graphs show the average RDM reliability scores from 1000 simulated experiments. Simulations were carried out for both
univariate (blue lines) andmultivariate (red lines) noise normalization, and all dissimilarity measures: distances (solid lines, Euclidean and correlation distance), crossvalidated distance
estimates (dotted lines, LDC and LDt); and classification accuracies (dashed lines, LDAand SVM). Error bars indicate the standard error for the simulated sample size. (A) Simulation results
for a condition-sparse design (five conditions, six subjects) and a condition-rich design (72 conditions, ten subjects) at varying levels of noise. Continuous distance measures with mul-
tivariate noise normalization perform best. Classification accuracies are less reliable than distance. (B) Simulation results for varying ROI size. For larger ROIs, the noise was increased
such that the split-half reliability of univariate noise normalization was approximately constant. Multivariate noise normalization leads to higher RDM reliability even at large ROI sizes.
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of voxels outstripped the number of volumes by factor 10:1. Even in
these cases, however, multivariate noise normalization had a clear
advantage over univariate noise normalization (see Fig. 4, dataset 1
and 2).

To further investigate the effect of ROI size on multivariate noise
normalization, we simulated fMRI patterns with a varying number of
voxels (Fig. 6B). The design of the simulation was identical to dataset
1 and 2 (see fMRI simulations section). To keep the amount of signal
constant across ROI sizes, we scaled the true pattern variance-
covariance matrix G by P−0.45 (P being the number of voxels). With in-
creasing ROI size, RDM reliability of multivariately normalized response
patterns approached the performance of univariate noise normalization
as a result of shrinkage. However, multivariate noise normalization
yielded robustly higher average RDM reliability even at a very large
ROI size (N1000 voxels). This shows that multivariate noise normaliza-
tion can be applied even when the number of voxels drastically out-
numbers the number of time points.
Please cite this article as: Walther, A., et al., Reliability of dissimilarity m
dx.doi.org/10.1016/j.neuroimage.2015.12.012
Euclidean and correlation distance are similarly reliable

We then compared the reliability of the Euclidean and correlation
distance. When using either none or univariate noise normalization,
RDM reliability scores of the Euclidean and correlation distances were
tightly matched. We only found a significant advantage of the correla-
tion distance in dataset one when patterns had not been noise-
normalized (Spearman RDM reliability: t11 = 4.45, p = 0.001; Pearson
RDM reliability: t11 = 3.28, p = 0.008). We found no significant differ-
ence between the distances for univariate normalization.

Employing multivariate normalization, Pearson and Spearman RDM
reliabilities of the Euclidean and correlation distance were again very
similar (Fig. 4), with no significant difference between the two (Fig. 5,
row “Correlation vs. Euclidean (multiv.)”). Moreover, we found no dif-
ference between the distancemeasures in the condition-sparse simula-
tion (Fig. 6A, top row). However, we observed higher RDM reliability of
the correlation distance up to intermediate noise levels in the simulated
easures for multi-voxel pattern analysis, NeuroImage (2015), http://
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Fig. 7. Classification accuracies are less reliable due to discretization and mean-pattern
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subjects (error bars show subject standard error). Each simulated run contained a
unique mean pattern whose strength was gradually increased. RDMs based on a
continuous dissimilarity measure (LDC) are consistently more reliable than those based
on classification accuracy (LDA). For a pattern shift strength of 0, this difference is
explained by the discretization implicit in the classification (see Pattern classifiers
section). With increasing run-pattern strength, LDA reliability decreased, while LDC
reliability remained unaffected. This effect could be eliminated through mean pattern
subtraction.
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condition-rich design (Fig. 6A, bottom row). This difference in reliability
is likely a result of the categorical structure in dataset three (see The cor-
relation distance is sensitive to activation differences section).

Overall, we observed that correlation distance RDM reliability was
numerically higher in most studies, but seldom significantly so. More-
over, the RDM structure of the correlation distance also reflects
condition-specific activation,which is likely to be common to both splits
and may increase reliability.

Crossvalidation improves, rather than impairs, RDM reliability

Contrary to conventional distancemeasures, crossvalidated distance
estimates are unbiased by noise (Crossvalidation section). Therefore
they can be statistically compared against zero to test whether the re-
sponse patterns of two conditions are significantly different. Further-
more, increasing noise does not distort the structure of the
representational space (Fig. 2).

These advantages come at the cost of having to split the data to allo-
cate them to training and test sets. Although crossvalidation ultimately
still uses all the data available, this splittingmight decrease the RDM re-
liability. We therefore tested the performance of the Euclidean distance
after multivariate noise normalization (i.e. the Mahalanobis distance)
against LDC (i.e. the crossvalidated Mahalanobis distance). Contrary to
our expectation, LDC was not significantly less reliable than the
Mahalanobis distance in all datasets (Fig 5, row “LDC vs. Mahalanobis”).
Quite the opposite, in datasets two and four LDC produced even more
reliable RDMs (Spearman and Pearson split-half correlation). This result
was also confirmed by the fMRI simulations, in which the Mahalanobis
distance and LDC performed equally (Fig. 6A). Moreover, we found that
LDt was slightly less reliable than other distance measures in the
condition-rich design, but only when noise was extremely low; this is
not due to crossvalidation, but because LDt does not scale linearly in
the noise limit (see Eqs. (A4) and (A3) in the appendix). Overall, these
results show that in the case of LDC the advantages of crossvalidated
distance measures do not trade off against their reliability.

Continuous distance measures are a more reliable and more informative
dissimilarity measure than classification accuracy

We now turn to the question of whether continuous distance mea-
sures or discretized classification accuracies are amore reliablemeasure
of brain representations. To investigate this,we only consider the results
for the multivariate noise normalization (which is implicit in LDA, LDC,
and LDt). This allowed for a fair comparison, because classifiers and dis-
tance measures profited from the same noise normalization and used
the same crossvalidation scheme (leave-one-run-out).

We found that for real fMRI data, RDM reliabilitieswere significantly
higher for the distance estimates than for classification accuracies in
most cases (Fig 5., row “Distance (LDC & LDt) vs. accuracy (LDA &
SVM)”). This finding was replicated by the fMRI simulations, where
RDMs based on continuous distance measures were consistently more
reliable than those based on classification accuracies (Fig. 6A).

Why are linear classifiers less reliable estimators of representational
geometry than continuous distance measures? As pointed out in the
Pattern classifiers section, the LDA classifier is closely related to the
more reliable crossvalidated LDC distance measure. However, there
are three potential factors that may reduce the reliability of the classifi-
cation accuracy measure.

First, classification accuracy is inherently bounded by 100%, whereas
continuous distancemeasures can increase, even if the two patterns are
already perfectly separated. This feature is the reason for the decreasing
reliability in the simulations when noise levels are very low (Fig. 6A,
dashed lines in Spearman and Pearson split-half correlation). In prac-
tice, however, this does not constitute amajor problem, as classification
accuracy is typically well below 100%.
Please cite this article as: Walther, A., et al., Reliability of dissimilarity m
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Second and more importantly, classification accuracy is a measure
obtained from binary decisions, which discard continuous dissimilarity
information (see Pattern classifiers section). This lossy conversion
alone could make the accuracy RDMs less reliable.

Finally, the decision criterion needs to also be learned from the train-
ing data, and is then applied to the test set. It has been shown that the
average mean pattern varies considerably between imaging runs
(Diedrichsen et al., 2011) and also slowly changes within each imaging
run (Henriksson et al., 2015). Because the classification boundary is op-
timized for the training set, it is unable to copewith shifts of the pattern
ensemble in the test set. This will reduce classification accuracies, but
likely also result in less reliable RDMs.

To evaluate the effect of discretization and pattern shift on classifica-
tion accuracy, we performed an fMRI simulation similar to the ones de-
scribed in fMRI simulations section. We simulated fMRI response
patterns of 10 conditions for 100 subjects with 20 runs each. We
added an idiosyncratic mean-pattern to each run, leading to a shift of
the pattern ensemble. We then varied the strength of the run-specific
mean-pattern and compared the RDMsplit-half reliability (Pearson cor-
relation) of LDA (discretized classification accuracy) to LDC (continuous
distance). The LDAwasperformed on response patternswith orwithout
prior mean pattern subtraction (see The effect of mean pattern subtrac-
tion (cocktail-blank removal) section).

RDM split-half reliabilities are shown in Fig. 7. First, the results con-
firm that the continuous distance estimate is more reliable than the
classification accuracy, even in the absence of pattern shift— an advan-
tage that is due to discretization. Secondly, as the pattern shift grew
stronger, classification accuracy became less reliable. This is because
the optimal classification boundary differed increasingly between train-
ing and test set. Third, we found thatmean-pattern removal restored re-
liability of classification accuracy to baseline. Moreover, mean-pattern
removal also increased the average classification accuracy from 13%
easures for multi-voxel pattern analysis, NeuroImage (2015), http://
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(unnormalized) to 31% above chance level. Finally, continuous dis-
tances were not affected by the shift of the mean pattern, as they do
not apply a decision criterion. Taken together, these results strongly
favor the use of continuous distances over classifierswhen investigating
brain representations.

The correlation distance is sensitive to activation differences

The Euclidean and correlation distance express similarity in funda-
mentally different ways and are therefore susceptible to different
sources of variability (Fig. 1). The following section shows how
stimulus-related activation influences the distancemeasures.Wewill il-
lustrate this property using two ROIs of dataset three, FFA and PPA (see
Dataset 3: Representations of visual objects at varying orientations sec-
tion). These ROIs are known to show strong face- and place-selective ac-
tivation respectively, which was also confirmed in this study (Fig. 8A).

For both regions, we computed RDMs using the Euclidean and the
correlation distance. We then determined the average within-category
dissimilarity (Fig. 8B, bar graphs), which is defined as the average dis-
tance between all stimuli of the same category (here 24 stimuli for
each of the three categories). While the within-category Euclidean dis-
tances were similar for faces, places and leaves, the average correlation
distance was significantly lower for stimuli of the preferred category
(red bars) compared to non-preferred categories (gray bars; faces in
FFA: t9 = 12.337, p b 0.001; places in PPA: t9 = 6.813, p b 0.001). If
one interpreted the within-category distances as a measure of the sen-
sitivitywithwhich this region represents small stimulus differences, the
correlation distance would lead us to claim that FFA is especially insen-
sitive (or invariant) to different orientations of faces.

Why is the correlation distance relatively small when stimulus-
activation is high? The explanation is that in the P-dimensional voxel
space, those patterns correspond to points that are moved away from
the origin by the shared activation. As a result, the angles between the
corresponding vectors will be small on average. Relative to that, pattern
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vectors associated with other conditions will be closer to the origin,
with larger angles between them. Therefore, the correlation distance
will be small for faces and large for non-face stimuli in FFA (the same ap-
plies to PPA for places). Such a prominent difference in stimulus activa-
tion also contributes to the RDM reliability of the correlation distance
(see Figs. 4 and 6). In contrast, the Euclidean distance and derived
methods (Mahalanobis distance, LDC, LDt) do not depend on the
angle, but on the distance between the pattern vectors. Because all pat-
terns are moved by a comparable amount by the common activation
(Fig. 8A), Euclidean distances are not reduced for categories that lead
to large activation.

Discussion

RSA has foundwidespread applications in neuroimaging. One crucial
choice the investigator faces is which dissimilarity measure to use. Sur-
prisingly, to date no systematic comparison about the reliability of dis-
similarity measures has been published. The analyses performed in
this study strongly suggest four conclusions.

(a) Activation patterns (usually formed by regression coefficients)
should be subjected to multivariate noise normalization to im-
prove RDM reliability, regardless of dissimilarity measure.

(b) Continuous distances are more reliable and informative than
classification accuracies as the latter are compromised by a ceil-
ing effect, discretization, and run-specific pattern shifts.

(c) The Euclidean/Mahalanobis distance and the correlation distance
are similarly reliable. However, the correlation distance is harder
to interpret because conditions eliciting little activity have essen-
tially uncorrelated patterns and thus large correlation distances,
even though the patterns may not be significantly different
(Fig. 8). In otherwords, a correlation distance of 1 can indicate ei-
ther statistically distinct patterns or identical patterns.

(d) Crossvalidated distance estimators are unbiased. They have a
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meaningful zero point and enable ratios between distances to be
interpreted.

As an overall conclusion, crossvalidated distance estimators with
multivariate noise normalization are the method of choice when inves-
tigating brain representations with RSA.

Multivariate noise normalization: accounting for covariances in the fMRI
noise leads to more reliable representations

The results of the RDM reliability analysis of three fMRI experiments
and fMRI simulations (see Multivariate noise normalization enhances
the reliability of the dissimilarity measures and Optimal shrinkage safe-
guards the multivariate noise normalization sections) convincingly
demonstrate that multivariate noise normalization significantly im-
proves RDM reliability. This improvement was observed for both con-
tinuous distances and classification accuracies. Misaki et al. (2010)
have already shown that univariate noise normalization (using t values)
results in higher classification accuracy compared to unnormalized re-
gression coefficients. Here we show that noise normalization also
leads to more replicable RDMs (regardless of accuracy level) and that
even larger gains in reliability can be obtained when applyingmultivar-
iate noise normalization.

Both real data and simulations show that the benefit of multivariate
noise normalization is present across all noise levels except for very
high (where the reliability is at floor) or very low noise (where reliabil-
ity is at ceiling). Moreover, multivariate noise normalization is benefi-
cial in both condition-sparse and condition-rich designs (Fig. 6A). We
also found that the improvement in reliability was even present when
the number of voxels outstripped the number of available data points
by 10:1 (Fig. 6B). This is somewhat surprising, as the estimate of the
variance-covariance matrix needs to be regularized when the number
of voxels exceeds the number of time points, which can severely impair
classification accuracy in LDA (Cox and Savoy, 2003)where the decision
boundary depends on Σ. However, we found that multivariate noise
normalization in conjunction with shrinkage worked well for large
ROIs, even though our simulation indicated that the gains become
somewhat smaller. For a large number of voxels, regularization biases
the estimate of the covariance matrix towards a diagonal matrix and
therefore makes multivariate noise normalization more similar to uni-
variate noise normalization. Taken together, these results demonstrate
that multivariate noise normalization can be effectively applied irre-
spective of the voxel-to-time point-ratio.

Multivariate noise normalization and the spatial scale of the fMRI signal

Dissimilarity estimates are more reliable after multivariate noise
normalization, but are they also systematically different from dissimi-
larity estimates without noise normalization? The answer to this ques-
tion is not straightforward and will depend on the spatial scale of the
informative fMRI signals and the spatial scale of the noise processes.
Multivariate noise normalization will de-emphasize voxels with corre-
lated noise, and emphasize voxels that are uncorrelated. This can be un-
derstood as a form of spatial filtering. For example, if all voxels in an ROI
are correlated equally strongly in the noise, multivariate noise normal-
ization will remove the lowest spatial frequency (the mean) of the pat-
terns. If neighboring voxels are more correlated with each other,
multivariate noise normalizationwill remove the correspondingmiddle
frequencies, thereby emphasizing the differences between immediately
neighboring voxels (the highest spatial frequencies). Whether this spa-
tial filter would systematically bias the RDM estimate depends on the
spatial structure of the true signal. If the RDM structure is the same
across all spatial scales (i.e. the RDM is the same no matter whether
you look at high or low spatial frequencies), multivariate noise normal-
ization will not bias the RDM estimate, but simply ensure the optimal
Please cite this article as: Walther, A., et al., Reliability of dissimilarity m
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(i.e. lowest variance) estimate. If the RDM structure changes with the
spatial scale then one may find systematic differences between multi-
variate and univariate noise normalization. Consider an experiment
presenting different exemplar of faces and scenes. Distances between
faces and scenes may be mostly at low spatial frequencies, as these
two items activate different ROIs (FFA and PPA, respectively) within
the inferior-temporal cortex (IT). Distances between specific faces or
scenes may rely on finer voxel-by-voxel differences within these re-
gions and hence on higher spatial frequencies. For IT response patterns,
multivariate noise normalization would likely render the between-
category differences smaller and the within-category differences larger.
Notwithstanding this feature, it should be noted that the inherent spa-
tial resolution of fMRI already introduces an arbitrary choice regarding
the spatial scale at which the RDMs are measured. Multivariate noise
normalization simply biases the RDM to the spatial frequencies that is
best measured with fMRI: usually towards slightly higher spatial fre-
quencies than univariate noise normalization.

Classifiers vs. distances

Our results show that under equal conditions, continuous distance
estimates provide a more reliable and nuanced dissimilarity measure
than classification accuracies. It is important to note that the classifiers
employed here also fundamentally rely on the notion of distance: LDA
classifies test patterns according to their Mahalanobis distance from
the class means (e.g. Bishop, 2006); SVM estimates the support
vectors by maximizing the minimum distance to the boundaries of the
training examples (Vapnik, 1995). However, both methods restrict
themselves to estimating a percentage of all the test patterns that fall
on the correct side of the decision boundary, i.e. they transform dis-
tances into binary yes-no decisions. By contrast, the continuous dis-
tances investigated here reflect the similarity of the stimulus patterns
more directly, resulting in higher RDM reliability. The tight correspon-
dence between these methods is especially obvious in the case of LDC,
which utilizes the weight vector of LDA. For this reason, the results pre-
sented in this paper are likely to generalize to othermeasures of pattern
discriminability that map a direct measure of similarity (classification
weights) onto a less detailed scale (discrete percentages).

Previous studies have compared different classification methods for
MVPA, recommending one over the other because it resulted in higher
classification accuracy (Cox and Savoy, 2003; Grosenick et al., 2008;
Ku et al., 2008; Misaki et al., 2010). However, most investigators are
not interested in obtaining high classification accuracies, but rather in
sensitively detecting whether a region encodes a certain variable or in
determining whether one variable is more prominently encoded than
another. For this purpose, a high reliability of the dissimilarity measure
is muchmore important. In this respect, our results show that SVM and
LDA classification fall short against continuous distance measures in al-
most all comparisons. This strongly suggests the use of distance mea-
sures over classifiers when investigating brain representations.

Crossvalidation

Crossvalidation of distance measures in fMRI has recently been pro-
posed in the form of LDt (Kriegeskorte et al., 2007; Nili et al., 2014) and
as part of a more general MANOVA framework (Allefeld and Haynes,
2014). We show here that the expected crossvalidated distance be-
tween two noisy estimates of the same pattern is zero, and that
crossvalidated distance estimates are noise-unbiased. Moreover, we
found that the crossvalidated Mahalanobis distance, LDC, was equally
or even more reliable than its non-crossvalidated counterpart despite
data splitting.

These features make crossvalidated distance estimates very attrac-
tive. First, crossvalidation enables us to infer whether the response pat-
terns of two conditions are significantly different, by simply comparing
the distances against zero. Therefore, crossvalidated distances can be
easures for multi-voxel pattern analysis, NeuroImage (2015), http://
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used in a similar fashion as classification accuracies, which are com-
pared to chance performance. While inference is enabled by the fact
that the expected value of a crossvalidated distance estimate is zero
under the null hypothesis, we still need a measure of its distribution
for statistical testing. This can be obtained, as with other multivariate
methods, through permutation methods, i.e. by randomly exchanging
condition labels and recalculating the dissimilarity measure
(Kriegeskorte et al., 2006; Stelzer et al., 2013). In the context of multi-
subject experiments, however, the distances can also be used as input
to a traditional, parametric group analysis.

Second, the ratios or relative sizes of crossvalidated distances can be
meaningfully interpreted, even across different regions or subject with
different noise levels. This allows us to test richer and more detailed
representational models than was possible when only considering the
rank-order of distances (Kriegeskorte et al., 2008).

Overall, crossvalidated distance estimates are recommendable as
they are not inflated by noise and endowed with an interpretable zero
point. This has also implications for dimensionality-reduction algo-
rithms for data visualization such as multidimensional scaling (Borg
and Groenen, 2005) and t distributed stochastic neighbor embedding
(Maaten and Hinton, 2008), where a meaningful zero value of the dis-
similarity measure adds to the interpretability.
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Euclidean vs. correlation distance

Though performing nearly equally in all cases, the correlation dis-
tance was oftentimes numerically slightly more reliable than the
Euclidean distance. Partly this difference may be caused by the fact
that the correlation distance reflects to some degree the size of the ac-
tivation common to the different categories. Specifically, we showed
that the correlation distance becomes smaller in the presence of a
strong category-specific mean activation pattern, as observed in
dataset three (Fig. 8). In such a case, much of the structure of the
RDM will be influenced by the mean pattern activation, which may
add to the reliability of the RDM, but may change its interpretation.
Therefore, the choice between the distance measures depends strongly
on the question that the investigator wants to answer. Oftentimes this
will be how discriminable multiple stimuli are from each other. In this
case, Euclidean-type distances like the Mahalanobis distance provide a
good choice, as they are uninfluenced by the strength of a common ac-
tivation pattern. By contrast, if one would like to establish how similar
two response patterns are in terms of their specific shape, independent
of the strength of the activation, correlation distances may be a good
option.

Another advantage of Euclidean measures is that crossvalidation is
easily achieved.While crossvalidated versions of correlation coefficients
are possible, it is not straightforward to construct a correlation distance
that is unbiased with respect to the noise in the same way as LDC
(Fig. 2).
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Conclusions

Across a range of datasets, we found that the crossvalidated
Mahalanobis distance (LDC), which includesmultivariate noise normal-
ization, provides themost reliablemeasure of pattern dissimilarity. This
measure combines the advantages of continuous distancemeasures and
classification approaches. Like traditional distances, themeasure is con-
tinuous, making it more reliable and informative. Like classification ac-
curacy, it is crossvalidated, therefore unbiased, and can directly be
used to test whether two response patterns are distinct. Finally, unlike
any other approach, it provides ratio-scale representational dissimilar-
ities, and thus a richer characterization of the representational geome-
try. These features make the crossvalidated Mahalanobis distance a
powerful tool to investigate brain representations.
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Appendix

Linear discriminant t value

LDC is the difference between two conditions measured along a lin-
ear discriminant that has been estimated with independent data. In
analogy to a univariate test, the LDC is a contrast measured on the dis-
criminant. It generalizes the contrast measured for the average activa-
tion of an ROI to arbitrary weighted combinations of the ROI voxels
(where the weights have been chosen with independent data to maxi-
mize sensitivity to the difference between the two conditions). Like
any linear model contrast, the LDC can be converted to a t value by
normalizing it by its standard error. We refer to this measure as the
linear-discriminant t value (LDt; Nili et al., 2014; Kriegeskorte et al.,
2007). The LDt is valid t value, which can be converted to a p value.
An entire LDt RDM can be inferentially thresholded using the false-
discovery rate (FDR), which is unaffected by the row- and column-
wise dependencies of the LDt values.

To compute the standard error of the LDt, sB, we estimate the error
varianceσϵB

2 on the residuals of the test set B and project it onto the dis-
criminantw (Eq. (11)):

sB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wσ2

ϵBw
T

� �
� c XTX

� �−1
cT


 �s
ðA1Þ

with c = [1–1]. LDt is then

LDt bk;b j
� � ¼ LDC bk;b j

� �
sB

: ðA2Þ

The LDt is Student-t distributed under the null hypothesis that the
two patterns are identical.

Note, however, that this feature is compromisedwhen averaging LDt
values. For example, when averaging LDt values across crossvalidation
folds, the resulting average LDt is not t distributed. Furthermore, the
LDt values from different folds are not independent, such that the stan-
dard error cannot be simply divided by the square root of the number of
folds (Nili et al., 2014). As another example, it is often useful to average
LDt values across different pairs of conditions, to assess within- or
between-category information. The resulting average LDt values will
again not be t distributed. However, as the LDC, the LDt measure is dis-
tributed symmetrically around zero under the null-hypothesis that the
patterns are identical, and therefore can be used as a basis for other in-
ference procedures, including condition-label randomization or boot-
strap tests and for group-level inference with subject as random effect.

One potential drawback of LDt compared to LDC is that the relation-
ship between the distances changes with the level of noise. To simplify
the following illustration, assume the fMRI patterns have already been
successfully multivariately noise-normalized; we can thus ignore the
noise covariance matrix in the LDA weight vector. We can therefore re-
write the LDt as:

LDt bkb j
� � ¼ b j−bk

� �
A b j−bk
� �

B
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b j−bk
� �

B b j−bk
� �

B
T

q
c

ðA3Þ
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where c is a noise-dependent constant that is the same across any pair
of conditions j and k, i.e. a constant that does not influence the ratios be-
tween different distances of a single ROI.

Because the regression coefficients b are estimates of the true re-
sponse patterns β and are corrupted by noise, the expected value of
the inner product in the denominator is

E b j−bk
� �

B b j−bk
� �

B
T� � ¼ β j−βk

� �
β j−βk
� �T þ K ðA4Þ

where K increases with the level of noise and is independent of the par-
ticular distance (assuming that all conditions are affected by equally
high measurement noise). In contrast, the expected value of the inner
product of the numerator (i.e. LDC) is crossvalidated and hence is inde-
pendent of the noise:

E b j−bk
� �

A b j−bk
� �

B
T� � ¼ β j−βk

� �
β j−βk
� �T

: ðA5Þ

Hence, for high noise levels, the term K, which is the same across all
distances, will dominate the denominator and the expected LDt will be
proportional to the LDC:

E LDt bkb j
� �� �

∝ β j−βk
� �

β j−βk
� �T

: ðA6Þ

For low noise levels, the first term in Eq. (A4) will dominate the de-
nominator and the expected LDt will be proportional to the square root
of the LDC:

E LDt bkb j
� �� �

∝ β j−βk
� �

β j−βk
� �T

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β j−βk
� �

β j−βk
� �Tq

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β j−βk
� �

β j−βk
� �Tq

:
ðA7Þ

In conclusion, this shows that on a continuum fromhigh to lowmea-
surement noise, LDt varies in a non-linear fashion between the LDC and
its square root, respectively. This non-linear relationship makes it po-
tentially difficult to interpret the ratios between different LDt values.
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