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Abstract  

Many daily activities rely on the ability to produce meaningful sequences of 

movements. Motor sequences can be learned in an effector-specific fashion (such 

that benefits of training are restricted to the trained hand) or an effector-independent 

manner (meaning that learning also facilitates performance with the untrained hand). 

Effector-independent knowledge can be represented in extrinsic/world-centered or in 

intrinsic/body-centered coordinates. Here, we employed functional magnetic 

resonance imaging (fMRI) and multivoxel pattern analysis to determine the 

distribution of intrinsic and extrinsic finger sequence representations across the 

human neocortex. Participants practiced 4 sequences with one hand for 4 days and 

then performed these sequences during fMRI with both left and right hand. Between 

hands, these sequences were equivalent in extrinsic or intrinsic space, or were 

unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity 

patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for 

an extrinsic sequence representation. In contrast, primary sensory and motor cortices 

showed effector-independent representations in intrinsic space, with considerable 

overlap of the two reference frames in caudal PMd. These results suggest that 

effector-independent representations exist not only in world-centered, but also in 

body-centered coordinates, and that PMd may be involved in transforming sequential 

knowledge between the two. Moreover, while effector-independent sequence 

representations were found bilaterally, they were stronger in the hemisphere 

contralateral to the trained hand. This indicates that intermanual transfer relies on 

motor memories that are laid down during training in both hemispheres, but 

preferentially draws upon sequential knowledge represented in the trained 

hemisphere.  
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Introduction  

Many motor skills—for instance, playing a musical instrument or writing—

demand the production of long sequences of movements. Behavioral evidence 

indicates that motor sequences are not encoded at a single level of the motor 

hierarchy, but rather at various stages in the translation from abstract action goals to 

muscle commands (Keele et al., 1995, Hikosaka et al., 1999). Take the example of 

learning a novel piano tune: the motor system can acquire a representation in terms 

of musical notes or key positions (i.e., in “extrinsic” or environmental coordinates), or 

in terms of the necessary muscle commands (i.e., in “intrinsic” or body-centered 

coordinates, Fig. 1a).  

The reference frame of a sequence representation determines whether and 

how the skill generalizes to the contralateral effector (for review, see Shea et al., 

2011). Extrinsic sequence representations are, by definition, effector-independent: 

learning a sequence with one hand improves performance of the same sequence in 

extrinsic space with the other hand (Grafton et al., 2002, Kovacs et al., 2009, Boutin 

et al., 2012). Conversely, it has been hypothesized that sequence representations in 

intrinsic coordinates are effector-specific (Fig. 1a, Hikosaka et al., 2002), and that 

learning in this coordinate frame only benefits trained hand performance (Karni et al., 

1995). There is, however, also some evidence that learning transfers to sequences 

that demand the mirror-symmetric pattern of muscle activity (Bapi et al., 2000, 

Korman et al., 2003, Panzer et al., 2009, Gruetzmacher et al., 2011). This suggests 

that effector-independent representations may also exist in intrinsic coordinates (Fig. 

1b).  

Here, we ascertained whether brain regions exhibit effector-independent 

sequence representations in intrinsic space—and if so, how these differ from 

extrinsic representations. Using multi-voxel pattern analysis (MVPA), we recently 

demonstrated that different movement sequences, all matched for kinematic 

parameters, elicited classifiably different activity patterns in motor/pre-motor areas 

(Wiestler and Diedrichsen, 2013). Classification relied on a unique spatial activity 

pattern for each sequence—rather than on differences in temporal profiles—

indicating that single voxels developed preferential tuning for certain sequences. 

Furthermore, the sequence-specific component of these activity patterns increased 

with training. We utilize this technical innovation to test whether motor regions 

contain an extrinsic or intrinsic effector-independent representation.  

Participants practiced 4 different 5-finger sequences with one hand, and 

subsequently performed these with either hand during fMRI. Each trained sequence 
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had an extrinsic match on the contralateral hand (involved the same spatial keyboard 

positions), an intrinsic match (involved the same sequence of fingers), and was 

unrelated to the two remaining sequences (Fig. 1c). In regions with an extrinsic, 

effector-independent representation, the 4 extrinsic sequence pairs (Fig. 1d) should 

exhibit more similar activity patterns than any of the unrelated pairs. In regions with 

intrinsic coding, the 4 intrinsic pairs should evoke similar activity patterns. In regions 

with effector-dependent representations, any sequence pair should be equally 

dissimilar. This paradigm enabled us to map the cortical architecture of sequence 

representations across the cortex, test for the existence of effector-independent 

representations in a body-centered reference frame, and to investigate how training 

on either hand influenced these representations.  

Methods 

Participants 

Fourteen healthy, right-handed participants (7 male, 7 female; average age 21.86 

years, SD = 2.74; average Edinburgh Handedness Inventory score 89.64, SD=7.46) 

volunteered for the experiment. All procedures were approved by the University 

College London Research Ethics Committee. Exclusion criteria were identical to 

those employed in a previous independent study (Waters-Metenier et al., 2014). The 

14 subjects served as a sham control group in a larger study with 28 additional 

participants who received bihemispheric transcranial direct current stimulation (tDCS) 

during training. All results reported in this paper are, if not otherwise noted, based on 

the 14 sham participants only. However, all main findings replicate in the full set of 42 

participants, and we occasionally report statistics on the full group, if the results in the 

sham group were of marginal significance. Comparisons between sham and tDCS 

groups will be reported in a separate paper. 

Apparatus  

Sequences were executed on a keyboard comprised of 10 piano-style keys. These 

keys could not be depressed, but were equipped with force transducers (FSG-

15N1A, Sensing & Control Honeywell Inc.; dynamic range: 0-25 N), that measured 

the force exerted by each finger with an update rate of 5 ms. The device was 

engineered to be MRI-compatible by using shielded cables and inserting a low-pass 

filter where the cable penetrated the wall of the shielded scanner room and has been 

described in detail elsewhere (Wiestler et al., 2011). 
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Procedure – Behavioral training  

The sequence task required participants to press each finger in a predefined order, 

which was represented as numeric characters on a computer screen.  Each trial 

started with the presentation of an imperative cue (for 2.7s) that instructed each 

participant which sequence to execute, followed by 3 (or, during pre- and post-test, 4) 

executions of the same sequence. The display consisted of a string of 5 numbers 

within a box, which indicated—from left to right—the keys that had to be pressed. 

Because we wanted to distinguish a representation in intrinsic coordinates from a 

representation of the visual stimulus, the cue was presented in extrinsic coordinates. 

Specifically, ‘1’ referred to the left-most key (left little finger or right thumb), whereas 

‘5’ referred to the right-most key (left thumb or right little finger).  Thus, extrinsic, but 

not intrinsic, sequence pairs shared the same numbers on the screen during the cue 

phase. Two small (0.53cm x 0.53cm) colored boxes flanking the sequence instructed 

participants which hand to use: the hand on the side of the green box was required to 

execute the sequence while the one on the side of the red box remained still and 

resting on the keyboard.  

Each of the 3 (or 4) sequence executions was triggered separately with 5 

white asterisks, which served as the ‘go’ signal. The objective of the task was to 

perform the five presses as fast as possible while keeping errors to a minimum. 

Fingers had to be pressed in the correct sequence with a force of at least 2.5 N, 

while all other fingers had to rest on the keyboard with a force less than 2.2 N. After 

each correct press, the corresponding asterisk in the sequence turned green, but 

when participants pressed an incorrect key, the corresponding asterisk turned red. 

Additionally, asterisks turned yellow for correct presses that exceeded the upper 

force limit (8.9 N). Execution time (ET) was measured as the duration between the 

onset of the first press and the release of the last press, and error rate was defined 

as the percentage of sequences that contained one or more incorrect finger presses. 

Throughout the behavioral training, we encouraged a constant error rate by 

instructing participants to speed up if error rate was lower than 20% and slow down if 

it was higher. For data analysis, we calculated the median ET for each run, 

sequence, and hand over all (correct and incorrect) trials and then averaged these 

results across sequences and participants. To penalize runs in which participants 

made a larger number of errors, we replaced the ET for incorrect trials with the 

maximum ET of that run and sequence– which, effectively, increased the median ET 

by an amount related to the error rate. 
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After each sequence execution, participants were shown brief feedback (0.8s) 

as follows: one green asterisk (equivalent to 1 point) indicated that the sequence was 

correct; three green asterisks (= 3 points) meant that the sequence was correct and 

executed with ≥20% faster ET than the average in the previous run; one blue asterisk 

specified that the sequence was executed with 20% slower ET than the average of 

the previous run (= 0 points); and one red asterisk signified that one or more errors 

were made in the sequence (= -1 point).  Participants received a financial bonus 

according to their final point score.  

All sequences consisted of a different ordering of the same 5 fingers. We 

excluded any sequence that contained a run of more than 3 adjacent fingers. From 

the remaining candidate sequences, we selected 12 sequences of matched difficulty, 

based on pilot experimentation (Wiestler and Diedrichsen, 2013). These sequences 

were divided into 3 training sets that each consisted of 4 sequences—2 ‘original’ 

unrelated sequences (e.g. A and B) and their spatially mirror-reversed counter parts 

(A’ and B’). Thus, left hand sequence AL was identical to AR in extrinsic space (i.e. 

the same relative spatial positions on the keyboard) and to A’R in intrinsic space (i.e. 

the same fingers, see Fig. 1c). Within each hand and set, all sequences were made 

maximally different from each other by avoiding sequences that shared any common 

transitions between two fingers.  

The experiment started with a short practice run with 4 easy sequences to 

familiarize participants with the task. During the pre-test, participants performed the 

full set of 12 sequences (4 to-be-trained and 8 untrained) with both left and right 

hands. Each hand performed 2 trials per sequence (with 4 executions per trial). Pre- 

and post-tests consisted of 8 runs with 12 trials each.  Within the first 4 runs, the 

order of sequences and hands was randomly permuted, and the order was reversed 

in the second half to counterbalance possible learning effects. Subjects were then 

assigned to one of two groups: One cohort that practiced with the left hand, and a 

cohort that practiced with the right hand. Training lasted for 4 days, during which 

subjects practiced the 4 sequences of one of the 3 possible sequence sets. The set 

assignment was counterbalanced across the two cohorts. Each training session 

lasted approximately an hour, during which participants performed 128 trials (with 

384 sequence executions), divided into 16 runs with 2 trials per sequence each. The 

behavioral experiment ended with a separate session for the post-test, which was 

conducted in exactly the same way as the pre-test.  
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Procedure - Imaging 

One day after the post-test, participants underwent functional magnetic resonance 

imaging. Functional images were acquired using a 3T Siemens Trio MRI scanner 

with a 32-channel head coil. We used a 2D echo-planar sequence with a TR of 

2.72s, 8 runs, 159 volumes per run, 32 interleaved slices with 2.7mm thickness, 3mm 

gap, and 2.3x2.3mm2 in-plane resolution. The images were acquired in an oblique 

orientation, with a ~45° tilt angle from the AC-PC line. This permitted coverage of the 

motor regions on the dorsal surface of the cerebral cortex, as well as the superior 

part of the cerebellum. The slice prescription excluded the inferior prefrontal and 

interior and anterior temporal lobes. To correct for distortions due to field 

inhomogeneities, we also acquired a B0 field-map (Hutton et al., 2002). To 

reconstruct the cortical surface, we acquired an anatomical image using a 3D 

MPRAGE sequence with 1mm isotropic resolution.  

During fMRI, participants performed the 4 trained sequences with either the 

right or left hand – the 8 untrained sequences were not imaged. Each of the 8 

imaging runs consisted of 24 randomly ordered trials (3 per trial type – 4 sequences x 

2 hands - with 3 sequence executions per trial, yielding 72 total executions per run). 

Each trial consisted of a cueing phase (2.7s = 1 TR) and 3 sequence executions, 

triggered 3.6s seconds apart, and therefore lasted 13.5s (5 TRs). Participants were 

instructed to produce the sequence with an ET of ~1.3s as accurately as possible. 

This speed was selected because it was the fastest speed that most subjects could 

achieve with both trained and untrained hands.  Each sequence execution had to be 

completed within 2.8s to allow for a 0.8s feedback phase. No extra feedback was 

given for fast performance or hard presses, and “too slow” feedback was only shown 

when ET exceeded 1700ms. Otherwise, cues and feedback were identical to those 

presented during behavioral training. Baseline BOLD activation was measured during 

8 randomly interspersed rest phases of 13.5s during which participants were 

instructed to fixate on a central asterisk presented on the screen and to avoid 

movement. To monitor for mirror activity on the non-moving hand, participants were 

required to keep all ten fingers on the keyboard and to produce a small baseline 

force of ~0.5N at all times.   

Basic data analysis 

Data analysis was carried out using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) and 

custom-written Matlab (Mathworks, Nantick) routines. The first 3 TRs of each 

functional run were excluded to allow the functional imaging signal to approach 

equilibrium. The remaining 156 images were adjusted for the sequence of slice 
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acquisition, and subsequently corrected for field inhomogeneities and head motion 

(Hutton et al., 2002). The data were high-pass filtered to remove slowly varying 

trends with a cut-off frequency of 1/128 s and co-registered to the individual 

anatomical scan. No smoothing or normalization to a group template was 

implemented during preprocessing.  

The data were analyzed using a general linear model to obtain estimates of 

how much each voxel was activated by each of the 8 trial types (4 sequences x 2 

hands) in each of the 8 runs. The regressors in the design matrix consisted of boxcar 

functions that assumed the value of 1 while the respective trial type was executed, 

and zero otherwise. Each regressor, therefore, averaged activation across the 3 

sequence executions within each trial and across the 3 occurrences of each trial type 

within each run. The boxcar functions were then convolved with an individual 

estimate of the hemodynamic response function. The model of the hemodynamic 

function was composed of two Gamma functions:  the first modeled the activation 

and the second the post-stimulus undershoot. Each component had a free parameter 

for the delay to peak, dispersion, and onset (see spm_hrf.m in SPM8). These 

parameters were estimated for each subject by optimizing the proportion of variance 

that the model could explain of the time-series of voxels in the primary motor cortex 

(bilaterally). These estimates were then applied to the whole brain. For HRF 

estimation, we treated all sequences of the left and all sequences of the right hand as 

one trial type; therefore this procedure did not bias any subsequent analysis that 

concerned differences between sequences. The 64 estimates for the regression 

coefficients (8 runs x 4 sequences x 2 hands) were used in the subsequent 

multivariate analyses.  

Classification analysis  

To test whether different sequences led to discernibly different local activity patterns, 

we used linear discriminant analysis (LDA, see Duda et al., 2001). Classification was 

performed for each participant and each hand separately. The input data consisted of 

4 (sequences) x 8 (runs) activation estimates for a set of P voxels, selected by the 

surface-based searchlight or region of interest (ROI) approach (see below). For each 

run and hand, we subtracted the mean activity of each voxel averaged over the 4 

sequences. The data from 7 runs was used to estimate the mean activation vector for 

each sequence, and the average PxP within-sequence covariance matrix (for details, 

see Wiestler et al., 2011). The activation vectors from the remaining 8th run were then 

classified by assigning them to the class with the highest likelihood, assuming that 

each sequence pattern came from a multivariate normal distribution with a separate 
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mean but identical covariance. We repeated this procedure eight times, each time 

leaving out a different run, thereby obtaining an overall cross-validated classification 

accuracy. If the area showed reliable differences between activation patterns for the 

4 sequences, then classification accuracy should be above chance (25% correct). 

For between-subject analyses, accuracy values were transformed to z-values 

assuming a binomial distribution (Pereira et al., 2009).  

Above-chance classification accuracy of fMRI data is potentially attributable to 

behavioral confounds (Todd et al., 2013). For instance, one could observe above-

chance classification accuracy if the 4 sequences were performed with different 

speeds and the BOLD signal in a region reflected the speed of movement. Therefore, 

we calculated the average execution time, error rate and peak force averaged over 

the fingers for each sequence and imaging run. We then used these values – instead 

of the voxel-wise activation estimates – in the classification analysis and correlated 

those resultant accuracy values across participants with those obtained from 

activation data. 

Pattern-component modelling 

To test for existence of effector-independent representations, we correlated activity 

patterns of the left and the right hand. Raw correlations, however, are highly 

susceptible to the level of noise and common activation patterns. We therefore 

decomposed activity patterns using a pattern-component modelling approach 

(Diedrichsen et al., 2011), allowing us to calculate the proportion of the informative 

activity patterns that was shared between the two hands. Specifically, the activity 

pattern (y, a Px1 vector) for the ith hand (L vs. R), jth sequence (1-4) on the kth run (1-

8), was modelled as  

yi,j,k= handi + seqi,j + runk + noisei,j,k 

The pattern component that was shared by all sequences executed with one hand 

(handi) was assumed to have different variances across voxels for the left and right 

hands - var(handL) and var(handR) - and a shared covariance covH=cov(handL, 

handR). The sequence-specific component (seqi,j) was assumed to have the same 

variance for all sequences of a given hand, but different variances across hands, 

yielding two estimates: var(seqL) and var(seqR). Sequence pairs in an extrinsic 

reference frame also shared a covariance term, i.e. cov(seq1,L, seq1,R)=covE, with a 

corresponding covariance term for each intrinsic pair (covI). The 8 run-specific 

components were modelled to have the same variance and to be uncorrelated across 

runs. Finally, the noise component (with variance  σε
2 ) was assumed to be 
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uncorrelated across trials and not correlated with any of the other components. The 

key concept in pattern component modelling is that each of the components is 

considered a randomly distributed variable across voxels. Thus, rather than 

estimating each component directly—as would be done if treating each as a fixed 

factor—the approach directly estimates the (co-)variances of the components across 

a group of voxels. 

Within this framework, the raw correlation coefficients between different 

patterns, therefore, reflect a specific combination of variance and covariance terms. 

For example, the raw correlation between two unrelated sequences is given by:  

  

rU
raw = covH / v

v = var seqL( ) + var handL( ) +σ ε
2( ) var seqR( ) + var handR( ) +σ ε

2( )  

Whereas the raw correlation between two sequences that are the same in extrinsic 

space is:  

  
rE

raw = covE+ covH( ) / v
 

Thus, we can see that this raw correlation not only increases with covE, but also with 

covH (i.e. hand-specific covariance). Furthermore,  rE
raw  and  rU

raw , (and also their 

difference), will vary with changing levels of hand-specific variances and noise (term 

v). However, none of these changes in raw correlation have anything to do with the 

amount of shared information.   Hence, the size of raw correlation coefficients is 

difficult to interpret. Pattern component modelling allows us to calculate correlation 

coefficients that are not influenced by noise and the common activation components, 

simply by using the direct variance estimates from the model:  

  
rE = covE / var seqL( )var seqR( )  

This correlation coefficient, therefore, reflects the degree to which sequential 

information was shared between sequences on both hands that matched in extrinsic 

coordinates (and an equivalent correlation coefficient was calculated for intrinsic 

pairs). Because this correlation estimate could become unstable when the 

denominator tended to zero, we regularized it by setting the variance estimate of 

each hand for this calculation to 0.5% of the noise if it fell below this limit.  



EFFECTOR-INDEPENDENT SEQUENCE REPRESENTATIONS  

 

11 

Surface-based analysis 

To visualize the distribution of sequence representations across the cortical surface, 

we used FreeSurfer (Dale, 1999). This program permits the extraction of the white-

matter gray-matter surface and pial surface from the anatomical image. After the 

surfaces were obtained, they were inflated to a sphere and morphed to fit to a group 

template based on the sulcal depth and local surface curvature information (Fischl et 

al., 1999). All hemispheres were then resampled onto a regular grid containing 

163,842 vertices. Left and right hemispheres were morphed to the same mirror-

symmetric template, allowing us to easily mirror functional maps for analyses that 

were combined across hands.  

Multivariate analyses (both classification and pattern-component modeling) 

were performed using a surface-based searchlight (Oosterhof et al., 2011). For each 

vertex, this method defined a sphere on the cortical surface and selected all voxels 

between pial and white-gray surfaces. The radius of the surface was adjusted such 

that exactly 160 voxels were contained in each searchlight, resulting in an average 

searchlight radius of 11.1 mm. Multivariate analysis was conducted on the selected 

group of voxels, and the integrated result was assigned to the center node. By 

covering all possible vertices, a full surface map of information content could be 

constructed.  

Statistical tests on the surface were conducted using an uncorrected 

threshold of t(13)=3.01, p<0.005, and family-wise error was controlled by calculating 

the critical size of the largest super-threshold cluster that would be expected by 

chance, using Gaussian Field theory as implemented in the fmristat package 

(Worsley et al., 1996). Results were displayed using the 3d-visualisation software 

Caret (Van Essen, 2001). 

Region of interest 

We defined 6 anatomical regions of interest symmetrically in both hemispheres. 

These ROIs were identical to those used in our previous work (Wiestler and 

Diedrichsen, 2013). We based regions on a cyto-architectonic atlas aligned to the 

FreeSurfer atlas surface (Fischl et al., 2008). The hand region of primary motor 

cortex (M1) was defined as Brodman area (BA) 4, 2.5 cm above and below the hand 

knob (Yousry et al., 1997). Primary somatosensory cortex (S1) was defined by BA 2, 

3, and 1, again 2.5 cm above and below the hand knob. Dorsal premotor cortex 

(PMd) was defined as the lateral aspect of BA 6, superior to the middle frontal gyrus. 

The supplementary motor areas (SMA/pre-SMA) comprised the medial aspect of 



EFFECTOR-INDEPENDENT SEQUENCE REPRESENTATIONS  

 

12 

BA6. Finally, the posterior superior parietal area was subdivided into an ROI 

including all areas medial to the fundus of the intra-parietal sulcus (IPS) and the 

regions of the occipito-parietal junction (OPJ). All regions were defined on the 

symmetric group template and then projected into the individual data space via the 

individual surface.  

To analyze ROI data, we submitted the data from each of the 6 ROIs to a 

repeated-measures ANOVA with the factors ‘hemisphere’ (left vs. right) and ‘hand’ 

(contra- vs. ipsilateral). All tests were Bonferroni-corrected for the number of ROIs 

tested (critical p-value was 0.05/6). Unless otherwise reported, we used all voxels 

present in each ROI. For the analysis of training effects, however, we restricted all 

multivariate analyses to the 220 most activated voxels of each ROI. For this 

selection, the activity was averaged across sequences and across hands. While this 

procedure restricted the analysis to the most functionally involved subregion in each 

ROI, it was not sensitive to any difference between sequences and hence did not 

bias the multivariate measures on which we drew inferences.  

Results  

Behavioral results 

Participants underwent training for 4 days with either left or right hand. During pre- 

and post-test, they were tested on 4 trained sequences, as well as 8 untrained 

sequences. Execution time (ET, Fig. 2)—the time from first finger press to last finger 

release—was reduced for trained sequences by 1130ms (±181ms) from pre- to post-

test, without significant changes in error rate (t(13) = -0.249, p = 0.807). For untrained 

sequences, participants showed a 628ms (±159ms) improvement. This reduction in 

ET was significantly smaller than that for the trained sequences, as indicated by a 

significant day (pretest vs. posttest) x sequence type (trained vs. untrained) 

interaction (F(1,12) = 35.142, p = 0.0001). Thus, a substantial part of the learned skill 

was sequence-specific.  

To investigate the degree to which the acquired skill was effector-

independent, participants were also tested on the untrained hand during pre- and 

post-test. Each untrained hand sequence was the same as one of the trained 

sequences in extrinsic space (same letters on the screen), and the same as a 

different trained sequence in intrinsic space (same sequences of muscle commands). 

Therefore, for behavioral analysis, our design did not allow the distinction between 

extrinsic and intrinsic transfer, as performance improvements could result from both. 
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However, by also testing the untrained hand on a set of 8 untrained sequences, we 

could assess performance benefit caused by the combination of extrinsic and 

intrinsic intermanual transfer.  

We observed a substantial decrease in ET for the untrained sequences 

performed with the untrained hand. While some of this reduction may indicate some 

learning of general task parameters, most of this drop can be explained by the fact 

that the repeated (pre- and post-) testing of the untrained hand induced learning 

(Waters-Metenier et al., 2014). Importantly, however, the reduction in ET on the 

untrained hand was larger for trained than untrained sequences; the day x sequence 

type interaction was significant, F(1,12) = 12.221, p = 0.0044. This effect did not 

interact with the factor training cohort, F(1,12) = 0.107, p = 0.7496. Thus, left and right 

hand-trained cohorts showed similar sequence-specific transfer to the untrained 

hand. In summary, our behavioral results indicate that training led to the development 

of both effector-dependent and effector-independent sequence representations, with 

the latter promoting the performance of the untrained hand.  

Overlap of activation and representation for the left and right hands  

To determine the locus of these effector-independent representations, we combined 

data from left and right hand-trained participants by averaging left and right 

hemispheres –therefore also combining data from the trained and untrained hand. In 

the last part of the Results section, we consider how the side of training influenced 

neural sequence representations.  

One may hypothesize that an effector-independent representation should be 

activated by both the left and the right hand. The average % BOLD signal compared 

to rest is shown in Figure 3a. In ipsilateral M1 and S1, we observed suppression of 

the BOLD signal below resting baseline, whereas all other regions showed clear 

evidence for bilateral activity. In general, however, activity was larger for movements 

of the contralateral hand. To test individual areas, we analyzed the data for 6 

symmetrically defined ROIs using a hemisphere (left vs. right) x hand (ipsilateral vs. 

contralateral) repeated measures ANOVA. For all regions, the effect of hand was 

significant (all F(1,13) > 13.435, p < 0.0029, Fig. 4a). Consistent with previous results, 

(Kim et al., 1993, Verstynen et al., 2005), we also noted that ipsilateral activity was 

higher during left hand movements in the left hemisphere than for right hand 

movements in the right hemisphere. This effect was significant for M1 (t(13) = 2.695, p 

= 0.018), and for S1 (t(13) = 3.527, p = 0.004), even after correcting for the number of 

ROIs tested.   
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An effector-independent representation should not only be activated for both 

hands, but also should represent sequential aspects of left and right hand 

movements. The existence of a sequence representation can be manifested as 

slightly different activation patterns for different sequences (Wiestler and 

Diedrichsen, 2013). To test for significant pattern differences, we used a 

classification approach (see Materials and Methods). As can be seen in Figure 3b, 

sequences could be successfully classified from a set of motor-related areas, 

including sensory-motor cortex, premotor and supplementary motor cortex, and 

superior parietal cortex. These regions were significant for both left and right hands 

when correcting for multiple comparisons across the cortex (p<0.05, uncorrected 

threshold p = 0.001, cluster threshold 141mm2). In all 6 ROIs (Fig. 4b) classification 

accuracy was significantly better than chance (all F(1,13) > 12.807, p < 0.0034).  

However, above-chance classification accuracy could also reflect subtle 

behavioral differences between sequences, rather than a real sequential 

representation.  Although we endeavored to match the 4 sequences of each hand in 

terms of execution time, error rate and peak forces, we cannot exclude the possibility 

that the classifier picked up subtle behavioral differences between the sequences in 

each participant. While the differences between the 4 sequences (as measured by 

the between-sequence standard deviation, Table 1), were modest, we could classify 

sequences based on these behavioral variables alone, with classification accuracy 

for all variables together reaching 44% for the untrained hand (classification 

accuracy, Table 1). However, there was no significant correlation between the 

classification accuracy based on behavioral variables and the classification accuracy 

based on neural activity patterns, neither in our original 14 participants (r<0.393, 

p>0.164, for all 6 ROIs), nor in the full set of all 42 participants  (r<0.165, p>0.298). 

Moreover, because each sequence execution was relatively fast, and because we 

averaged the BOLD signal changes over 3 repeats of the same sequence (10.88s), it 

is unlikely that the classifier picked up on differences in the temporal activation profile 

(for detailed analysis, see Wiestler and Diedrichsen, 2013). Thus, our results can 

indeed be taken to reveal different spatial patterns of activation (i.e. representations) 

in a range of motor/premotor areas for the 4 sequences of each hand.  

From Figure 3b, it is also apparent that sequence representations for the two 

hands overlap greatly. In the posterior parietal regions and SMA, no difference in the 

strength of representation in ipsi- and contralateral hand was found. Thus, the 

sequence representation in these regions appeared to be equally strong for both 

hands. In contrast, M1 (F(1,13) = 16.22, p = 0.0014), S1 (F(1,13) = 21.88, p = 0.0004), 
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and PMd (F(1,13) = 9.96, p = 0.008), exhibited higher accuracies for contralateral 

compared to ipsilateral hand. However, even these regions clearly encoded 

ipsilateral sequences (all t(13) > 4.465, p < 0.001). Thus, even primary sensory and 

motor cortex showed a significant ipsilateral representation. 

The existence of ipsilateral representations in M1 and S1 appears to 

contradict the finding that these regions were—on average—only activated by 

movements of the contralateral hand. To test whether representations of ipsilateral 

sequences were restricted to the subset of voxels activated by ipsilateral movements, 

we split the voxels in each M1 and S1 ROI into 3 equal groups depending on their 

level of ipsilateral hand activation (Fig. 4c). We then repeated the classification 

analysis within each of these sets of voxels separately. An ANOVA revealed that 

classification accuracy was higher for activated voxels, F(2,26) = 7.740, p = 0.0023, 

and that this effect did not differ between regions, F(2,26) = 0.091, p = 0.91. 

Importantly, however, even the deactivated sets of voxels exhibited above-chance 

classification accuracy in S1, t(13) = 7.168, p = 7.28*10-06, and M1, t(13) = 3.423, p = 

0.0045. Thus, even regions of primary sensory and motor cortices that were 

deactivated relative to rest showed a representation of a sequence executed with the 

ipsilateral hand. These findings are parallel to our observation of encoding of single 

finger movements (Diedrichsen et al., 2013), and indicate that ipsilateral sensory-

motor cortex - below a global suppression – exhibits patterns of relative activation 

and deactivation that reflect the fine-grained details of the ipsilateral movement.  

Coordinate frame of effector-independent representations 

Our previous analysis showed sequence encoding for both hands across the 

hierarchy of cortical motor areas, even in primary sensory and motor regions. For 

these representations to be truly effector-independent, however, the region should be 

in a similar neural state when the same sequence is performed with the left or right 

hand (Gallivan et al., 2013). Otherwise, sequential representations acquired with one 

hand could not benefit the production of the same sequence with the other. 

Therefore, the activation pattern when the left hand performs sequence A should be 

more similar to the activation pattern when the right hand performs the same 

sequence, relative to when the right hand performs sequence B.  

This correspondence analysis also allowed us to determine the coordinate 

frame of the representation. Left and right hand sequences can correspond to each 

other either in extrinsic or intrinsic coordinates (Fig. 1c). Therefore, if a region 

represented sequences for both hands in extrinsic coordinates, the patterns for the 4 
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extrinsic pairs (e.g., AL and AR, see Fig. 1d) should be more correlated than for 

unrelated pairs (e.g., AL and BR). Conversely, if the region represented the sequence 

in intrinsic coordinates, the patterns for intrinsic pairs (e.g. AL and A’R) should 

correlate more with each other than those of unrelated pairs.  

Raw correlations are, however, hard to interpret, as they are influenced by 

noise level (which decreases correlations), and by the amount of common activation 

pattern (which increases correlations, but decreases differences between 

correlations). Therefore, we used pattern-component modelling (Diedrichsen et al., 

2011) to decompose the patterns in each region into general (hand) and sequence-

specific components (seq) (Fig. 5a, see methods). 

Figure 5b shows the estimate of the sequence-specific components in a 

cross-section of the cortical surface (indicated as a white dotted line on the left 

hemisphere in Fig. 5c, but averaged over hemispheres), running from rostral PMd to 

the caudal end of the occipito-parietal junction (OPJ, Culham and Valyear, 2006). 

The sequence-specific component for the contra- and ipsilateral sequence showed a 

distribution similar to what was obtained for classification accuracy maps (Fig. 3b): 

rostral PMd, IPS and OPJ represented a sequence from either hand equally well, 

while caudal PMd, M1 and S1 exhibited better encoding of the contralateral hand 

sequence.  

Importantly, we could now estimate the correlation between the two 

sequence-specific components, i.e. what proportion of the informative, sequence-

specific pattern was shared between the two hands. Because the baseline correlation 

between unrelated left and right hand sequence is captured by the general (i.e. not 

sequence specific) covariance covH, these terms encapsulate the increased similarity 

between sequences that match in extrinsic (covE) and intrinsic (covI) space. The 

estimated covariances were then normalized by the strength of the sequence-specific 

components for the left and right hand, effectively calculating a corrected correlation 

coefficient (see Materials and Methods). 

In PMd (Fig. 5b,c), pairs of sequences that were matched in extrinsic space 

clearly correlated higher with each other than unrelated pairs of sequences. We 

assessed the statistical significance using both ROI and surface-based analysis. In 

the ROI analysis (Fig. 5d), PMd showed extrinsic correlations that were significantly 

different from zero (F(1,13) = 9.906, p = 0.0065). This was also clear in the surface-

based analysis, in which the two largest significant clusters were located in left and 

right PMd (Table 2). Collectively, these findings demonstrate that PMd comprises an 
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effector-independent sequence representation in extrinsic space. The other two 

clusters with significant extrinsic correlations were located in PMv and the mouth 

area of M1, and in the rostral cingulate zone, an area associated with movement 

preparation (see Table 2, Picard and Strick, 2001). Representations in both these 

regions are possibly related to subvocal rehearsal of the number string.  

In contrast, we found evidence for a common representation in intrinsic 

coordinates in M1 and S1 (see also Romei et al., 2009, Orban de Xivry et al., 2011), 

where the intrinsic correlations were significantly larger than zero (S1: F(1,13) = 12.846, 

p = 0.0033; M1: F(1,13) = 14.499, p = 0.0022). In the surface-based analysis (Table 2), 

we found a significant cluster in right M1 and S1. A similar cluster in the left 

hemisphere failed to reach significance. This was likely due to lack of statistical 

power, as in the ROI analysis, no difference between hemispheres was found (both 

F(1,13) < 1.257, p > 0.283). Therefore, S1 and M1 showed similar patterns of activity 

during execution of mirror-symmetric sequences with either hand. Corrected intrinsic 

correlations were, on average, r = 0.33 (± 0.09). Because these correlations were 

corrected for noise, they would have been close to 1, if the informative part of the 

patterns for the left hand and right hand sequences had been identical. Therefore our 

results also imply that a substantial part of sequence-specific encoding in these 

areas was effector-dependent.  

Before concluding that the motor system has effector-independent sequence 

representations in intrinsic coordinates, we needed to consider the alternative 

hypothesis that participants involuntarily mirrored the sequence with their passive 

hand during imaging. Because mirror-movements in normal individuals are usually 

sub-threshold (Cincotta and Ziemann, 2008), we employed a sensitive technique to 

measure the strength of mirroring (Armatas et al., 1994): we required participants to 

pre-activate the muscles of the passive hand by exerting gentle pressure onto the 

keyboard with all 10 fingers at all times. The average recorded force on the passive 

fingers was 0.55N, and we observed small fluctuations with a standard deviation of 

0.027N (± 0.0025N) around this mean. While the majority of these fluctuations was 

random, the force pattern on the two hands correlated with r = 0.08 (± 0.015) across 

fingers and time points. Thus, while we could reveal a slight tendency for mirror 

activity at the muscle level, it was much weaker than the correlation between intrinsic 

pairs observed in the neocortex. Furthermore, the size of the peripheral mirror-

correlation was not related to the strength of the cortical mirror correlation (r = -0.086, 

p = 0.585), such that even the subset of participants that did not show any evidence 

of mirroring exhibited clear intrinsic correlation in primary sensory and motor cortex.   
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In PMd, we found evidence for an overlap of coordinate systems: significantly 

positive correlations were observed for sequences that matched in extrinsic space, 

(F(1,13) = 9.906, p = 0.0065), and in intrinsic space (F(1,13) = 10.543, p = 0.0064). The 

co-existence of two coordinate frames (Cisek et al., 2003) in PMd was not an artifact 

of the within-hand correlation: within each hand, related pairs of sequences (e.g. AR 

and AR’) did not correlate more with each other than unrelated pairs (AR and BR), t(13) 

= 0.597, p = 0.561. Thus, while previous results (Cisek et al., 2003, Gallivan et al., 

2013) have shown that PMd contains effector-independent representations of 

actions, we show here for the first time that this occurs simultaneously in two different 

coordinate systems.  

Similarly, the parietal cortex appeared to have common coding in intrinsic, 

and possibly also extrinsic coordinates. Both IPS and OPJ showed a tendency for 

intrinsic encoding (non-significant if measured against the Bonferroni-corrected value 

of p=0.05/6: F(1,13) = 5.759, p = 0.0321 and F(1,13) = 4.919, p = 0.045). The surface 

based analysis showed a significant cluster of intrinsic correlation in the right IPS 

(Table 1). The larger sample that also included the 28 tDCS participants, however, 

confirmed intrinsic encoding in the IPS (F(1,41) = 44.626, p < 0.0001), as well as 

intrinsic (F(1,41) = 29.65, p < 0.0001) and extrinsic (F(1,41) = 15.075, p = 0.0004) 

encoding in the OPJ.  

No common encoding for the two hands was found in SMA/pre-SMA for 

intrinsic (F(1,13) = 0.013, p = 0.911) or extrinsic encoding (F(1,13) = 0.035, p = 0.854). 

However, classification accuracies were substantially lower here than in the lateral 

premotor regions, leading to reduced power to detect sequence-specific correlations. 

Influence of training side  

Does the location of effector-independent representation depend on how the skill was 

acquired? We hypothesized that the hemisphere contralateral to the trained hand 

would obtain a stronger representation of the sequence, which could then be 

accessed by the untrained hand. To test this idea, we averaged the estimated 

variance (strength) of the sequence-specific pattern component over both hands and 

compared them between the ‘trained’ hemisphere (contralateral to trained hand) and 

the ‘untrained’ hemisphere (ipsilateral to trained hand).  

We discovered that (averaged over contra- and ipsilateral hands) the left 

hand-trained cohort had a better sequence-related representation in right PMd, 

whereas the right hand-trained cohort had a better representation in left PMd (Fig. 6, 

upper row, F(1,13) = 12.06, p = 0.0041). This contralateral bias was confirmed in the 
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larger sample of 42 participants for M1 (F(1,41) = 9.237, p = 0.0041), and PMd (F(1,41) = 

18.532, p = 0.0001). The correlation in intrinsic coordinates exhibited similar training-

dependent lateralization (Fig. 6, lower row). The intrinsic correlation tended to be 

larger in the ‘trained’ compared to the ‘untrained’ hemisphere in PMd (F(1,13) = 6.032, 

p = 0.0289) and in IPS (F(1,13) = 6.895, p = 0.0210). No such differences were found 

for the extrinsic correlation.  

In sum, the voxel activity patterns in the hemisphere contralateral to the 

trained hand showed—regardless of the hand that executed the sequence—higher 

sequence-specific variance. This suggests that the effector-independent 

representation was laid down preferentially in the hemisphere that was active during 

training, and was subsequently called upon when executing the sequence with the 

untrained hand.  

Discussion  

For any goal-directed action, the motor system translates extrinsically defined goals 

into muscle coordinates. When playing the piano, the extrinsic goal is defined by the 

sequence of notes and the corresponding spatial locations of the keys, and the 

intrinsic representation consists of the complex pattern of muscle activity needed to 

produce the desired tune. While extrinsic representations are by definition effector-

independent, the required muscle activity depends on whether the tune is played with 

the left or right hand. Therefore, intrinsic representations have been hypothesized to 

be effector-dependent (Fig. 1a, Hikosaka et al., 2002). In this view, only learned 

extrinsic representations could lead to performance improvements on the untrained 

hand.  

We used MVPA to visualize extrinsic and intrinsic sequence representations 

in the human neocortex for the first time. We achieved this by correlating activity 

patterns for left and right hand sequences that were the same in either extrinsic or 

intrinsic references frames. We found evidence for extrinsic sequence encoding 

especially in PMd. This is consistent with studies of reaching movements, which have 

indicated that neurons in premotor cortices are tuned more clearly for the spatial 

direction of movement than intrinsic variables, such as joint angles or forces 

(Crammond and Kalaska, 1989, 1996, 2000, Cisek et al., 2003).  

While we have clearly demonstrated the existence of extrinsic 

representations, our experiment, unfortunately, does not reveal their exact nature. 

One obvious candidate for extrinsic coding is the sequence of spatial positions on the 
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keyboard (Keele et al., 1995), or a more abstract stimulus-response code (Wise and 

Murray, 2000).  However, patterns in PMd may have also represented the imperative 

cue (the string of digits). Although we presented the digits only very briefly during a 

short announcement phase and not during sequence execution, we also observed 

above-chance classification accuracy in extra-striate areas, such that this possibility 

cannot be fully excluded. Furthermore, PMd may have also represented the 

sequence in terms of a subvocal phonological code (Hartwigsen et al., 2013), 

although given their functional specialization, this is a more likely explanation for the 

significant extrinsic correlations in PMv and rostral cingulate zone (Picard and Strick, 

2001).   

We also found widespread effector-independent activation patterns that were 

coded in intrinsic coordinates – i.e. activity patterns that were similar for two mirror-

symmetric sequences. This widespread mirroring is surprising, as intrinsic 

representations are commonly thought to be effector-dependent and not shared 

across the two limbs (Hikosaka et al., 2002). These mirrored representations were 

even found in ipsilateral primary sensory and motor cortices, which exhibited reduced 

BOLD signal relative to rest. This is consistent with previous findings, which showed 

similar mirrored representations for single finger movements (Diedrichsen et al., 

2013). Because we carefully monitored the forces produced by the ipsilateral hand, 

however, we can be relatively confident that these patterns did not rely on overt 

mirror activity.  

PMd exhibited a gradual transition between coding in extrinsic and intrinsic 

coordinate frames. While the overlap may partly reflect the limited spatial resolution 

of fMRI and the multivariate searchlight analysis, this finding is consistent with the 

observation of a mixture of intrinsic and extrinsic reference frames in premotor cortex 

during arm movements (Wu and Hatsopoulos, 2007). This mixture makes PMd a 

probable substrate for the coordinate transformation from spatial goals to joint 

movements.  

A similar mixture of extrinsic and intrinsic codes was also observed in OPJ. 

Along the IPS, however, intrinsic correlations dominated--a slightly surprising result 

given the functional importance of these regions for movement planning and control 

of attention in spatial coordinates (Bisley and Goldberg, 2010). This raises the 

possibility that some of the intrinsic correlations were not due to coding in a muscle-

centered references frame, but due to a mirror-symmetric spatial encoding of 

external locations. 
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In contrast, no evidence for shared sequence representations was found in 

SMA. While activity patterns here reflected both left and right hand sequences, we 

did not find a significant correspondence between these patterns in either intrinsic or 

extrinsic coordinates. This appears to contradict findings that disruption of SMA 

reduces intermanual transfer (Perez et al., 2007a). The failure to find strong 

correlates of intermanual representations in SMA may partly be due to a power issue, 

as overall classification accuracy was substantially lower here than for lateral motor 

areas (see also Wiestler and Diedrichsen, 2013). This may indicate that 

representations in SMA are organized spatially on a finer grain than those in dorsal 

premotor cortex, making them less amenable to detection using fMRI.  

What is the functional relevance of these effector-independent 

representations? One of their advantages is that motor skills learned with one hand 

can also be executed with the other hand. Indeed, our sequence-learning task 

showed a substantial amount of intermanual transfer (see also Korman et al., 2003, 

Panzer et al., 2009, Gruetzmacher et al., 2011). A skill like playing the piano would 

clearly benefit from transfer in extrinsic coordinates, such that the same tune can be 

played with either hand. Other skills, such a grating cheese or swinging a baseball 

bat, involve objects that are mirror symmetric, and hence would benefit from transfer 

in intrinsic coordinates. Our data shows that the motor system has effector-

independent representations in both extrinsic and intrinsic coordinates, which could 

support transfer in either reference frame (Dizio and Lackner, 1995, Criscimagna-

Hemminger et al., 2003, Wang and Sainburg, 2004, Ahmed et al., 2008, White and 

Diedrichsen, 2008).  

However, what can our data reveal about the mechanism through which 

intermanual transfer occurs? Theories of intermanual transfer can be divided into two 

classes (Lee et al., 2010): “Bilateral activation models” propose that unilateral motor 

training activates the contralateral cortex, but also spreads to the ipsilateral 

hemisphere, and hence also causes learning in motor areas that subserve the 

untrained hand. Contrastingly, “bilateral access” models state that learning occurs 

mostly in the hemisphere contralateral to the trained hand. These representations are 

then called upon when the untrained, ipsilateral hand performs the task (Parlow and 

Dewey, 1991). Our data is consistent with both views. However, our findings also 

suggest that an artificial dichotomy between “bilateral activation” and “bilateral 

access” models may not necessarily be helpful.  
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It is clear from our representational analysis that during the execution of 

unilateral movement, activation patterns in the ipsilateral hemisphere reflect specific 

features of the on-going movement (see also, Diedrichsen et al., 2013). This is even 

the case when the sequence is performed with the trained hand, such that these 

activation patterns are unlikely to reflect bilateral access. Furthermore, fMRI studies 

of sequence learning have shown that, during unilateral training, changes in 

secondary motor areas can be observed bilaterally (Hardwick et al., 2013, Wiestler 

and Diedrichsen, 2013). Neurophysiological measures, such as short intracortical 

inhibition are reduced bilaterally (Perez et al., 2007b, Camus et al., 2009), possibly 

indicating reduction of synaptic efficiency in GABAergic interneurons. Finally, rTMS 

disruption of ipsilateral M1 during or immediately after training reduces the amount of 

intermanual transfer (Perez et al., 2007a, see also, Romei et al., 2009, Lee et al., 

2010). These data suggest that movement-specific activation patterns in the 

ipsilateral hemisphere do induce some learning, which then may support the 

execution of the same sequence with the other hand.  

Our data, however, also provides some indication that sequence 

representations are preferentially laid down in the hemisphere contralateral to the 

trained hand, which then are subsequently accessed by the untrained hand through 

callosal communication (Parlow and Dewey, 1991). The strength of the measured 

sequence representations (averaged over trained and untrained hands) was found to 

be stronger in the hemisphere contralateral to the trained hand. This finding was 

mostly driven by common representations in an intrinsic reference frame – that is, 

sequence-specific representations that were activated during the execution of the 

mirror-reversed sequence with the untrained hand.  

The ubiquity of such shared representations across the motor hierarchy, both 

in intrinsic and extrinsic coordinates, indicates that the distinction between these two 

models of transfer may ultimately not be illuminating. It is possible that the use of the 

word “transfer” as a verb may have misled many of us to view intermanual transfer as 

a process distinct from unimanual sequence learning or sequence production. Under 

this assumption, it would then indeed be meaningful to ask whether this transfer 

“occurs” during encoding or during retrieval of the motor memory.  

The widespread nature of effector-independent representations, as 

uncovered here, suggests an alternative view: rather than being conceived as an 

additional process, intermanual transfer should be rather considered an emergent 

property of a highly bilaterally organized motor system. In this view, transfer does not 
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occur during encoding or retrieval – indeed, it does not “occur” at all. Rather, it is a 

natural consequence of motor areas that are in a similar activation state when the 

same sequence is produced with the left or right hand. Our results provide the first 

neural evidence that such representations not only exist on an a relatively abstract 

level that encodes sequences in an extrinsic references frame (Hikosaka et al., 

2002), but also in a movement-related intrinsic reference frame in primary sensory-

motor areas.  
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Figure captions 

 
Figure 1. Effector-independent representations. (A) Hypothetical motor hierarchy: 

a stimulus (e.g. notes when playing the piano, or numbers, as in this experiment) is 

translated into an extrinsic representation of the keys that need to be pressed and 

subsequently into an intrinsic representation of the muscle commands for each hand. 

In the traditional conceptualization (Hikosaka et al., 2002), intrinsic representations 

are specific to the effector (hand) used. (B) Alternative architecture: even the intrinsic 

sequence representation is still partly shared across hands in a mirror-symmetric 

fashion. (C) Experimental design: During scanning, participants performed 4 

sequences with the left and right hand. Each sequence of a given hand 

corresponded to one sequence on the other hand in extrinsic coordinates (blue, 

same numbers on the screen), and to one sequence in intrinsic coordinates (red, 

same sequences of muscle commands). (D) Across hands, there were 16 possible 

pairs of sequences, of which 4 were extrinsic, 4 intrinsic, and 8 unrelated pairs.  
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Figure 2. Average execution times during pre-test, four days of training and 

post-test. Participants were trained on 4 sequences with either the left (green) or 

right (purple) hand. At pre- and post-test, they were tested with both hands on the 4 

trained (circles), as well as eight untrained (triangles) sequences. The fMRI 

experiment occurred after the post-test, during which participants performed only the 

4 trained sequences with either left or right hand with matched execution times. Error 

bars indicate between-subject SEM. 
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Figure 3. Overlap of average activity and classification accuracy for left and 

right hand sequences. Data is averaged across the two training cohorts. Results 

are shown on an inflated representation of the human neocortex. The fundus of the 

central sulcus (CS), postcentral sulcus (PoCS), intraparietal sulcus (IPS) and 

superior frontal sulcus (SFS) are represented by dotted lines. (A) Percent signal 

change relative to baseline, averaged over all participants and sequences. Red areas 

indicate BOLD signal increase and blue areas designate BOLD signal reduction 

relative to rest. (B) Average accuracy of a linear classifier to distinguish between the 

4 sequences of the left and between 4 sequences of the right hand.  
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Figure 4. ROI analysis. (A) Percent signal change for left and right hand sequences 

and for the left and right hemispheres; ** indicates a significant hand x hemisphere 

interaction, p < 0.0086. (B) Classification accuracy using random subsets of 160 

voxels from each ROI. (C) Classification accuracy for sequences as a function of the 

activation level during ipsilateral hand performance in M1 (solid line) and S1 (dashed 

line). 
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Figure 5. Correlation analysis reveals intrinsic and extrinsic sequence 

representations. (A) Using a pattern component model, the variance of activation 

across voxels was decomposed into a component that was common to all sequences 

of one hand (handL/R), a component that was specific to each individual sequence 

(seqL/R), and a noise component. Left and right hand patterns shared a common 

activation (covH). The sequence-specific patterns could share a component that was 

common in extrinsic (covE) or intrinsic (covI) space. (B) Cross-section through the 

motor-related ROIs, running from dorsal PMd to medial OPJ, averaged across both 

hemispheres. The strength of sequence-specific patterns (seqL/R) is shown for the 

contralateral (solid line) and ipsilateral (dashed line) hands, relative to the noise 

estimate. The covariance of the pattern component in extrinsic space (covE, blue) 

and intrinsic space (covI, red) are shown. (C) Map of correlation of the sequence-

specific pattern components in extrinsic space (blue) and in intrinsic space (red), 

thresholded at r>0.15. The cross-section displayed in B is indicated by a white dotted 

line on the left hemishere. (D) Corrected correlation coefficients (see text) computed 
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for each ROI in extrinsic (blue) and intrinsic (red) space for the left (dark blue/red) 

and right (light blue/red) hemisphere. Stars indicate correlations that are significantly 

larger than zero, ** : p < 0.0086, * : p < 0.05.  

 

Figure 6. Sequence representation is stronger in the hemisphere contralateral 

to the trained hand. (A) Strength of sequence-specific pattern components in the 

hemisphere contralateral to the trained hand (‘trained’ hemisphere) in comparison to 

the hemisphere ipsilateral to the trained hand (‘untrained’ hemisphere). Variance is 

expressed as a percentage of the noise component. (B) Size of intrinsic correlation. 

All results are averaged over hands and training cohorts. ** indicates significant 

differences, with p < 0.0086, * indicates significant differences with p < 0.05.  
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