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SUMMARY

Although it is widely accepted that the brain repre-
sents movement sequences hierarchically, the neu-
ral implementation of this organization is still poorly
understood. To address this issue, we experimen-
tally manipulated how participants represented
sequences of finger presses at the levels of individual
movements, chunks, and entire sequences. Using
representational fMRI analyses, we then examined
how this hierarchical structure was reflected in the
fine-grained brain activity patterns of the participants
while they performed the 8 trained sequences. We
found clear evidence of each level of the movement
hierarchy at the representational level. However,
anatomically, chunk and sequence representations
substantially overlapped in the premotor and parietal
cortices, whereas individual movements were
uniquely represented in the primary motor cortex.
The findings challenge the common hypothesis of
an orderly anatomical separation of different levels
of an action hierarchy and argue for a special status
of the distinction between individual movements
and sequential context.

INTRODUCTION

The ability to learn and to produce complex sequences of move-

ments is essential to many everyday skills, such as speaking or

playing an instrument. Recent evidence from human fMRI

studies has suggested that a widespread network of brain re-

gions is involved in the learning and production of complex se-

quences, including the prefrontal cortex (PFC), the dorsal and

ventral premotor cortex (PMd/v), the supplementary motor

area (SMA), the precuneus, areas along the intraparietal sulcus

(IPS), basal ganglia (BGs), and the cerebellum (Doyon et al.,

2002; Grafton et al., 1995; Hikosaka et al., 1999; Honda et al.,

1998; Penhune and Steele, 2012; Sadato et al., 1996; Wymbs
et al., 2012). It remains unclear, however, exactly how these

areas contribute to sequential behavior (Hikosaka et al., 1999).

A prevalent idea is that such movement sequences are orga-

nized in a hierarchical fashion, where several elementary move-

ments are combined into units, often called ‘‘motor chunks’’

(Lashley, 1951). These motor chunks can then activate the

generating circuits for each elementary movement, allowing

faster and more accurate execution (Rosenbaum et al., 1983)

as well as computational efficiency (Ramkumar et al., 2016). Pro-

duction of an entire sequence could then be achieved by

sequential activation of the corresponding chunks, and new se-

quences could be generated by recombination of learned

chunks (Sakai et al., 2003). Practice of specific sequences would

eventually result in the formation of a more abstract representa-

tion that combines chunks (Figure 1A). Thus, the core idea of a

multi-level action hierarchy is that each level combines elements

in the hierarchically lower level, facilitating the transition between

lower-level elements. Each hierarchically higher level would lose

some of the fine temporal details encoded at the lower level and,

hence, represent the action at a more abstract level (Cooper and

Shallice, 2000; Fuster, 2008; Humphreys and Forde, 1998; Miller

et al., 1960).

Although there is substantial behavioral evidence (Rosenbaum

et al., 1983; Sakai et al., 2003) for such hierarchical structure, we

still know very little about how these hierarchies are represented

in the human brain (Krakauer et al., 2019). Electrophysiological

studies in non-human primates have shown that some neurons

show differential firing rates during the same elementary move-

ment, depending on the sequential context, such as preceding

or following movement (Baldauf et al., 2008; Tanji and Shima,

1994). Other neurons have been found to be active at both initi-

ation and termination of a sequence (Fujii and Graybiel, 2003) or

were selective for specific categories of sequences (Shima et al.,

2007). However, the use of relatively short and simple sequences

in these studies precludes further assessment of different hierar-

chical levels of sequence representations.

There are two extreme views of how such a hierarchical repre-

sentation could be implemented in the neocortex. The first and

most dominant view assumes a clear anatomical separation of

different levels of the behavioral hierarchy in the brain (Cooper

and Shallice, 2000; Fuster, 2008; Koechlin and Jubault, 2006;
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Figure 1. Two Potential Neural Architectures for Hierarchical

Movement Sequence Production

(A) Spatially separable hierarchy. The example shows production of the finger

sequence 12334. At the bottom of hierarchy is the generator circuit for indi-

vidual finger movement. The activation of each element (circles) causes a

descending command that generates the movement. The second level above

specifically encodes chunks (groups of a few movements), whereas the

highest level represents individual sequences, which are composed of chunks.

(B) According to a spatially overlapping hierarchy, higher-level sequence

representations are not separated in different brain regions but intermingled in

the same areas.
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Miller et al., 1960; Figure 1A). Such an organization could emerge

from the fact that different regions have different intrinsic time-

scales on which they can learn and represent sequential depen-

dencies. It has been suggested that basic sensory areas can

represent sequences of events on the order of a few hundredmil-

liseconds, with higher-order association areas being able to

represent sequences lasting multiple seconds or even minutes

(Chaudhuri et al., 2015; Chen et al., 2015; Hasson et al., 2015).

Based on this idea, one would predict that the anatomical sepa-

ration of motor sequence representation is determined by the

differences in the timescale of individual elementarymovements,

chunks, and entire sequences.

An alternative view advocates that hierarchical behavior can be

learned by a single recurrent network without separating different

levels of representation (Botvinick and Plaut, 2004; Botvinick,

2007). Therefore, chunks and entire sequences could be repre-

sented in the same network (Figure 1B). Although this hypothesis

would also predict that levels of individual movements and

sequential context are intermingled, we have recently shown a

clear neuroanatomical separation of these two (Yokoi et al., 2018).

To test the prediction of a clear anatomical separation be-

tween levels of representation, we designed a new behavioral

paradigm in which human participants learned to produce long

motor sequences that were explicitly organized on three levels;

each sequence consisted of four chunks, and each chunk con-

tained 2–3 finger presses. We then investigated the neural corre-

lates of these three levels using representational fMRI analysis

(Diedrichsen and Kriegeskorte, 2017). Rather than analyzing

the increases or decreases of spatially smoothed activity,

representational fMRI analysis makes inferences based on the

similarity (or dissimilarity) of multivariate activity patterns across
2 Neuron 103, 1–13, September 25, 2019
multiple experimental conditions (Kriegeskorte et al., 2008; Yo-

koi et al., 2018). Our paradigm therefore allowed us to experi-

mentally manipulate the structure of motor sequence represen-

tations across three hierarchical levels and then to directly infer

the representational content of each cortical area with respect

to these levels.

RESULTS

Induction of a Multi-level Motor Hierarchy through
Behavioral Training
Our paradigmwas aimed at inducing a stable motor hierarchy by

manipulating how participants built up their explicit, declarative

memory of the sequence. During the fMRI experiment, we

required participants to produce sequences with their right

hand completely from memory, provided only with a sequence

cue (Figures 2A–2C). The training taught participants to

remember 8 sequences (Figure 2B; for more details, see Behav-

ioral Training in the STAR Methods). On day 1, they practiced to

produce 8 different chunks of 2 or 3 items (Figure 2C) and to

associate these with a specific letter (A–H). On the second day,

participants started to learn 8 different sequences, each a com-

bination of four learned chunks. At the end of this training, partic-

ipants could reliably recall most of the sequences. The number of

incorrect presses they made in each sequence execution had

reduced dramatically; the error rate per press was 9%± 8% (Fig-

ure 2D). The inter-press intervals (IPIs) within each chunk quickly

reduced on the first day and remained relatively stable for the

following days. In contrast, IPIs for the boundaries between

two successive chunks were much longer and reduced only

slowly over the course of training days (Figure 2D). Even on the

fifth day, the between-chunk IPIs were executed more slowly

(386 ± 93 ms) than the within-chunk intervals (220 ± 62 ms,

t11 = �5.73, p = 0.0001; Figure 2D). The longer between-chunk

IPI is commonly taken as a behavioral indicator that the two

sequence elements are represented as separate units.

Although this result provided clear evidence for chunking, it re-

mains unclear to what degree the longer between-chunk IPIs

were caused by memory retrieval and/or stable motor represen-

tation (i.e., planning ahead successive movements). To test this,

we asked participants to perform a follow-up session after the

fMRI scan in which the sequences were instructed not by the

sequence cue but, rather, directly using digits (e.g.,

13524232514; Figure 3A). This frees participants from the

requirement of explicit memory recall. Nonetheless, on trained

sequences, the between-chunk intervals were still longer than

the within-chunk intervals (348 ± 124 ms versus 280 ± 122 ms,

t11 = �5.00, p = 0.0004; Figure 3E, trained), clearly showing

that the induced chunking affected motor performance over

and beyond explicit recall.

Importantly, our data also show that the observed effect is not

driven by differences in the biomechanical difficulty of finger tran-

sitions. The sequence design (Figure 2B) was such that 5 of the 8

sequences were the same across the two experimental groups,

with the difference that they learned them using a different chunk-

ing structure. The normalized press intervals for those sequences

showed a pattern that clearly reflected the original instruction (Fig-

ure 3B). The inter-subject correlation of these patterns was
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Figure 2. Explicit Induction of a Structured Sequence Memory

(A) Experimental setup. Participants practiced fast sequences of isometric finger presses on the custom-built keyboard device (left). The traces show example

force data (fingers 1–5) from one sequence execution (right). Each arrowhead on peak force indicates a successful finger press.

(B) Sequences and chunks. The participants were divided into two groups, which practiced partly overlapping sequences with different chunking. Lines indicate

pairs of identical sequences across the two groups.

(C) Training consisted of cued trials (top row) and un-cued trials (bottom row). On day 1, participants learned to produce single chunks frommemory using a letter

(A–H) cue. On the following days, they practiced sequences (indicated by Roman letters I–VIII) as combinations of learned chunks. On day 2, cued and un-cued

trials were alternated. On days 3–5, cued trials and a set of three un-cued trials were alternated.

(D) Inter-press intervals over the course of the behavioral training. Within- and between-chunk intervals averaged over the sequence types are displayed as blue

and red dots, respectively (axis on the left side). Average numbers of incorrect presses are indicated as gray squares (axis on the right side). An arrow indicates

performance in the imaging session. Only data from un-cued trials are shown. Error bars indicate the SEM.
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significantly higher for within-group than between-group compar-

isons (Figure 3C; t11 = 9.22, p = 1.66 3 10�6).

If participants acquire a motor representation of the chunks,

then theyshouldalsobeable touse this knowledgewhenproduc-

ing the chunk in a novel context (Sakai et al., 2003). To test this,

the participants additionally executed 3 sets of novel sequences

(Figure 3D). These new sequences either consisted of trained

chunks in a new order (‘‘Chunk’’), 2 trained chunks embedded

in an otherwise randomsequence (‘‘Chunk+New’’), or completely

untrained sequences with no relation to learned chunks (‘‘New’’).

As expected, IPIs in the New sequences were executed consid-

erably slower than IPIs in trained sequences. For the other two

sequence types, the intervals that lay within a learned chunk

were performed significantly faster than novel intervals

(t11 = �4.86, p = 0.0005 for Chunk; t9 = �4.25, p = 0.0021 for

Chunk+New; Figure 3D). Overall, these results suggest that the
originally declaratively (i.e., cognitively) imposed chunk structure

left a reliable imprint in themotor behavior andwasgeneralized to

novel contexts.

Importantly, we also observed that the between-chunk IPIs of

the trained sequences were faster than the between-chunk IPIs

of the Chunk sequences (t11 = �6.35, p = 5.463 10�5). This

advantage may have two reasons. First, participants may have

acquired a higher-order sequence representation that facilitated

the transitions between chunks. Alternatively, it may be due to a

form of non-hierarchical association learning (Hunt and Aslin,

2001; Reber, 1967; Stadler, 1992; Verwey and Abrahamse,

2012) at the level of the individual elements; finger transitions

that had been encountered in practice would frequently become

associated and, therefore, be performed faster. To disentangle

these possibilities, we built a linear model for all IPIs of the

follow-up session for each individual. We tested three effects
Neuron 103, 1–13, September 25, 2019 3



A B C

D E F

Figure 3. Cognitively Induced Chunking Structure Influences Subsequent Skilled Motor Performance
(A) In the follow-up session, the sequences were directly cued with 11 digits, removing the need for memory recall.

(B) Average IPIs, normalized to the entire sequence duration, for groups G1 and G2.

(C) Across-participant correlation (Pearson’s r) of IPI profiles from (B) for within-group (W) and between-group (B) pairs.

(D) Generalization test with trained sequences, new sequences consisting of trained chunks, new sequences partly consisting of trained chunks, and completely

new sequences.

(E) Within-chunk intervals were faster than between-chunk intervals for all sequence categories.

(F) Group-averaged regression weights for the 3 effects of interest (chunk, sequence, and transition). Weights were estimated using Bayesian model averaging

(STARMethods). The color of each bar represents the prevalence of the correspondingmodel. Protected exceedance probability (PXP) is the posterior probability

that an effect was present in more than a half of the subjects (see Statistical Tests in the STAR Methods).

***p < 0.005; two-sided paired t test. Error bars indicate SEM across the subjects.

Please cite this article in press as: Yokoi and Diedrichsen, Neural Organization of Hierarchical Motor Sequence Representations in the Human
Neocortex, Neuron (2019), https://doi.org/10.1016/j.neuron.2019.06.017
of interest: whether the IPI was within or between chunks,

whether a chunk transition was within a known sequence, and

the frequency with which a specific finger transition was prac-

ticed. The model also contained three effects of no interest

(see STAR Methods for details). The results of Bayesian model

averaging provided clear evidence of both a chunk and

sequence effect, accompanied by poor evidence of a finger tran-

sition effect (Figure 3F; Table S1).

These results suggest that themotor system has formed a rep-

resentation of the trained chunks as well as a representation of

the overall sequences, which, in turn, activate these chunks.

With this behavioral evidence, we next assessed where and

how these different representations are implemented in the

human neocortex.

Cortical Regions with Robust Sequence ‘‘Encoding’’
In the fMRI session, the participants received a brief visual cue

for the sequence type and then executed the sequence twice

(Figure 4A). The activation associated with each sequence was

estimated for each voxel by averaging the task-evoked blood ox-

ygen level dependent (BOLD) activity over the two executions.

We then applied a representational fMRI analysis to study the
4 Neuron 103, 1–13, September 25, 2019
cortical sequence representation. Using a searchlight approach

(Figure 4B), we first determined whether the activation patterns

had any information about the executed sequences. For this,

we computed a cross-validated estimate of the Mahalanobis

distance (crossnobis distance estimator; Diedrichsen et al.,

2016; Walther et al., 2016) between any possible pairs of the

sequences. Systematically positive crossnobis estimates indi-

cate reliable differences between the activity patterns for

different sequences. Because all sequences consisted of the

same finger presses arranged in a different order (Figure 2B),

and because we averaged the activity across two sequence

executions, any differences in activity patterns must reflect

some dependency of the activity on the sequential context.

Figure 4C shows the resultant group searchlight map displayed

on the flattened cortical surface. Consistent with other studies

(Kornysheva and Diedrichsen, 2014; Wiestler and Diedrichsen,

2013; Wiestler et al., 2014; Yokoi et al., 2018), sequences were

‘‘encoded’’ over the wide area the cortical surface, including pri-

mary motor cortex (M1), primary somatosensory cortex (S1), the

PMd, and areas around the IPS. The area also included the

SMA and pre-SMA, a small part of the rostral cingulate zone

(RCZ; Picard and Strick, 1996), the lateral PFC, and the
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Figure 4. Overall Sequence Encoding on the Flattened Cortical Surface

(A) Time course of a single trial in the fMRI session. Shown is a presentation of the visual cue (sequences I–VIII) was followed by two executions of that sequence.

(B) Searchlight approach. We extracted the activity patterns for small circular areas (�22mm in diameter) of the reconstructed cortical surface. The pre-whitened

activity patterns were then used to calculate the crossnobis distance (pattern separability) or used for model comparison (Figure 5). The resulting statistics were

then assigned back to the center node of the region.

(C) A group-averagedmap of the strength of sequence encoding (average pairwise crossnobis distance between sequences) plotted on a flattened cortical map.

Cing, cingulate sulcus; SFS, superior frontal sulcus; CS, central sulcus; PoCS, post-central sulcus; IPS, intraparietal sulcus.
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precuneus, although the signal from these areas was weak

compared with other areas such as the PMd or IPS (Kornysheva

and Diedrichsen, 2014; Wiestler and Diedrichsen, 2013; Wiestler

et al., 2014). Although some areas showed bilateral representa-

tions, they were consistently stronger in the left contra-lateral

hemisphere.

Model-Based Representational fMRI Analysis
Although Figure 4C tells us that we can decode sequence iden-

tity from the activation patterns in this area, it does not reveal

which specific representation contributed to the pattern differ-

ences. We therefore tessellated the area with significantly posi-

tive dissimilarities using a discrete set of surface patches and

looked in detail into the representational structure characterized

by the representational dissimilarity matrix (RDM; Diedrichsen

and Kriegeskorte, 2017) within each patch (Figure 5B).

Based on our behavioral results, we considered three levels

of sequence representation (sequence, chunk, and single

finger). At the highest level, we propose a sequence represen-

tation with a unique neuronal activity pattern for each of the 8
trained sequences. Because we assume that all sequences

are equally strongly encoded, such a representation would pre-

dict that all possible pairwise distance are equal. At the next

level, we have distinct neural activity patterns for each learned

chunk. A region with a pure chunk representation would there-

fore transition, during the sequence, through the four activity

states associated with the four chunks. The resultant RDM is

therefore predicted by how many chunks different sequences

have in common. For instance, sequences 1 and 2 consist of

the same chunks in a different order (Figure 2B) and are there-

fore predicted to elicit highly similar activity patterns. At the

lowest hierarchical level, we considered representations of sin-

gle fingers. Because all sequences consisted of exactly the

same presses arranged in a different order, a single-finger rep-

resentation should lead to identical activity patterns for all se-

quences. In a recent study, however, we found that the activity

pattern for a sequence is strongly determined by the first finger

(Yokoi et al., 2018). Therefore, this representation predicts that

sequences starting with the same finger should be very similar

to each other (Figure 5A).
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Figure 5. Fitting Candidate Representational

Models onto Data

(A) Candidate representational model components of

an example sequence (red numbers). Each circle rep-

resents a hypothetical neural population; the arrows

between the circles represent descending commands

to activate the units. Note that, for the single-finger

level, a unit for each single finger is shown multiple

times. Given the sequences used (Figure 2B), each

representational component predicts a unique struc-

ture of the RDM. S, sequence; C, chunk; F, first finger.

(B) Empirical RDMs for representative cortical re-

gions. We fitted various combinations of the candi-

date models to explain the observed representa-

tional structure at each cortical searchlight (Figures

4B and 4C).

(C) Group-level map of the strength of shared rep-

resentation (log-Bayes factor for the noise ceiling

versus the null model). LH, left hemisphere; RH, right

hemisphere. The other abbreviations are as in Fig-

ure 4C. The log-Bayes factor (logBF) map was

thresholded using a PXP of 0.75 (Rigoux et al., 2014;

Rosa et al., 2010; Stephan et al., 2009) and a logBF

of 1 (Kass and Raftery, 1995).
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We then estimated the contribution of each candidate repre-

sentational model to the observed activity patterns using

pattern component modeling (PCM; Diedrichsen et al., 2011,

2018). PCM is a powerful Bayesian approach to test combina-

tions of representational models (Diedrichsen and Kriege-

skorte, 2017). We evaluated the likelihood of the data in each

surface patch under each possible combination of the 3 candi-

date models. The relative weight of each model component

was fitted. Because different combination models had different

numbers of free parameters, we used ‘‘leave one subject out’’

cross-validation (Diedrichsen et al., 2018), fitting each model

to all participants except one, and then evaluated the likelihood

of the data from the left-out participant under the model

(see STAR Methods for more detail). Using the resultant

cross-validated (log) likelihood for each model, we could

compute a log-Bayes factor (Kass and Raftery, 1995), which

assesses how much more (or less) likely the observed data

are under the candidate model compared with the null model

(see STAR Methods).

Noise Ceiling Model
For a full model evaluation, however, it is not enough to know that

a specific model can explain the data better than chance. It is

also important to know how much of the systematic variation

in the data the model can explain. Before testing any candidate

models, we therefore fitted a fully flexible ‘‘noise ceiling’’ model.

A positive log-Bayes factor (logBF) for the noise ceiling model

(versus the null model) indicates that the structure of sequence

representation was consistent across individuals. The map (Fig-

ure 5C) clearly indicates that the representational structure of the
6 Neuron 103, 1–13, September 25, 2019
primary sensorimotor areas showed the

highest inter-individual consistency, fol-

lowed by parietal and frontal premotor

areas. Because this model can capture
any representational structure, it constitutes an estimate of

how well the true model should be able to predict the represen-

tational structure (Diedrichsen et al., 2018; Nili et al., 2014).

Single Finger Movement Representations
To examine the contribution of the 3 candidate model compo-

nents, we fitted all possible combination of components and

then determined the model-averaged log-Bayes factor as a

measure of evidence for the presence of each component in

the context of the others (STAR Methods).

Replicating our previous results (Yokoi et al., 2018), the

representational structure in M1 and S1 was almost fully deter-

mined by the first finger in each sequence. Themodel-averaged

log-Bayes factor (logBFc) revealed strong evidence of the first

finger component (Figure 6A). Within the significant patches

shown in Figure 6A, the average logBF for the first-finger model

was 1.33 ± 8.12 above the noise ceiling model in M1 and S1.

The protected exceedance probability (PXP), the posterior

probability that the noise ceiling was the better model than

the finger model for more than a half of subjects (see Statistical

Tests in the STARMethods), was 0.427, indicating that the first-

finger model could predict the left-out subject’s data equally

well with the noise ceiling model. This implies that the system-

atic representational structure in this region could be fully ex-

plained by this simple model. Because the first finger press

was executed with a similar force as all subsequent presses

(t11 = 0.394, p = 0.70), this indicates that the same movement

elicits more BOLD activity in M1 when it is executed in the

beginning rather than in the middle of a sequence (Yokoi

et al., 2018). This additional cost for sequence initiation is
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Figure 6. Elementary Movements Had Spatially Distinct Representation, whereas Chunk and Sequence Representations Are Spatially

Overlapping

(A–C) Group maps for the model-averaged log-Bayes factor (logBFc) for the first-finger model (A), chunk model (B), and sequence model (C). Each map was

thresholded with PXP > 0.75 and logBFc > 1.

(D) Overlap of the maps for the individual models.

(E) A Venn diagram summarizing spatial overlap between the representations. Numbers indicate the counts of significant surface patches.

(F and G) Scatterplots of group-averaged, model-averaged log-Bayes factors (logBFc) for first-finger versus sequence representation (F) and chunk

versus sequence representation (G). Dots represent cortical patches showing logBF > 1 for the noise-ceiling model and significant model-averaged evidence

(PXP > 0.75 and logBFc > 1) for the first-finger representation only (F), chunk representation only (C), chunk and sequence representations (C+S), and sequence

representation only (S).
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consistent with recent results from a serial reaction time task

that showed longer reaction times for the first movement in a

sequence (Wong et al., 2015).

We also found some positive evidence for the first-finger

model in some sub-cortical regions of interest (ROIs),

including the left caudate and the right putamen, although

the noise ceilings were generally low in these regions

(Figure S1).

Higher-Order Sequence Representations
In contrast to M1 and S1, the first-finger model did not provide

a good explanation for the representational structure in pre-

motor and parietal areas (Figure 6A). In these regions, we

found consistent evidence of both chunk and sequence repre-
sentations (Figures 6B and 6C). Evidence of chunk represen-

tation was present in the left PMd, PMv, and parietal cortex,

both dorsal and ventral to the IPS. The distribution of the

sequence representation was similar but extended further

anterior in the PMd and PMv and encompassed larger regions

in both the superior parietal lobule (SPL), inferior parietal

lobule (IPL), and precuneus. In these regions, the combination

of sequence and chunk models fit the data as well as or signif-

icantly better than the noise ceiling model: logBF (combination

model versus noise ceiling) = 2.56 ± 2.47, PXP = 0.954 for the

premotor cluster and logBF = 3.76 ± 4.81, PXP = 0.732 for the

parietal cluster.

Figure 6D shows the spatial overlap of the finger, chunk, and

sequence representation. Although the finger representation
Neuron 103, 1–13, September 25, 2019 7
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Figure 7. Model-Free Clustering of Cortical

Motor Sequence Representations

(A) Within each participant, the RDM for each

cortical patch was calculated. We then calcu-

lated a patch 3 patch correlation matrix be-

tween the RDMs, averaged the matrix across

participants, and submitted them to a clustering

approach.

(B) Resultant 10-cluster solution, mapped on the

cortical surface.

(C) A Marimekko chart showing the distribution

of different movement representations across

the cortical clusters. White number indicates

the number of significant cortical patches for

each representation. Cells without a super-

imposed number contained one significant

patch.

(D) A comparison between noise ceilings ob-

tained under motor-based labeling and visual

cue-based labeling for each cluster. The verti-

cal axis represents the logBF-ratio of noise

ceiling models (visual versus motor).
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was clearly separated, the chunk and sequence representa-

tions overlapped substantially. To quantify this observation,

we counted the cortical patches that showed evidence of

each component (PXP > 0.75, logBFc > 1; Figure 6E). Based

on the hypothesis that the first-finger and higher-order

sequence representations are independently distributed, we

would expect to find, on average, 4 patches with both repre-

sentations. In contrast to this prediction, we found none (likeli-

hood ratio test, G = 9.01, p = 0.0027). This indicates a clear

anatomical separation between the representation of individual

movements and sequential context. The separation was also

evident when plotting the component Bayes factors against

each other; cortical patches with significant first-finger repre-

sentation were clearly segregated from other patches (Figures

6F and 6G).

In contrast, sequence and chunk representations overlapped

considerably with 14 patches. Under the assumption of

independent representations, we would only have expected

3.26 patches, a highly significant deviation (G = 28.82, p =

7.96e�8). Thus, our results indicate a strong non-random over-

lap between sequence and chunk representations. Neverthe-

less, the mixed patches did not form one homogeneous group,

but some areas showed more sequence and other more chunk

representations. A Gaussian mixture model (STAR Methods)

with 2 components described the data better than a single
8 Neuron 103, 1–13, September 25, 2019
Gaussian, resulting in a logBF of 3.68

(strong evidence; Kass and Raf-

tery, 1995).

The result indicated that, unlike the indi-

vidual finger representation, chunk and

sequence representations overlap consid-

erably within the premotor and parietal

cortices (Figure 6D), suggesting that the

brain may not employ a strict hierarchy at

this level of the neural architecture

(Botvinick and Plaut, 2004). Although the
overlapwas clearly more than expected by chance, we also found

some evidence that some regions weremore heavily weighted for

one representation or the other.

Representational Clustering
One shortcoming of themodel-based approach is that it can only

detect representations that show a consistent representational

structure across participants. However, some regions showed

clear evidence of differences between the activity patterns for

the sequences within each subject (Figure 4) but low consistency

of the representational structure across subjects (Figure 5C).

This suggests that the sequences were represented in a way

that was unique to the individual.

To analyze these representations, we first sought to define

cortical regions that, within each subject, would show a rela-

tively uniform representational structure. Using a model-free

representational clustering approach, we first calculated the

similarity (or ‘‘connectivity’’) of the observed RDMs across

the cortical patches (Figure 7A). Because the similarity of

RDMs is individually defined, this approach allowed us to

group the areas with similar representational structure

together without requiring a consistent shape of the RDM

across participants.

The resultant clusters are shown in Figure 7B. The first cluster

(cluster 1) encompassed the left M1 and S1. In these areas, most
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cortical patches showed evidence of the first-finger representa-

tion (Figure 7C). In the premotor and parietal areas, the clustering

was able to reveal features that could not be captured by the

model-based approach alone. The approach showed that the re-

gions with clear positive evidence of the chunk or sequence rep-

resentation (Figure 6D) were sub-divided into several distinct

clusters. For example, cluster 3 encompassed both Brodmann

area (BA) 5 and caudal PMd, which had very similar representa-

tional structure (Figures 7B and 7C), consistent with the strong

anatomical connections shown between these areas (Kurata,

1991; Tomassini et al., 2007).

Cascade of Information Processing during Sequence
Production
In clusters 6–10, the inter-subject consistency was relatively

poor, as indicated by the relatively low noise ceilings (Figure 5C).

Although this may relate to idiosyncratic representations or stra-

tegies, it could also be driven by the perceptual similarity be-

tween the sequence cues; the associations between the visual

cues (I, . VIII) and the actual sequences were randomized

across participants.

To test this idea, we re-calculated the noise ceiling for each

cluster after re-aligning the conditions across participants in

terms of the visual cue rather than in terms of the physical

sequence. The result demonstrated that the representational

structure of clusters 9 and 10 was more consistent in ‘‘visual’’

than ‘‘motor’’ space (Figure 7D). As expected, cluster 1, encom-

passing M1 and S1, was located at the most ‘‘motor’’ position,

whereas the other clusters occupied reasonable positions that

suggest a mixture of motor and perceptual and/or symbolic rep-

resentations of the sequences. The result also allowed us to

directly infer that ‘‘sequence’’ representations located in

different clusters are likely to play different roles along the contin-

uum of the stimulus-to-output cascade (Figure 7D). Overall, the

results of the model-free clustering approach provided not only

a concise summary of the model-based result in terms of

spatially segregated clusters but also an additional characteriza-

tion of these clusters in terms of the stimulus-to-output cascade.

DISCUSSION

A Neural Hierarchy of Sequence Representations?
To produce a temporally ordered sequence of signals, the neural

system requires a representation of the sequential context; i.e.,

the neuronal state needs to be sufficiently different for movement

A when it is followed by B compared to when A is followed by C.

Similar neuronal states for movement A in these two contexts

would lead to ‘‘tangling’’ of the population response (Russo

et al., 2018) and would require substantial input to bring the

neuronal dynamics on the correct path. Consistent with our find-

ings, recent results (Russo et al., 2019) indicate that the neural

state in M1 shows high tangling on the level of movements,

whereas the SMA provides an untangled signal, where the

neuronal state for the same movement depends on the sequen-

tial context (Tanji and Shima, 1994).

It has been suggested that the brain develops an anatomically

ordered hierarchical representation of sequences. This idea

is predicated on the fact that different regions, based on
differences in their connectivity and intrinsic circuit properties,

learn temporal regularities on different timescales (Burt et al.,

2018; Hasson et al., 2015; Honey et al., 2007; Kiebel et al.,

2008). Basic sensory regions are thought to represent recent his-

tory on very short timescales, whereas increasing abstract asso-

ciation areas represent longer timescales (Chaudhuri et al., 2015;

Chen et al., 2015; Hasson et al., 2015; Lerner et al., 2011; Murray

et al., 2014). This idea provides an elegant explanation of the

clear separation of finger and chunk representations; the intrinsic

properties of M1 maybe ideally suited to represent individual

finger movements, which are executed within 400 ms. However,

it requires longer timescales of around 1 s to represent chunks of

movements, and only premotor and parietal areas may sustain

representations stably over this time.

Given the similar temporal relationship between fingers and

chunks (3-fold) and chunks and sequences (4-fold), this idea

would also have predicted a comparable anatomical separation

between chunk and sequence representations (Figure 1A). This,

however, was not the case. Unlike the drastic transition in the

representational contents from primary to non-primary sensori-

motor areas, we did not find a clear anatomical boundary be-

tween chunk and sequence representations. This is surprising,

considering that our task and training paradigm had an equally

clear structure across all three levels (i.e., finger, chunk, and

sequence). This overlap is consistent with the idea that multiple

levels of a hierarchy can be represented in a single homoge-

neous recurrent network (Botvinick and Plaut, 2004; Botvinick,

2007; Paine and Tani, 2005).

One advantage of such architecture is that it could, in contrast

to strictly hierarchical neural architectures, deal with tasks with

‘‘quasi-hierarchical structure’’ (Botvinick and Plaut, 2004), where

the detail of a lower-level abstract movement representation

(e.g., ‘‘add sugar’’) can change depending on the higher-level

representation (e.g., ‘‘make coffee’’ or ‘‘bake a cake’’) that re-

cruits it. A possible implementation of such context dependency

avoiding the redundancy of having many slightly different ver-

sions of the same representation would be to integrate the rep-

resentations of different levels (in our case, chunks and se-

quences) via gain-field encoding (Andersen et al., 1985;

Pouget and Sejnowski, 1997; Yokoi et al., 2011). This may

explain the substantial overlap between these two in the parietal

cluster 5 (Figure 7C).

At the same time, the clear dissociation betweenM1 and pre-

motor areas indicates that the nervous system sometimes

clearly separates representations on different levels of the hier-

archy. Our data strongly argue for a special distinction between

the representations of individual movements at the output level

and a representation of the sequential context independent of

timescale. An advantage of such a clear separation would be

that it ensures that the representation of past and future move-

ments cannot interfere with control of the currently ongoing

movement.

Parcellation of Neocortical Skill Representations
The strong overlap of chunk and sequence representations,

however, does not necessarily imply that all higher-order areas

play the same role. Our model-free clustering approach, com-

bined with relabeling analysis, suggested potential contributions
Neuron 103, 1–13, September 25, 2019 9
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of each of the representationally similar regions along the stim-

ulus-to-action gradient.

Cluster 10, encompassing visual regions along the transverse

occipital sulcus, showed the highest consistency after visual re-

labeling and therefore represents sequences most likely in the

form of the visual cue. Clusters 8 and 9 were less affected by re-

labeling, and we speculate that these clusters play a critical role

in translating the visual cue into specific sequence representa-

tions. Consistent with this interpretation, activation of these

areas has been reported to be related to sequence production

and/or learning (Honda et al., 1998; Petit et al., 1996; Sakai

et al., 1998) and episodic memory retrieval (Cavanna and Trim-

ble, 2006).

Cluster 6 only showed evidence of a more abstract represen-

tation of the sequences (Figure 7C), which would be consistent

with the previous electrophysiological finding that neurons in

the PFC fire at the initiation of specific sequences (Shima

et al., 2007).

The representations found in clusters 3, 4, and 5 suggest that

these premotor and parietal areas serve as intermediate layers in

the network of sequence production. In these areas, we found

substantial evidence of both sequence and chunk representa-

tions, with a large degree of overlap between the two. The pres-

ence of abstract movement representations in the IPL is consis-

tent with the fact that lesions in the left supramarginal gyrus can

cause apraxia (Haaland et al., 2000) and the presence of abstract

goal representations in the anterior IPL (Hamilton and Grafton,

2006). Cluster 4 consisted of a large complex of lateral and

medial premotor areas (rostral PMd, PMv, SMA, and pre-

SMA). Although the SMA and pre-SMA has been extensively dis-

cussed as a crucial region for sequence production (Shima and

Tanji, 1998; Tanji and Shima, 1994), we found no clear evidence

of chunk or sequence representations in this area. It may be that

movement representations in medial motor areas are spatially

more intermingled than movement representations in lateral re-

gions, making them harder to detect with multivariate fMRI.

According to the relabeling analysis, cluster 3was closer to the

output end of the stimulus-to-response gradient. The cluster in-

cludes both the left caudal PMd and bilateral BA 5, areas with

dense anatomical interconnections to both M1 and higher-level

areas (Kurata, 1991; Lu et al., 1994; Tomassini et al., 2007).

This is consistent with a critical role of the caudal PMd as a

bottleneck that transforms higher-order movement representa-

tions into activity that can directly drive the adjacent generating

circuit (M1) (Dum and Strick, 2005; Ohbayashi et al., 2003, 2016).

Advances over Previous Studies
Our study provides several important advances over previous

studies. Behaviorally, previous work has failed to cleanly discern

whether the consistent temporal regularities of sequential be-

haviors reflect a hierarchical organization (Sakai et al., 2003),

associative learning of transition statistics (Verwey and Abra-

hamse, 2012), or merely the biomechanical requirement at the

specific finger transitions (Jiménez, 2008). Our experimental

design with two groups of participants physically acquiring the

same sequences through two cognitive routes provides clear

behavioral evidence of chunking independent of the biomechan-

ical property of those sequences (Verwey and Dronkert, 1996).
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The follow-up experiment also provided evidence of the forma-

tion of a higher-order representation that facilitated transition be-

tween trained chunks within a known sequence. In contrast, the

associative learning of transition between fingers did not seem to

contribute to the pattern of responding.

Second, ourmodel-basedmultivariate fMRI approach allowed

direct assessment of sequence representations. Many prior uni-

variate studies on motor sequence learning have revealed expe-

rience-dependent activity changes in multiple cortical regions,

including the dorsolateral prefrontal cortex (DLPFC), M1, premo-

tor cortex (PM), SMA, IPS, and precuneus (Doyon et al., 2002;

Grafton et al., 1995; Honda et al., 1998; Kawashima et al.,

1998; Penhune and Steele, 2012; Sadato et al., 1996; Sakai

et al., 1998). A recent line of multivariate fMRI studies (Korny-

sheva and Diedrichsen, 2014; Nambu et al., 2015; Wiestler and

Diedrichsen, 2013) has provided direct evidence that these pre-

viously reported regions represent some information about mo-

tor sequences. The current study now characterizes these repre-

sentations in detail.

Finally, many existing methods for cortical parcellation rely on

correlations between time series across different brain regions,

mostly during rest (i.e., functional connectivity; Margulies et al.,

2016; Yeo et al., 2011). In contrast, our model-free clustering

approach is unique in using similarity between representational

structures. The specific advantage of the current task-based

representational parcellation approach is that the identified re-

gions show a relatively homogeneous representation that can

then be analyzed using model-based representational fMRI ap-

proaches to draw better inference about the functional role for

each network or cluster.

Limitations and Open Issues
Our study was restricted to analysis of neocortical representa-

tion, and we did not address how sequences are represented

in sub-cortical structures (Doyon et al., 2002; Graybiel, 1998;

Graybiel and Grafton, 2015; Wymbs et al., 2012). Although we

found some evidence of sequence representations in subcortical

ROIs (Figure S1), conclusions of the model-based analyses here

are limited because of the relatively low signal-to-noise ratio.

Another important limitation of the current study is that training

was limited to 1 week. Thus, it should be noted that the cortical

map of sequence representations presented in the current study

is one snapshot in the dynamic process of skill acquisition, and

extended training may provide a different map. Specifically,

longer training may lead to emergence of a sequence represen-

tation in M1 and S1. Although we found no evidence of such a

representation after a week of training, animal studies with

training ofmore than 6months report sequence-related neuronal

activity in M1 (Matsuzaka et al., 2007; Picard et al., 2013). One

caveat is, however, that these studies focus on the difference

in neuronal firing associated with a certain action between

trained and untrained sequential contexts, which is insufficient

to conclude that sequences are truly encoded in M1 (see

‘Testing for a Neural Hierarchy of Sequence Production). None-

theless, a recent human fMRI study using repetition suppression

also suggests that sequence representation in M1 may emerge

slowly over a month of training (Wymbs and Grafton, 2015).

Therefore, the next important challenge is to use the multivariate
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approach introduced here to understand how these representa-

tions are formed and reorganized over the course of prolonged

training (Berlot et al., 2017).
Summary and Conclusion
Is there an anatomical hierarchy of motor sequence representa-

tions in the human neocortex? Our data provide evidence that

each level of the behavioral movement hierarchy is represented.

However, although we found a clear anatomical separation of in-

dividual movements, higher-order sequence representations

were represented in an intermingled fashion. These finding argue

for a special status of execution-level representations as

opposed to representations of the sequential context, indepen-

dent of timescale or level of abstraction.
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Sadato, N., Campbell, G., Ibáñez, V., Deiber, M., and Hallett, M. (1996).

Complexity affects regional cerebral blood flow change during sequential

finger movements. J. Neurosci. 16, 2691–2700.

Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Sasaki, Y., and P€utz, B.

(1998). Transition of brain activation from frontal to parietal areas in visuomotor

sequence learning. J. Neurosci. 18, 1827–1840.

Sakai, K., Kitaguchi, K., and Hikosaka, O. (2003). Chunking during human vi-

suomotor sequence learning. Exp. Brain Res. 152, 229–242.

Shen, S.M., and Ma, W.J. (2019). Variable precision in visual perception.

Psychol. Rev. 126, 89–132.

Shima, K., and Tanji, J. (1998). Both supplementary and presupplementary

motor areas are crucial for the temporal organization of multiple movements.

J. Neurophysiol. 80, 3247–3260.

Shima, K., Isoda, M., Mushiake, H., and Tanji, J. (2007). Categorization of be-

havioural sequences in the prefrontal cortex. Nature 445, 315–318.

Sokal, R.R., and Rohlf, F.J. (1995). Biometry: The Principles and Practice of

Statistics in Biological Research (W. H. Freeman).

Stadler, M.A. (1992). Statistical Structure and implicit serial learning. J. Exp.

Psychol. Learn. Mem. Cogn. 18, 318–327.

Stephan, K.E., Penny, W.D., Daunizeau, J., Moran, R.J., and Friston, K.J.

(2009). Bayesian model selection for group studies. Neuroimage 46,

1004–1017.

Tanji, J., and Shima, K. (1994). Role for supplementary motor area cells in plan-

ning several movements ahead. Nature 371, 413–416.

Tomassini, V., Jbabdi, S., Klein, J.C., Behrens, T.E.J., Pozzilli, C., Matthews,

P.M., Rushworth, M.F.S., and Johansen-Berg, H. (2007). Diffusion-weighted

imaging tractography-based parcellation of the human lateral premotor cortex
identifies dorsal and ventral subregions with anatomical and functional spe-

cializations. J. Neurosci. 27, 10259–10269.

Verwey,W.B., and Abrahamse, E.L. (2012). Distinct modes of executingmove-

ment sequences: reacting, associating, and chunking. Acta Psychol. (Amst.)

140, 274–282.

Verwey,W.B., and Dronkert, Y. (1996). Practicing a structured continuous key-

pressing task: Motor chunking or rhythm consolidation? J. Mot. Behav.

28, 71–79.

Verwey,W.B., Abrahamse, E.L., and de Kleine, E. (2010). Cognitive processing

in new and practiced discrete keying sequences. Front. Psychol. 1, 32.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Stat. Comput. 17,

395–416.

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., and Diedrichsen, J.

(2016). Reliability of dissimilarity measures for multi-voxel pattern analysis.

Neuroimage 137, 188–200.

Wiestler, T., and Diedrichsen, J. (2013). Skill learning strengthens cortical rep-

resentations of motor sequences. eLife 2, e00801.

Wiestler, T., Waters-Metenier, S., and Diedrichsen, J. (2014). Effector-inde-

pendent motor sequence representations exist in extrinsic and intrinsic refer-

ence frames. J. Neurosci. 34, 5054–5064.

Wong, A.L., Lindquist, M.A., Haith, A.M., and Krakauer, J.W. (2015). Explicit

knowledge enhances motor vigor and performance: motivation versus prac-

tice in sequence tasks. J. Neurophysiol. 114, 219–232.

Wymbs, N.F., and Grafton, S.T. (2015). The Human Motor System Supports

Sequence-Specific Representations over Multiple Training-Dependent

Timescales. Cereb. Cortex 25, 4213–4225.

Wymbs, N.F., Bassett, D.S., Mucha, P.J., Porter, M.A., and Grafton, S.T.

(2012). Differential recruitment of the sensorimotor putamen and frontoparietal

cortex during motor chunking in humans. Neuron 74, 936–946.

Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D.,

Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., et al.

(2011). The organization of the human cerebral cortex estimated by intrinsic

functional connectivity. J. Neurophysiol. 106, 1125–1165.

Yokoi, A., Hirashima, M., and Nozaki, D. (2011). Gain field encoding of the ki-

nematics of both arms in the internal model enables flexible bimanual action.

J. Neurosci. 31, 17058–17068.

Yokoi, A., Bai, W., and Diedrichsen, J. (2017). Restricted transfer of learning

between unimanual and bimanual finger sequences. J. Neurophysiol. 117,

1043–1051.

Yokoi, A., Arbuckle, S.A., and Diedrichsen, J. (2018). The Role of Human

Primary Motor Cortex in the Production of Skilled Finger Sequences.

J. Neurosci. 38, 1430–1442.
Neuron 103, 1–13, September 25, 2019 13

http://refhub.elsevier.com/S0896-6273(19)30567-7/sref70
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref70
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref71
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref71
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref72
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref72
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref72
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref73
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref73
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref73
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref73
https://doi.org/10.1101/650002
https://doi.org/10.1101/650002
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref75
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref75
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref75
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref76
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref76
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref76
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref76
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref77
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref77
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref78
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref78
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref79
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref79
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref79
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref80
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref80
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref81
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref81
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref82
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref82
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref83
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref83
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref83
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref84
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref84
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref85
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref85
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref85
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref85
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref85
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref86
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref86
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref86
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref87
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref87
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref87
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref88
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref88
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref89
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref89
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref90
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref90
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref90
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref91
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref91
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref92
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref92
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref92
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref93
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref93
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref93
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref94
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref94
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref94
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref95
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref95
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref95
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref96
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref96
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref96
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref96
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref97
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref97
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref97
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref98
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref98
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref98
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref99
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref99
http://refhub.elsevier.com/S0896-6273(19)30567-7/sref99


Please cite this article in press as: Yokoi and Diedrichsen, Neural Organization of Hierarchical Motor Sequence Representations in the Human
Neocortex, Neuron (2019), https://doi.org/10.1016/j.neuron.2019.06.017
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB R2015b Mathworks https://www.mathworks.com

SPM 8 FIL Method group https://www.fil.ion.ucl.ac.uk/spm

SPM 12 FIL Method group https://www.fil.ion.ucl.ac.uk/spm

PCM toolbox Diedrichsen et al., 2018 https://github.com/jdiedrichsen/

pcm_toolbox; RRID:SCR_015891

RSA toolbox RSA group https://github.com/rsagroup/rsatoolbox

Dataframe toolbox Jörn Diedrichsen https://github.com/jdiedrichsen/dataframe

Freesurfer Martinos Center for Biomedical Imaging https://surfer.nmr.mgh.harvard.edu/

FSL FMRIB Analysis Group https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

Caret Van Essen Laboratory (Department of

Anatomy and Neurobiology at the

Washington University School of Medicine)

http://brainvis.wustl.edu/wiki/index.php/

Caret:About

Other

MATLAB code for reproducing all figures

and related data

This paper https://github.com/ayokoi/sh1
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Atsushi Yokoi

(ayokoi@nict.go.jp).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
All experimental procedures were approved by local ethics committee at the University College London (London, UK). We recruited

23 healthy, right-handed, neurologically healthy volunteers, who participated in the study after providing written informed consent.

None of the participants was a professional musician. Of these, 8 participants were excluded, as they did not meet the performance

criterion necessary to go on to the imaging and follow-up sessions. The remaining 15 participants went through the imaging session,

and the subsequent follow-up session. Of these 15 remaining participants, the data from 3 participants were excluded, as they failed

to achieve sufficient behavioral performance during scanning (57%correct versus 81%correct for all other subjects). As a result, only

the data from the remaining 12 participants (5 females, 7 males, age: 23 ± 4) was submitted to analysis. These participants reported

5.8 ± 3.8 years of practice with musical instruments (e.g., piano, guitar, violin, etc.).

METHOD DETAILS

Apparatus
Weused a custom-built five-finger keyboard device (Figure 2A). The keys of the device were immobile and equippedwith force trans-

ducers that could measure isometric finger forces (Wiestler and Diedrichsen, 2013; Yokoi et al., 2017). The analog signals were

passed through a penetration panel in the magnet room to avoid radio-frequency leakage. The signals were then low-pass filtered,

amplified, digitized, and sent to PC for online task control and data recording. The forces were recorded at 200 Hz. During the training

sessions, the participants were seated in front of an LCDmonitor and placed only their right hand on the keyboard to perform the task,

while in the scanner the fingers of their left hand were placed on a mirror-symmetric device to monitor potential implicit mirror move-

ment (Diedrichsen et al., 2013).

Procedure
Sequences production task

We employed a discrete sequence production (DSP) task, in which participants were asked to produce a specific sequence of key

presses as fast and accurate as possible. Over the course of 5-6 days (�2 hours per each day), participants learned to produce 8
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different sequences consisting of 11 presses from thememory as quickly as possible. All the sequences werematchedwith the num-

ber of finger presses used; 2 presses with thumb,middle, ring, and little fingers, and 3 presses with index finger, respectively. A finger

press was detected when the force crossed a threshold of 3 N and a release was detected when it fell below the threshold. To suc-

cessfully complete a finger press, the pressed finger needed to be pressed, while all other finger needed to be released. In the display,

either 11 digits or asterisks representing the finger presses were presented on the screen, as well as other visual cues related to the

sequences (Figure 2C). Each correct/incorrect press was informed by turning corresponding digit (or asterisk) into green/red. The

participants were rewarded by points for their speed and accuracy (see Behavioral training). After completion of each experimental

block, the average movement time (MT; the time between the beginning of the first press and the end of the last press) for the correct

trials, the earned points, and the error rate, were presented on the screen.

During the imaging task, a central fixation cross was presented. Each trial started with a 2.5 s of the presentation of a visual cue

(roman numerals I-VIII) that indicated the sequence to be executed. The cue presentation was followed by 0.5 s of interval. Then, the

fixation cross turned green, and 11 asterisks were presented, triggering the subject to produce the sequence (Figure 4A). For each

correct press the corresponding asterisks turned green - for each incorrect press red. Participants were instructed to complete the

sequence even if an error has occurred. After each execution, feedback was given (during the ITI) by the color of fixation cross

(white: correct, red: one or more presses were incorrect, and blue: unfinished, but presses were correct).

Behavioral training

In order to ensure consistent and stable chunk structure across individuals, we deliberately imposed chunk structure bymanipulating

how the participants build up their explicit memory of the sequences. In brief, we initially trained the participants with single ‘‘chunks’’

(Figure 2B) until they could produce these chunks from memory, and then trained them with sequences that consisted of these

chunks. Eight different chunks of 2 or 3 presses (cued by alphabets) were organized into 8 different sequences, every one of which

consists of combination of 4 chunks (Figure 2B). The associations between chunks and chunk cues (A, B, �, H), and between se-

quences and sequence cues (I, II, �, VIII) were randomized across participants. To dissociate the influence of the explicit training

from subsequent biomechanical optimization of the sequence, we assigned participants randomly to one of two groups, which

were trained with different set of chunks. Five sequences were physically identical across the two groups (i.e., the same order of

finger presses chunked differently, Figure 2B). The sequences were designed to maximize the difference in the prediction of the

different representational models (see Multivariate fMRI analysis: Model-based approach).

Training consisted of 5 days before the imaging session (Figure 2C). On day 1 and early blocks of day 2, subjects were specifically

trainedwith individual chunks.We alternated cued trials in which the chunk cue (A-H) was presented together with the required digits,

and uncued trials where only the chunk cue was presented (Figure 2C). In each block, each chunk type was repeated for three times.

Participants received a total of 720 trials of chunk training. Starting on day 2, participants practiced entire movement sequences. On

cued trials, the sequence cue (I-VIII) and chunk cues were presented (Figure 2C), but no longer with finger cues. On uncued trials,

participants needed to retrieve the entire sequence from memory. In each block, each sequence type was repeated for three times.

They received a total of 1512 trials of sequence training.

On the fifth day of the training session, after the practice session, the participants practiced the task in a supine position on amock

MRI scanner bed. For the half of the participants, we added the 6th day of additional familiarization session to ensure that they could

correctly produce the sequences within 4 s. They were familiarizedwith the actual task in the scanner during on average 10 ± 8 blocks

of the familiarization session.

To keep motivation, the participants were rewarded by points for their performance in the following way. Participants earned 1

point for each correct completion of a chunk. When all the presses were correct, they earned additional points according to their

MT compared with the median MT of the previous block (mMT); 3 points (MT < 0.83 mMT), 1 point (otherwise). For each session,

the median MT (mMT) was initialized with [#press] 3 600 (ms). Participants lost 1 point when any one of the presses was incorrect.

Therefore, at each trial, they could earn maximally 7 points ( = 1+1+1+1+3). At the end of each trial, an incremental value of the points

for the block was displayed on the screen. The acquired points were later translated into additional monetary reward at the end of the

whole experiment (1000 points = 1£). Points were not added for the familiarization session. For the follow-up session (see below),

points were considered only for presses. This additional ‘‘bonus’’ was paid for only those who completed the whole experiment,

including the follow-up session.

Follow-up session

To confirm that the cognitively imposed chunk structures actually influenced participants’ motor representations, we conducted a

follow-up session within 1 week after the imaging session (1 ± 0.6 days). In the session, all the digits were presented on the screen

to release the participants from the necessity to recall any sequence from memory (Figure 3A). No sequence cues were provided.

Additionally, we assessed the generalization of learned chunks to unlearned sequences by additionally introducing 3 new sets of se-

quences (Figure 3D): New: completely novel sequences which did not contain any of the trained chunks; Chunk: sequences

composed of trained chunks in untrained order; and Chunk + New: novel sequences that contained two learned chunks at random

positions in the sequence. Each category except for Chunk, which had 16 different sequences, had 8 different sequences, resulting in

totally 40 sequences. Sequences were executed 4 times in a row. The order of sequences was randomized and all sequences were

repeated for 4 times (16 executions per a sequence). The resultant 640 executions were divided into 16 blocks. Two participants

received slightly different protocol with Trained, Chunk, and New sequences.
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Imaging session

During the imaging session, the participants were placed on the scanner bed with their knees slightly bent and supported by a

wedge-shaped cushion. The two keyboards were tied together with plastic screws and stabilized on the participants’ lap with

foam pads. Visual stimuli were presented on a back-projecting screen, and participants viewed the screen through the mirror

mounted above the head coil. The presentation of the sequence cue (2.5 s), was followed by two execution phases for the same

sequence (4 s for each). After this, the next trial started after an ITI of 0.5 s (Figure 4A). The order of 8 sequences was randomized

and each sequence had 3 trials (with 2 executions each) within each functional imaging run. Each run also contained 4 randomly inter-

spersed rest phases (12 s). The number of correct trials for the run was presented in the screen at the end of the run. Each functional

run lasted about 7 min and 9 runs per participant were conducted. Short breaks (up to a few minutes) were interleaved on the par-

ticipants’ request.

Imaging data acquisition

Imaging sessions were conducted on a Siemens Trio 3T scanner systemwith a 32-channel head coil at theWelcome Trust Centre for

Neuroimaging (London, United Kingdom). B0-fieldmapswere acquired at the beginning of the session to correct for inhomogeneities

of the magnetic field (Hutton et al., 2002). Functional images were acquired for 9 runs of 135 volumes each, using a 2-D echo-planer

imaging sequence (TR = 2.72 s, in-plane acceleration factor = 2, resolution = 2.3mm isotropic with 0.3 mm gap between each slice,

and 32 slices interleaved). The slices were acquired in an axial orientation and covered the dorsal aspects of the brain, includingmost

of the frontal, parietal, occipital lobes, and basal ganglia. The ventral aspects of the frontal and temporal lobes, brainstem, and the

cerebellum were not scanned. The first 5 volumes of each run were discarded to ensure stable magnetization. A T1-weighted

anatomical image was obtained using MPRAGE sequence (1mm isotropic resolution).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data Analysis
Recorded force data were analyzed offline. The inter-press-intervals (IPIs) were calculated as the time between the moments of peak

force for two consecutive finger presses (Figure 2A). We obtained similar result when IPIs were calculated as based on the time of

press onset.

Linear IPI modeling

To assess the contribution of imposed chunk structure and other effects, we ran a linear regression analysis on the IPI data of the

follow-up session.We treated the individual IPIs for all trials as a single data vector. We then built linearmodels to explain the variation

in the IPIs. These models consisted of all possible combinations of the following components: 1) chunk: whether the IPI was within a

chunk (coded as �1) or not (0); 2) sequence: whether the between-chunk transition was trained (�1) or not (0); 3) transition: the fre-

quency of each specific digit transition (25 total) in training, the sign of the regressor was negative, so that higher frequencies would

predict lower IPIs; 4) explicit knowledge (Verwey et al., 2010): whether the interval belonged to trained sequence (�1) or not (0); 5)

biomechanical difficulty: the mean IPI of that particular finger transition in a control experiment that tested for the execution speed

of all possible 2- and 3-finger transitions, as will be reported in a separate paper, and 6) post-error slowing (Botvinick et al., 2001):

whether the proceeding press was incorrect (1) or correct (0). All models also included an intercept. Importantly, the effect of explicit

knowledge (4) was modeled to dissociate non-representational account of performance gain, such as increased movement vigor for

familiar sequences (Wong et al., 2015).

For each model (m), we calculated cross-validated log-likelihood ðlog Lcv
m Þ from the sum of squared errors. As each trial in the

follow-up session hadN repetitive executions per one sequence-type (5 times for 2 participants, and 4 for the remaining participants),

we fitted a model using IPIs from N-1 executions and then tested the model with the left-out IPI data. We further applied Bayesian

model-averaging to estimate regression weight and corresponding contribution of each model component taking the presence of all

other components into account.

The regression coefficients for the models were averaged by using the following variant of Akaike-weight:

wm =
exp

�
log Lcv

m

�P
exp

�
log Lcv

i

�;
where wm is the Akaike-weight for the modelm, and log Lcv

m the cross-validated log-likelihood: We obtained similar results by using

the AIC (Akaike information criterion) instead of cross-validated log-likelihood to control for model complexity. Model averaging re-

sults in better prediction accuracy than using the best model alone (Burnham and Anderson, 2004). For parameter averaging, the

regression weights were treated as zero when a model combination did not contain those terms.

The evidence for the presence of each model component was estimated from the cross-validated model evidence ðlog Lcv
m Þ of all

possible model combination. The log-Bayes factor for each model component ðlogBFcÞ was calculated as the log of the ratio be-

tween averaged likelihood for the models that contained the component (c = 1) versus the averaged likelihood for the models that

did not (c = 0) (Burnham and Anderson, 2004; Shen and Ma, 2019)
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logBFc = log
1

Nm:c= 1

P
m:c= 1exp

�
log Lcv

m

�
1

Nm:c= 0

P
m:c= 0exp

�
log Lcv

m

�;
where Nm:c = 1 (Nm:c = 0) denotes the number of models (not) containing the component.

Imaging data analysis
Preprocessing and first-level model

Functional imaging data were pre-processed using SPM 8 (https://www.fil.ion.ucl.ac.uk/spm/). Functional images were first slice-

time-corrected, motion corrected, and then co-registered to the individual anatomical image. We also corrected for B0 inhomoge-

neity by using field map images when correcting the head motion. The data were then submitted to a 1st-level GLM to estimate the

size of the evoked activity for each sequence in each run. We used the standard high-pass filtering with a cut-off frequency of 128 s

before GLM estimation. We applied robust-weighted least square estimation (Diedrichsen and Shadmehr, 2005) to reduce the effect

of any motion-induced artifact.

Each trial wasmodeled as a boxcar function, starting at the presentation of the go-cuewith a length of 7.5 s for each execution. The

boxcar function was then convolved with a standard hemodynamic response function. In the GLM used for subsequent analysis we

included the activity of both correct and incorrect trials in the analysis. This was justified by two reasons. First, even if participants

made a mistake, they were instructed to complete the sequence. This often happened automatically, as a substantial number of

errors arose from omissions, in which the participants did not apply enough force to have the press registered. Second, given

that each trial consisted of two executions of the sequences, many trials consisted of a correct and incorrect execution. Given

the low temporal resolution of fMRI, we had little power to resolve this. An alternative analysis in which we excluded error trials

from the activity estimation yielded similar, albeit noisier results.

Surface-based analyses

Our primary focus of analysis was cortical surface. We first reconstructed individual cortical surfaces (i.e., the pial and white-gray

matter surfaces) from the anatomical image by using Freesurfer software (Fischl et al., 1999). The reconstructed cortical surfaces

were then registered to a common symmetrical template (‘‘fsaverage_sym’’) (Greve et al., 2013). Subsequently, we defined the sur-

face-based searchlight (Oosterhof et al., 2011) as small circular patches that contains 160 voxels (approximately 11 mm radius) cen-

terd on each node which was defined on the reconstructed cortical surface. The activity patterns of these 160 voxels for each center

were submitted to the multivariate analysis, and the result from each searchlight was re-assigned to the center (see Multivariate fMRI

analyses: Overview). The overall result was then used to restrict the regions of interest for further analysis.

For detailed testing of representational models, we defined a discrete searchlight parcellation. In contrast to the continuous

searchlight map, we aimed to define a reduced set of surface patches. This was done for computational efficiency for model testing,

as well as for the model-free clustering approach. The centers of these patches were selected within the regions in which the contin-

uous searchlight analysis showed an average pattern distance across the sequence conditions greater than 0.03 (Figure 4C). Within

this region, we defined hexagonally-arranged patch centers on the flattened cortical surface coordinate for both hemispheres (using

a 7 mm of spacing). Each patch contained 150 voxels. This definition resulted in 465 (302 for the left hemisphere) partly overlapping

patches on the cortical surface.

Multivariate fMRI analyses: Overview

For each of the defined searchlight, the beta-weights for each sequence type for each imaging run were extracted. The resultant

beta-weights across voxels were then spatially pre-whitened by using multivariate noise-normalization with a regularized estimate

of the spatial noise-covariance matrix (Walther et al., 2016). As a result, the activity estimates across voxels became approximately

uncorrelated with respect to the noise (Diedrichsen and Kriegeskorte, 2017). We first took an RSA-approach to restrict the regions

where the sequences are encoded. We then applied PCM to the regions with substantial sequence encoding to assess detailed con-

tent of sequence encoding.

The key quantity for both of these representational analysis techniques is the second moment (G) of the patterns for the se-

quences. The second-moment matrix is a covariance matrix, where the mean activity for each condition (across voxels) is not sub-

tracted out (Diedrichsen and Kriegeskorte, 2017; Diedrichsen et al., 2018). Thus, when two patterns for sequence i and sequence j

are similar to each other, the corresponding i,jth element ofG has a high value. For RSA, we computed the cross-validated estimate

ofG and derived from this cross-validated pattern distances. For PCM, we explicitly modeled the structure ofG and then evaluated

the likelihood of the data under these different models.

Overall sequence encoding:

Todefine the cortical regionwhich reliably encodedifferent sequences,weassessed thediscriminability of the elicited activity patterns

on the surface-based searchlight. For this purpose, we first calculated a cross-validated estimate of the secondmoment matrixG as,

bG =
1

M

XM
m= 1

bUm
bUT

�m

,
P;

where M is the total number of imaging runs, P is the number of voxels within a searchlight, bUm is estimated pre-whitened activity

pattern for the m-th imaging run, and bU�m is the estimate of the pattern independent of the m-th imaging run. Both of bUm and
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bU�m have size of 83 P. We then computed a cross-validated distance estimate from bG. The squared cross-validated Mahalanobis

distance estimator (crossnobis for short; Diedrichsen et al., 2016), between activity estimates for sequence 1, bu1, and for sequence 2,bu2, can be calculated as,

bd2

1;2 = bG1;1 � 2bG1;2 + bG2;2;

where bG i;j is the i,jth element of bG. We calculated the mean of all pairwise crossnobis distance estimators across the sequences at

each searchlight (Figure 5). The crossnobis estimator is unbiased –meaning it can be used to directly test whether a distance is larger

than zero. Finding consistently positive distance estimates therefor implies that the two condition activity patterns differ from each

other more than expected by chance.

Multivariate fMRI analyses: Model-based approach

The above analysis is sensitive to any possible differences between the patterns associated with the different sequences. To dissect

different forms of sequence representation, we used pattern component modeling (PCM, RRID:SCR_015891) that allows to model

the covariance structure (second moment matrix) across the activity patterns according to different representational hypotheses

(Diedrichsen and Kriegeskorte, 2017; Diedrichsen et al., 2011, 2018; Yokoi et al., 2018). For our experiment, we defined the following

five representational model components, including a null-model which predicts no difference across the sequences.

Sequence model

This model component assumes that each sequence is associated with unique activity pattern with common variance,

U=MseqUseq;

where the weighting matrix Mseq is an identity matrix (i.e., Mseq = I8) and the pattern Useq is uncorrelated (i.e., UseqU
T
seq = s2seqI8).

Therefore, the predicted second moment matrix has the simple form of,

Gseq = s2
seqI:

Chunk model

The chunk model assumes that the activity for each sequence is a combination of activities associated with the chunks it contains,

U=MchunkUchunk ;

where the weighting matrix Mchunk specifies the membership of chunks used in each sequence (e.g., M1
chunk = ½1;1;1;1; 0; 0;0;0�,

Figure 1b), and the pattern Uchunk is also assumed to be uncorrelated (i.e., UchunkU
T
chunk = s2chunk I8). Therefore, the predicted second

moment matrix has the specific form that reflects the composition of sequences in terms of chunks,

Gseq = s2
chunkMchunkM

T
chunk :

1st-finger model

We have previously shown that differences in the sequence-specific activity pattern of M1 and S1 can we well explained by the fact

that the first finger press shows a particularly strong activation compared to the subsequent finger presses (Yokoi et al., 2018).

Because each sequence contained each finger equally often (and because the peak force of all finger presses was approximately

the same), we can assume that the only thing that would differentiate these sequences in a region that only encodes single-finger

movements, is which finger starts the sequence. The first-finger model therefore characterizes the part of the activity pattern that

is different between sequences as a scaled version of the pattern associated with the first finger,

U=M1fUsf ;

where the 83 5weightingmatrixM1f has a scaler s1f at the column corresponds to the starting finger of each sequence (row), and the

Usf is the activity patterns associated with single finger presses. As we did not measure the single finger activity Usf for the current

experiment, we utilized the fact that the secondmoment of single finger patternsGsf in M1 and S1 is well-characterized by the natural

statistics of hand usage (Ejaz et al., 2015). The predicted second moment matrix is therefore,

G1f = M1f

�
UsfU

T
sf

�
MT

1f =M1fGsfM
T
1f =M1fGnsM

T
1f ;

whereGns is a secondmoment matrix predicted from the natural statistic of handmovement (Ejaz et al., 2015). ReplacingGns with the

second moment matrices for single finger representation that was derived from an independent experiment (Yokoi et al., 2018) did

not affect the results. The second moment matrix predicted by this model therefore reflects which sequences share the first finger,

and how similar the respective finger representations are to each other.

Null-model

As a baseline to evaluate each model, we defined a null-model that hypothesized no difference between any of the sequence pat-

terns. For this, the hypothesized second moment matrix was

G0 = 08;

where 08 is a 83 8 matrix whose elements are all 0.
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Noise-ceiling model

In addition to the abovemodels, we also fitted a ‘‘noise-ceiling’’ model to assess themaximally explainable information shared across

individual. Here, we used a naive noise-ceiling model (Diedrichsen et al., 2018; Nili et al., 2014) that uses the empirical, cross-vali-

dated estimate of the second moment matrix as the predicted second moment matrix;

GNC = bG:

Because it simply uses empirical mean of the observed representational structure (i.e., second moment matrix) over subjects as a

model, the resultant cross-validated log-likelihood value approximates the best-achievable performance by any of the models,

serving as a positive control. Therefore, significant advantage of the noise-ceiling model over the best model considered indicates

the existence of better models. We fitted this noise-ceiling model separately for the two groups, as these groups of participants prac-

ticed partly different set of sequences with different chunking structure. We then combined the evidence for both groups for

evaluation.

Model design

The prediction of each model was determined for each group separately, as they differed in both sequences and chunks. Because

the two groups had 5 sequences that were identical, but were chunked differently, difference in the representational structure across

these shared sequences could be specifically attributed to the difference at the level of the chunk representation.

Importantly, the activity estimates for each trial contained trials that either contained an error, or were not completed (see Prepro-

cessing and first-level modeling). We included these trials, because even for these incorrect trials, most of the sequence was pro-

duced correctly. To account for the fact that the beginning of the sequence was more often executed than the end of the sequence,

we weighted each element of the representation (e.g., the first, second, third and fourth chunks or the first to tenth transitions) by the

relative %-correct with which this element was produced. For example, the %-correct of chunks were on average 96, 94, 86, and

82%, hence each chunk element in the PCMmodel was weighted accordingly, which slightly changed the structure of corresponding

weighting matrix.

Model evaluation

First, we fitted all possible combinations of the candidatemodels (i.e., first-finger, chunk, and entire sequencemodels). As each of the

combination models had different number of free parameters, i.e., combination weights, we evaluated the models using leave-one-

subject-out cross-validation to prevent overfitting (Diedrichsen et al., 2018). Because the combination weights should be the same

for the same cortical patch across the two groups of participants with different chunking structures, they were constrained to be the

same across the two groups. We then used the resultant cross-validated log-likelihood ðlog Lcv
m Þ for each modelm as an estimate of

the model evidence. Superiority of one model (e.g., some model combination) over the other (e.g., null or noise-ceiling model) was

evaluated by directly comparing model evidence ðlog Lcv
m Þ between the two models as;

logBFAB = log
Lcv

A

Lcv
B

= log Lcv
A � log Lcv

B ;

where logBFAB represents the log of Bayes factor (BF; Kass and Raftery, 1995) of model A over model B. The evidence for each of the

model components (i.e., first-finger, chunk, and sequence) in the context of other components ðlogBFcÞ was calculated using

Bayesian model-averaging in the same manner described in behavioral data analysis (see Linear IPI modeling).

Model-based representational fMRI analysis for sub-cortical ROIs

Weapplied the samemodel-based analysis described above on selected sub-cortical ROIs, which included caudate nucleus, globus

pallidum, putamen, and thalamus bilaterally. The ventral aspects the brainstem and the cerebellum were not included in our imaging

volumes (see Imaging data acquisition). These sub-cortical ROIs were segmented by using FSL FIRST algorithm (Patenaude et al.,

2011), and then transformed into individual space. It should be noted that the spatial resolution of the current study (2.3mm isotropic)

may not be optimal for applying MVPA to these structures, as indicated by the relatively weak sensitivity of our result (Figure S1).

Multivariate fMRI analyses: Model-free clustering

As a complement of our model-based approach, we also applied a model-free clustering of cortical surface regions based on their

representational structure. As an input data, we calculated the crossnobis distance estimator (see Multivariate fMRI analysis: Over-

view) for all 28 sequence pairs for each surface patch. The input data for clustering was a N-by-28 matrix, where N is the number of

surface patches. We calculated anN-by-N similarity matrix across the patches for each participant by first calculating the correlation

distance d = (1-r) between the representational structures. We chose the correlation distance in order to emphasize the profiles of the

crossnobis distances, rather than their magnitude, which is determined by the signal-to-noise ratio in the region. The resultant cor-

relation distances were then transformed into similarity using a Gaussian similarity transformation;

w= exp

�
� d2

2s2

�
;

where w is the similarity, d the correlation distance, and s the width of Gaussian. The width was determined individually as the lower

5-percentile value of the correlation distances. We then applied the spectral clustering algorithm (Von Luxburg, 2007) to the group-

averaged-similarity matrix with Jordan-Weiss normalization (Ng et al., 2002).
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Statistical tests
All the statistical analyses were performed on MATLAB R2015b (Mathworks, Inc.). We set the significance level to p = 0.05. When a

test involved multiple comparisons (i.e., Figure 3E), it was divided by the number of comparisons (i.e., 4).

Behavioral data analysis

To compare within- and between-chunk intervals, we used paired t test. To test group-specificity of press-interval patterns, pairwise

correlation coefficients (Pearson’s r) across the subjects (within- and across-group) were first z-transformed and then submitted to a

two-sample t test.

For the regression analysis of IPI data, the model-averaged log-Bayes factors ðlogBFcÞwere separately calculated for each partic-

ipant and then submitted to the Bayesian group analysis, which estimates the posterior model probability (Rigoux et al., 2014; Rosa

et al., 2010; Stephan et al., 2009) (spm_BMS() function implemented in the SPM12). Significance ofmodel contribution was assessed

by the protected exceedance probability (PXP), which is the posterior probability of a model being more likely than any other

competing model including chance-level (i.e., model probabilities are equal across all the models considered) (Rosa et al., 2010).

In our case of testing two models (i.e., presence versus absence of an effect), the value of PXP simply indicates the posterior prob-

ability that an effect is present in more than half of the participants, above and beyond chance. We deemed a model contribution is

significant when PXP is larger than 0.75.

Imaging data analysis

The resultant log-Bayes factors both for the simple comparison between two models ðlogBFÞ and overall contribution of a specific

model component ðlogBFcÞwere submitted to the group-level Bayesian analysis, as described above.We again used the PXP of 0.75

as a threshold of group-level significance of model evidence. Group-log-Bayes factor maps were further thresholded with the log-

Bayes factor of one (Kass and Raftery, 1995).

To test significant overlap between two representations A and B than chance-level, we used the likelihood-ratio G-test (Sokal and

Rohlf, 1995). We counted the number of cortical patches with significant evidence (logBFc > 1 and PXP > 0.75) for first-finger, chunk,

or sequence representations that also satisfied logBF > 1 for the noise-ceiling model. The observed counts were then compared to

the expected number of counts if the presence/absence of the representation was independent of each other.

To test whether observed surface patches with significant chunk and sequence representation (Figure 6G) represent two separate

groups, we compared Gaussian mixture models with one component and two components using leave-one-out cross validation.

Subsequently, the log-Bayes factor for the mixture model over the single Gaussian model (logBFDS) was calculated as,

logBFDS = log Lcv
D � log Lcv

S ;

where log Lcv
D and log Lcv

S represent the cross-validated log-likelihood of the double- and single-Gaussian mixture models, respec-

tively. Parameters for the mixture models (mean, covariance, and mixing ratio) were estimated using standard EM algorithm (Bishop,

2006). At each cross-validation fold, convergence of the mixture model to global minimum was ensured by iterating the estimation

from 100 randomly chosen starting values. Strength of evidence was assessed according to Kass and Raftery (1995).

DATA AND CODE AVAILABILITY

The MATLAB code used for the multivariate fMRI analysis (Pattern Component Modeling Toolbox, RRID:SCR_015891) are available

online (https://github.com/jdiedrichsen/pcm_toolbox). Upon publication data and other custom-written codes to reproduce all

figures will be made available online (https://github.com/ayokoi/sh1).
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